Study of Spin Glass and Cluster Ferromagnetism in Rusr2eu1.4Ce0.6Cu2o10-Δ Magneto Superconductor Anuj Kumar, R

Total Page:16

File Type:pdf, Size:1020Kb

Study of Spin Glass and Cluster Ferromagnetism in Rusr2eu1.4Ce0.6Cu2o10-Δ Magneto Superconductor Anuj Kumar, R Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10-δ magneto superconductor Anuj Kumar, R. P. Tandon, and V. P. S. Awana Citation: J. Appl. Phys. 110, 043926 (2011); doi: 10.1063/1.3626824 View online: http://dx.doi.org/10.1063/1.3626824 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v110/i4 Published by the American Institute of Physics. Related Articles Annealing effect on the excess conductivity of Cu0.5Tl0.25M0.25Ba2Ca2Cu3O10−δ (M=K, Na, Li, Tl) superconductors J. Appl. Phys. 111, 053914 (2012) Effect of columnar grain boundaries on flux pinning in MgB2 films J. Appl. Phys. 111, 053906 (2012) The scaling analysis on effective activation energy in HgBa2Ca2Cu3O8+δ J. Appl. Phys. 111, 07D709 (2012) Magnetism and superconductivity in the Heusler alloy Pd2YbPb J. Appl. Phys. 111, 07E111 (2012) Micromagnetic analysis of the magnetization dynamics driven by the Oersted field in permalloy nanorings J. Appl. Phys. 111, 07D103 (2012) Additional information on J. Appl. Phys. Journal Homepage: http://jap.aip.org/ Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded Information for Authors: http://jap.aip.org/authors Downloaded 12 Mar 2012 to 14.139.60.97. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions JOURNAL OF APPLIED PHYSICS 110, 043926 (2011) Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10-d magneto superconductor Anuj Kumar,1,2 R. P. Tandon,2 and V. P. S. Awana1,a) 1Quantum Phenomena and Application Division, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Road, New Delhi-110012, India 2Department of Physics and Astrophysics, University of Delhi, New Delhi-110007, India (Received 23 May 2011; accepted 20 July 2011; published online 29 August 2011) We report DC magnetization, detailed systematic linear and nonlinear AC magnetic susceptibility and transport for a single phase RuSr2Eu1.4Ce0.6Cu2O10-d (EuRu-1222) magneto-superconductor. The studied sample is synthesized through standard solid state reaction route, which is crystallized in single phase tetragonal structure with space group I4/mmm. DC magnetic susceptibility measurements revealed that the studied EuRu-1222 is a magneto-superconductor with Ru spins ordering at around 110 K and superconductivity in the Cu-O2 planes below 30 K. Temperature dependence of AC susceptibility with different frequency and amplitude variations confirms spin- glass behavior with cluster ferromagnetism of the system. Change in the cusp position with frequency follows the Vogel-Fulcher law, which is commonly accepted feature for a spin-glass (SG) system with ferromagnetic clusters. The third harmonic of AC susceptibility (v3) shows that the system undergoes a spin glass transition below 80 K. Superconducting transition temperature (Tc) onset and q ¼ 0 are seen at around 30 and 18 K without any applied field and the same decreases to 10 and 2 K under 130 kOe applied field. Also low fields isothermal (MH) suggests that ferromagnetic clusters are embedded in spin-glass (SG) matrix. The magnetization versus applied field (MH) loops exhibited ferromagnetic (FM) like behavior with rather small coercive fields. Detailed AC magnetic susceptibility measurements are carried out to unearth the short range magnetic correlations. These results support the spin-glass (SG) formation followed by ferromagnetic clustering effects at low temperatures. Our detailed magnetization and magneto transport results will undoubtedly contribute to current understanding of the complex magnetism of the EuRu-1222 system. VC 2011 American Institute of Physics. [doi:10.1063/1.3626824] I. INTRODUCTION resents the rare earth ion Eu or Gd).1 This is the so called Ru- 1222 type phase (the numbers reflect the number of metal The magnetic properties of rutheno-cuprates, which atoms present in their distinct crystallographic positions per belongs to the class of high temperature superconductors formula, sometimes also named the 2122-type, with RE site (HTSc), had raised significant interest in scientific commu- occupancy being listed first). Muon spin rotation (lSR) nity due to the presence of Ru ion magnetic order being experiments were performed on RuSr GdCu O (Ru1212) co-existing with superconductivity. Co-existence of super- 2 2 8Àd type phase and the presence of bulk magnetic order T ¼ 133 conductivity and magnetic order in the hybrid rutheno-cup- m K was confirmed with superconductivity at below 16 K.2,4 rates RuSr (Eu,Gd,Sm) Ce Cu O (Ru-1222) and RuSr 2 1.5 0.5 2 10-d 2 The magnetic ordering of transition metal magnetism (T ) (Eu,Gd,Sm)Cu O (Ru-1212) is interesting because the m 2 8Àd sets above the superconducting transition temperature (T ) magnetic ordering temperature is much higher (150 K) than c [e.g., for RuSr GdCu O : T 132 K and T 45 K5,6]. the superconducting transition temperature (30 K) and both 2 2 8-d m c While the co-existence of superconductivity with low temper- do co-exist in the same unit cell of these systems.1,2 A review ature antiferromagnetic (AFM) ordering in some of the rare of some earlier magnetic superconductors including RRh B 4 4 earth ions [e.g., for GdBa Cu O , T ¼ 92 K and T ¼ 2.2 and RMo S compounds (R ¼ rare earth) is presented in 2 3 7Àd c N 6 8 K7] is well known and has been investigated, the T > T is Ref. 3. Rutheno-cuprates appear to be the most challenging m c observed only for rutheno-cuprates system. Ferromagnetic- systems in term of understanding the novel phenomena of like and superconducting properties have also been reported co-existing superconductivity and ferromagnetism. More for RuSr EuCu O [(T ¼ 132 K, T 25 K),2,8 RuSr Y- than a decade is passed and scientists are yet trying to under- 2 2 8 m c 2 Cu O (T ¼ 149 K, T 39 K)9] and RuSr RECu O for stand complex magnetism of these systems.4–6 The magnetic 2 8 m c 2 2 8 RE ¼ Dy, Ho, Er.10,11 A phase separation into ferromagnetic behavior of Ru-1222 is even more complicated than Ru-1212 (FM) clusters and paramagnetic (PM) matrix followed by an phase. The first simultaneous observation of superconductiv- antiferromagnetic (AFM) transition has been assumed to ity and the Ru ion magnetic order in a rutheno-cuprate was establish magnetic correlations in these systems.12 Neutron published in 1997 for RuSr RE Ce Cu O (here RE rep- 2 1.4 0.6 2 10-d diffraction data13 did not show unique long range magnetic order, which is encountered more recently,14 primarily in a)Author to whom correspondence should be addressed. Electronic mail: Ru-1222 phase. These results are yet debated in literature. [email protected]. Also, interacting magnetic clusters in the Ru-O2 planes with 0021-8979/2011/110(4)/043926/8/$30.00 110, 043926-1 VC 2011 American Institute of Physics Downloaded 12 Mar 2012 to 14.139.60.97. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions 043926-2 Kumar, Tandon, and Awana J. Appl. Phys. 110, 043926 (2011) no long-range magnetic order, was proposed recently in of the peak is essential feature, although the exact shift is 15 Nb1ÀxRux-1222 system. The slow spin dynamics suggested different. that the FM clusters in Ru-1222 could exhibit superparamag- Keeping in view the complex magnetism of EuRu-1222, netism (SPM).12 An interesting observation of the frequency we report in this article detailed magnetization (DC/AC) and dependent peak shift of the AC susceptibility as a function of magneto-transport of a single phase EuRu-1222 compound temperature with thermoremanent magnetization (TRM) namely RuSr2Eu1.4Ce0.6Cu2O10Àd. Our results support the measurements16 revealed spin-glass (SG) behavior in spin-glass formation followed by ferromagnetic clustering Ru1222, which in a way contradicted the existence of long effects at low temperatures. range magnetic order in these systems. Spin glasses are mag- netic systems in which the magnetic moments are ‘‘in con- II. EXPERIMENTAL DETAILS flict’’ with each other due to some frozen-in structural Polycrystalline bulk sample of RuSr Eu Ce Cu O disorder. Thus no convectional long-range order (of ferro- 2 1.4 0.6 2 10Àd (EuRu-1222) was synthesized through solid state reaction magnetic or antiferromagnetic type) could be established. route from stoichiometric powders with 99.99% purity RuO , These systems exhibit a ‘‘freezing transition’’ to a state of 2 SrCO ,EuO ,CeO and CuO. These mixtures were ground new kind of order in which spins are aligned in random direc- 3 2 3 2 together in an agate mortar and calcined in air at 1020 C, tions.17 Spin-glass (SG) is simply the kinetic arrest of some 1040 Cand1060 C each for 24 hs with intermediate grind- sort of ferromagnetic and antiferromagnetic spins. One of the ings. The pressed bar shaped pellet was annealed in Oxygen characteristic phenomena observed in spin glasses systems is atmosphere at 850 C, 650 C and 450 C each for 24 hs, and the occurrence of sharp cusp in the frequency dependent AC subsequently cooled down slowly over a span of 12 hs to the susceptibility in low fields. The physics of spin glass raises room temperature. X-ray diffraction (XRD) was performed at many fundamental questions and has become one of the main room temperature in the scattering angular (2h)rangeof streams of research particularly in condensed matter physics. 20–80 in equal steps of 0.02 using Rigaku diffractometer A frequency and field dependent sharp cusp is observed in with Cu K (k ¼ 1.54A˚ ) radiation.
Recommended publications
  • Arxiv:Cond-Mat/0106646 29 Jun 2001 Landau Diamagnetism Revisited
    Landau Diamagnetism Revisited Sushanta Dattagupta†,**, Arun M. Jayannavar‡ and Narendra Kumar# †S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India ‡Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005, India #Raman Research Institute, Bangalore 560 080, India The problem of diamagnetism, solved by Landau, continues to pose fascinating issues which have relevance even today. These issues relate to inherent quantum nature of the problem, the role of boundary and dissipation, the meaning of thermodynamic limits, and above all, the quantum–classical crossover occasioned by environment- induced decoherence. The Landau diamagnetism provides a unique paradigm for discussing these issues, the significance of which is far-reaching. Our central result connects the mean orbital magnetic moment, a thermodynamic property, with the electrical resistivity, which characterizes transport properties of material. In this communication, we wish to draw the attention of Peierls to term diamagnetism as one of the surprises in the reader to certain enigmatic issues concerning dia- theoretical physics4. Landau’s pathbreaking result also magnetism. Indeed, diamagnetism can be used as a demonstrated that the calculation of diamagnetic suscep- prototype phenomenon to illustrate the essential role of tibility did indeed require an explicit quantum treatment. quantum mechanics, surface–boundary, dissipation and Turning to the classical domain, two of the present nonequilibrium statistical mechanics itself. authors had worried, some years ago, about the issue: Diamagnetism is a material property that characterizes does the BV theorem survive dissipation5? This is a natu- the response of an ensemble of charged particles (more ral question to ask as dissipation is a ubiquitous property specifically, electrons) to an applied magnetic field.
    [Show full text]
  • SPASER As a Complex System: Femtosecond Dynamics Traced by Ab-Initio Simulations
    SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations Item Type Conference Paper Authors Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea Citation Juan Sebastian Totero Gongora ; Andrey E. Miroshnichenko ; Yuri S. Kivshar and Andrea Fratalocchi " SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations ", Proc. SPIE 9746, Ultrafast Phenomena and Nanophotonics XX, 974618 (March 14, 2016); doi:10.1117/12.2212967; http:// dx.doi.org/10.1117/12.2212967 Eprint version Publisher's Version/PDF DOI 10.1117/12.2212967 Publisher SPIE-Intl Soc Optical Eng Journal Ultrafast Phenomena and Nanophotonics XX Rights Copyright 2016 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Download date 27/09/2021 00:14:10 Link to Item http://hdl.handle.net/10754/619757 SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations Juan Sebastian Totero Gongoraa, Andrey E. Miroshnichenkob, Yuri S. Kivsharb, and Andrea Fratalocchia aPRIMALIGHT, King Abdullah University of Science and Technology (KAUST),Thuwal 23955-6900, Saudi Arabia bNonlinear Physics Centre, Australian National University, Canberra ACT 2601, Australia. ABSTRACT Integrating coherent light sources at the nanoscale with spasers is one of the most promising applications of plasmonics. A spaser is a nano-plasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and the resonant cavity replaced by a nanoparticle supporting localized plasmonic modes.
    [Show full text]
  • Phase Transitions in Spin Glasses
    Phase Transitions in Spin Glasses Peter Young Talk available at http://physics.ucsc.edu/˜peter/talks/columbia.pdf e-mail:[email protected] Supported by the Hierarchical Systems Research Foundation. Recent collaborators: H. G. Katzgraber, L. W. Lee, J. Pixley, D. Larson, V. Martin-Mayor, A. Tarancon, L. A. Fernandez, S. Gaviro, Colloquium at Columbia University, October 19, 2009. – p.1 Overview • Basic Introduction • What is a spin glass? Why are they important? • Why are Monte Carlo simulations for spin glasses hard? • Try to answer two important questions concerning phase transitions in spin glasses: • Is there a phase transition in an isotropic Heisenberg spin glass? • Is there a transition in an Ising spin glass in a magnetic field (Almeida-Thouless line)? – p.2 What is a spin glass? A system with disorder and frustration. or Most theory uses the simplest model with these ingredients: the Edwards-Anderson Model: H = − Jij Si · Sj − hi · Si . i,j i hXi X Interactions are quenched and are random (have either sign). 2 1/2 Take a Gaussian distribution: [Jij ]av = 0; [Jij ]av = J (= 1) Spins, Si, fluctuate and have m–components: m = 1 (Ising) m = 2 (XY) m = 3 (Heisenberg). – p.3 Spin Glass Systems • Metals: Diluted magnetic atoms, e.g. Mn, in non-magnetic metal, e.g. Cu. RKKY interaction: cos(2kF Rij ) Jij ∼ 3 Rij Random in magnitude and sign, which gives frustration. Note: Mn (S-state ion) has little anisotropy; → Heisenberg spin glass. • Important because relevant to other systems: • “Vortex glass” transition in superconductors • Optimization problems in computer science (including solving optimization problems on a quantum computer) • Protein folding • Error correcting codes – p.4 Slow Dynamics (free) energy Slow dynamics The dynamics is very slow barrier at low T .
    [Show full text]
  • Coexistence of Superparamagnetism and Ferromagnetism in Co-Doped
    Available online at www.sciencedirect.com ScienceDirect Scripta Materialia 69 (2013) 694–697 www.elsevier.com/locate/scriptamat Coexistence of superparamagnetism and ferromagnetism in Co-doped ZnO nanocrystalline films Qiang Li,a Yuyin Wang,b Lele Fan,b Jiandang Liu,a Wei Konga and Bangjiao Yea,⇑ aState Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, People’s Republic of China bNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People’s Republic of China Received 8 April 2013; revised 5 August 2013; accepted 6 August 2013 Available online 13 August 2013 Pure ZnO and Zn0.95Co0.05O films were deposited on sapphire substrates by pulsed-laser deposition. We confirm that the magnetic behavior is intrinsic property of Co-doped ZnO nanocrystalline films. Oxygen vacancies play an important mediation role in Co–Co ferromagnetic coupling. The thermal irreversibility of field-cooling and zero field-cooling magnetizations reveals the presence of superparamagnetic behavior in our films, while no evidence of metallic Co clusters was detected. The origin of the observed superparamagnetism is discussed. Ó 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Dilute magnetic semiconductors; Superparamagnetism; Ferromagnetism; Co-doped ZnO Dilute magnetic semiconductors (DMSs) have magnetic properties in this system. In this work, the cor- attracted increasing attention in the past decade due to relation between the structural features and magnetic their promising technological applications in the field properties of Co-doped ZnO films was clearly of spintronic devices [1]. Transition metal (TM)-doped demonstrated. ZnO is one of the most attractive DMS candidates The Zn0.95Co0.05O films were deposited on sapphire because of its outstanding properties, including room- (0001) substrates by pulsed-laser deposition using a temperature ferromagnetism.
    [Show full text]
  • Solid State Physics 2 Lecture 5: Electron Liquid
    Physics 7450: Solid State Physics 2 Lecture 5: Electron liquid Leo Radzihovsky (Dated: 10 March, 2015) Abstract In these lectures, we will study itinerate electron liquid, namely metals. We will begin by re- viewing properties of noninteracting electron gas, developing its Greens functions, analyzing its thermodynamics, Pauli paramagnetism and Landau diamagnetism. We will recall how its thermo- dynamics is qualitatively distinct from that of a Boltzmann and Bose gases. As emphasized by Sommerfeld (1928), these qualitative di↵erence are due to the Pauli principle of electons’ fermionic statistics. We will then include e↵ects of Coulomb interaction, treating it in Hartree and Hartree- Fock approximation, computing the ground state energy and screening. We will then study itinerate Stoner ferromagnetism as well as various response functions, such as compressibility and conduc- tivity, and screening (Thomas-Fermi, Debye). We will then discuss Landau Fermi-liquid theory, which will allow us understand why despite strong electron-electron interactions, nevertheless much of the phenomenology of a Fermi gas extends to a Fermi liquid. We will conclude with discussion of electrons on the lattice, treated within the Hubbard and t-J models and will study transition to a Mott insulator and magnetism 1 I. INTRODUCTION A. Outline electron gas ground state and excitations • thermodynamics • Pauli paramagnetism • Landau diamagnetism • Hartree-Fock theory of interactions: ground state energy • Stoner ferromagnetic instability • response functions • Landau Fermi-liquid theory • electrons on the lattice: Hubbard and t-J models • Mott insulators and magnetism • B. Background In these lectures, we will study itinerate electron liquid, namely metals. In principle a fully quantum mechanical, strongly Coulomb-interacting description is required.
    [Show full text]
  • Arxiv:Cond-Mat/0503344 V1 15 Mar 2005 Local Vs. Global Variables For
    Local vs. Global Variables for Spin Glasses C. M. Newman∗ D. L. Stein† newman@ cims.nyu.edu dls @ physics.arizona.edu Courant Institute of Mathematical Sciences Depts. of Physics and Mathematics New York University University of Arizona New York, NY 10012, USA Tucson, AZ 85721, USA Abstract We discuss a framework for understanding why spin glasses differ so remarkably from ho- mogeneous systems like ferromagnets, in the context of the sharply divergent low temperature behavior of short- and infinite-range versions of the same model. Our analysis is grounded in understanding the distinction between two broad classes of thermodynamic variables – those that describe the global features of a macroscopic system, and those that describe, or are sen- sitive to, its local features. In homogeneous systems both variables generally behave similarly, but this is not at all so in spin glasses. In much of the literature these two different classes of variables were commingled and confused. By analyzing their quite different behaviors in finite- and infinite-range spin glass models, we see the fundamental reason why the two sys- tems possess very different types of low-temperature phases. In so doing, we also reconcile apparent discrepancies between the infinite-volume limit and the behavior of large, finite vol- umes, and provide tools for understanding inhomogeneous systems in a wide array of contexts. We further propose a set of ‘global variables’ that are definable and sensible for both short- range and infinite-range spin glasses, and allow a meaningful basis for comparison of their arXiv:cond-mat/0503344 v1 15 Mar 2005 low-temperature properties.
    [Show full text]
  • Arxiv:1902.01645V1 [Cond-Mat.Mtrl-Sci] 5 Feb 2019 Magnetic Phases of Fe-Cr Alloys Are Fairly Complex
    The Dynamics of Magnetism in Fe-Cr Alloys with Cr Clustering Jacob B. J. Chapman,∗ Pui-Wai Ma, and S. L. Dudarev UK Atomic Energy Authority, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom The dynamics of magnetic moments in iron-chromium alloys with different levels of Cr clustering show unusual features resulting from the fact that even in a perfect body-centred cubic structure, magnetic moments experience geometric magnetic frustration resembling that of a spin glass. Due to the long range exchange coupling and configuration randomness, magnetic moments of Cr solutes remain non-collinear at all temperatures. To characterise magnetic properties of Fe-Cr alloys, we explore the temperature dependence of magnetisation, susceptibility, Curie temperature and spin- spin correlations with spatial resolution. The static and dynamic magnetic properties are correlated with the microstructure of Fe-Cr, where magnetisation and susceptibility are determined by the size of Cr precipitates at nominal Cr concentrations. The Curie temperature is always maximised when the solute concentration of Cr in the α phase is close to 5 to 6 at.%, and the susceptibility of Fe atoms is always enhanced at the boundary between a precipitate and solid solution. Interaction between Cr and Fe stimulates magnetic disorder, lowering the effective Curie temperature. Dynamic simulation of evolution of magnetic correlations shows that the spin-spin relaxation time in Fe-Cr alloys is in the 20 to 40 ps range. I. INTRODUCTION and 84 at.% Cr, Fe magnetic moments prevent long range AFM-like correlations, causing the moments to freeze 15 Iron and chromium are the main components of steels.
    [Show full text]
  • Condensation of Bosons with Several Degrees of Freedom Condensación De Bosones Con Varios Grados De Libertad
    Condensation of bosons with several degrees of freedom Condensación de bosones con varios grados de libertad Trabajo presentado por Rafael Delgado López1 para optar al título de Máster en Física Fundamental bajo la dirección del Dr. Pedro Bargueño de Retes2 y del Prof. Fernando Sols Lucia3 Universidad Complutense de Madrid Junio de 2013 Calificación obtenida: 10 (MH) 1 [email protected], Dep. Física Teórica I, Universidad Complutense de Madrid 2 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid 3 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid Abstract The condensation of the spinless ideal charged Bose gas in the presence of a magnetic field is revisited as a first step to tackle the more complex case of a molecular condensate, where several degrees of freedom have to be taken into account. In the charged bose gas, the conventional approach is extended to include the macroscopic occupation of excited kinetic states lying in the lowest Landau level, which plays an essential role in the case of large magnetic fields. In that limit, signatures of two diffuse phase transitions (crossovers) appear in the specific heat. In particular, at temperatures lower than the cyclotron frequency, the system behaves as an effectively one-dimensional free boson system, with the specific heat equal to (1/2) NkB and a gradual condensation at lower temperatures. In the molecular case, which is currently in progress, we have studied the condensation of rotational levels in a two–dimensional trap within the Bogoliubov approximation, showing that multi–step condensation also occurs.
    [Show full text]
  • Bose-Einstein Condensation in Quantum Glasses
    Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions Bose-Einstein condensation in Quantum Glasses Giuseppe Carleo, Marco Tarzia, and Francesco Zamponi∗ Phys. Rev. Lett. 103, 215302 (2009) Collaborators: Florent Krzakala, Laura Foini, Alberto Rosso, Guilhem Semerjian ∗Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 Rue Lhomond, 75231 Paris Cedex 05 March 29, 2010 Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions Outline 1 Motivations Supersolidity of He4 Helium 4: Monte Carlo results 2 The quantum cavity method Regular lattices, Bethe lattices and random graphs Recursion relations Bose-Hubbard models on the Bethe lattice 3 A lattice model for the superglass Extended Hubbard model on a random graph Results A variational argument 4 Discussion Disordered Bose-Hubbard model: the Bose glass 3D spin glass model with quenched disorder Quantum Biroli-M´ezard model: a lattice glass model 5 Conclusions Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions Outline 1 Motivations Supersolidity of He4 Helium 4: Monte Carlo results 2 The quantum cavity method Regular lattices, Bethe lattices and random graphs Recursion relations Bose-Hubbard models on the Bethe lattice 3 A lattice model for the superglass Extended Hubbard model on a random graph Results A variational argument 4 Discussion Disordered Bose-Hubbard model: the Bose glass 3D spin glass model with quenched disorder Quantum Biroli-M´ezard model: a lattice glass model 5 Conclusions Experimental Results Discovery by Kim & Chan in He4 (Nature & Science 2004). Motivations• The quantumExperimental cavity method A lattice modelResults for the superglass Discussion Conclusions Reproduced after by many4 other groups.
    [Show full text]
  • Ferromagnetic State and Phase Transitions
    Ferromagnetic state and phase transitions Yuri Mnyukh 76 Peggy Lane, Farmington, CT, USA, e-mail: [email protected] (Dated: June 20, 2011) Evidence is summarized attesting that the standard exchange field theory of ferromagnetism by Heisenberg has not been successful. It is replaced by the crystal field and a simple assumption that spin orientation is inexorably associated with the orientation of its carrier. It follows at once that both ferromagnetic phase transitions and magnetization must involve a structural rearrangement. The mechanism of structural rearrangements in solids is nucleation and interface propagation. The new approach accounts coherently for ferromagnetic state and its manifestations. 1. Weiss' molecular and Heisenberg's electron Its positive sign led to a collinear ferromagnetism, and exchange fields negative to a collinear antiferromagnetism. Since then it has become accepted that Heisenberg gave a quantum- Generally, ferromagnetics are spin-containing materials mechanical explanation for Weiss' "molecular field": that are (or can be) magnetized and remain magnetized "Only quantum mechanics has brought about in the absence of magnetic field. This definition also explanation of the true nature of ferromagnetism" includes ferrimagnetics, antiferromagnetics, and (Tamm [2]). "Heisenberg has shown that the Weiss' practically unlimited variety of magnetic structures. theory of molecular field can get a simple and The classical Weiss / Heisenberg theory of straightforward explanation in terms of quantum ferromagnetism, taught in the universities and presented mechanics" (Seitz [1]). in many textbooks (e. g., [1-4]), deals basically with the special case of a collinear (parallel and antiparallel) spin arrangement. 2. Inconsistence with the reality The logic behind the theory in question is as follows.
    [Show full text]
  • Pauli Paramagnetism of an Ideal Fermi Gas
    Pauli paramagnetism of an ideal Fermi gas The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Lee, Ye-Ryoung, Tout T. Wang, Timur M. Rvachov, Jae-Hoon Choi, Wolfgang Ketterle, and Myoung-Sun Heo. "Pauli paramagnetism of an ideal Fermi gas." Phys. Rev. A 87, 043629 (April 2013). © 2013 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevA.87.043629 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/88740 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW A 87, 043629 (2013) Pauli paramagnetism of an ideal Fermi gas Ye-Ryoung Lee,1 Tout T. Wang,1,2 Timur M. Rvachov,1 Jae-Hoon Choi,1 Wolfgang Ketterle,1 and Myoung-Sun Heo1,* 1MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 7 January 2013; published 24 April 2013) We show how to use trapped ultracold atoms to measure the magnetic susceptibility of a two-component Fermi gas. The method is illustrated for a noninteracting gas of 6Li, using the tunability of interactions around a wide Feshbach resonance. The susceptibility versus effective magnetic field is directly obtained from the inhomogeneous density profile of the trapped atomic cloud. The wings of the cloud realize the high-field limit where the polarization approaches 100%, which is not accessible for an electron gas.
    [Show full text]
  • Energy and Charge Transfer in Open Plasmonic Systems
    Energy and Charge Transfer in Open Plasmonic Systems Niket Thakkar A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: David J. Masiello Randall J. LeVeque Mathew J. Lorig Daniel R. Gamelin Program Authorized to Offer Degree: Applied Mathematics ©Copyright 2017 Niket Thakkar University of Washington Abstract Energy and Charge Transfer in Open Plasmonic Systems Niket Thakkar Chair of the Supervisory Committee: Associate Professor David J. Masiello Chemistry Coherent and collective charge oscillations in metal nanoparticles (MNPs), known as localized surface plasmons, offer unprecedented control and enhancement of optical processes on the nanoscale. Since their discovery in the 1950's, plasmons have played an important role in understanding fundamental properties of solid state matter and have been used for a variety of applications, from single molecule spectroscopy to directed radiation therapy for cancer treatment. More recently, experiments have demonstrated quantum interference between optically excited plasmonic materials, opening the door for plasmonic applications in quantum information and making the study of the basic quantum mechanical properties of plasmonic structures an important research topic. This text describes a quantitatively accurate, versatile model of MNP optics that incorporates MNP geometry, local environment, and effects due to the quantum properties of conduction electrons and radiation. We build the theory from
    [Show full text]