Ferromagnetic state and phase transitions Yuri Mnyukh 76 Peggy Lane, Farmington, CT, USA, e-mail:
[email protected] (Dated: June 20, 2011) Evidence is summarized attesting that the standard exchange field theory of ferromagnetism by Heisenberg has not been successful. It is replaced by the crystal field and a simple assumption that spin orientation is inexorably associated with the orientation of its carrier. It follows at once that both ferromagnetic phase transitions and magnetization must involve a structural rearrangement. The mechanism of structural rearrangements in solids is nucleation and interface propagation. The new approach accounts coherently for ferromagnetic state and its manifestations. 1. Weiss' molecular and Heisenberg's electron Its positive sign led to a collinear ferromagnetism, and exchange fields negative to a collinear antiferromagnetism. Since then it has become accepted that Heisenberg gave a quantum- Generally, ferromagnetics are spin-containing materials mechanical explanation for Weiss' "molecular field": that are (or can be) magnetized and remain magnetized "Only quantum mechanics has brought about in the absence of magnetic field. This definition also explanation of the true nature of ferromagnetism" includes ferrimagnetics, antiferromagnetics, and (Tamm [2]). "Heisenberg has shown that the Weiss' practically unlimited variety of magnetic structures. theory of molecular field can get a simple and The classical Weiss / Heisenberg theory of straightforward explanation in terms of quantum ferromagnetism, taught in the universities and presented mechanics" (Seitz [1]). in many textbooks (e. g., [1-4]), deals basically with the special case of a collinear (parallel and antiparallel) spin arrangement. 2. Inconsistence with the reality The logic behind the theory in question is as follows.