Observation of Spin Glass State in Weakly Ferromagnetic Sr2fecoo6 Double Perovskite R

Total Page:16

File Type:pdf, Size:1020Kb

Observation of Spin Glass State in Weakly Ferromagnetic Sr2fecoo6 Double Perovskite R Observation of spin glass state in weakly ferromagnetic Sr2FeCoO6 double perovskite R. Pradheesh, Harikrishnan S. Nair, C. M. N. Kumar, Jagat Lamsal, R. Nirmala et al. Citation: J. Appl. Phys. 111, 053905 (2012); doi: 10.1063/1.3686137 View online: http://dx.doi.org/10.1063/1.3686137 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v111/i5 Published by the American Institute of Physics. Additional information on J. Appl. Phys. Journal Homepage: http://jap.aip.org/ Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded Information for Authors: http://jap.aip.org/authors Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions JOURNAL OF APPLIED PHYSICS 111, 053905 (2012) Observation of spin glass state in weakly ferromagnetic Sr2FeCoO6 double perovskite R. Pradheesh,1 Harikrishnan S. Nair,2 C. M. N. Kumar,2 Jagat Lamsal,3 R. Nirmala,1 P. N. Santhosh,1 W. B. Yelon,4 S. K. Malik,5 V. Sankaranarayanan,1,a) and K. Sethupathi1,a) 1Low Temperature Physics Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India 2Ju¨lich Center for Neutron Sciences-2/Peter Gru¨nberg Institute-4, Forschungszentrum Ju¨lich, 52425 Ju¨lich, Germany 3Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, USA 4Materials Research Center and Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA 5Departmento de Fisica Teo´rica e Experimental, Natal-RN, 59072-970, Brazil (Received 30 September 2011; accepted 18 January 2012; published online 1 March 2012) A spin glass state is observed in the double perovskite oxide Sr2FeCoO6 prepared through sol-gel technique. Initial structural studies using x rays reveal that the compound crystallizes in tetragonal I4/m structure with lattice parameters, a ¼ 5.4609(2) A˚ and c ¼ 7.7113(7) A˚ . The temperature dependent powder x ray diffraction data reveal no structural phase transition in the temperature range 10-300 K. However, the unit cell volume shows an anomaly coinciding with the magnetic transition temperature thereby suggesting a close connection between lattice and magnetism. Neutron diffraction studies and subsequent bond valence sums analysis show that in Sr2FeCoO6,theB site is randomly occupied by Fe and Co in the mixed valence states of Fe3 þ /Fe4þ and Co3þ/Co4þ. The random occupancy and mixed valence sets the stage for inhomogeneous magnetic exchange interactions and in turn, for the spin glass state in this double perovskite, which is observed as an irreversibility in temperature dependent dc magnetization at Tf 75 K. Dynamical scaling analysis of 0 v (T) yields a critical temperature Tct ¼ 75.14(8) K and an exponent z ¼ 6.2(2) typical for spin glasses. The signature of presence of mixed magnetic interactions is obtained from the thermal hysteresis in magnetization of Sr2FeCoO6. Combining the neutron and magnetization results of Sr2FeCoO6, we deduce that Fe is in low spin state while Co is in both low spin and intermediate spin states. VC 2012 American Institute of Physics. [doi:10.1063/1.3686137] I. INTRODUCTION that the Fe ions are separated far apart in these materials.2 However, a few exceptions (like Sr FeWO ) to this have been Ferromagnetic double perovskite oxides of general for- 2 6 reported with low magnetic transition temperatures 37 K.10 mula A BB0O (where A ¼ divalent alkaline earth; B and 2 6 The correlation between magnetoresistance and magnetism in B0 ¼ transition metal ions) have been extensively studied as these compounds and the site disorder is understood from the candidates for magnetoresistive materials.1,2 The crystallo- studies on ordered and disordered Sr FeMoO .11 The site dis- graphic ordering of the B cations in these compounds plays an 2 6 order can partially or completely destroy the B site ordering important role in realizing novel magnetic and transport prop- of cations and can influence the physical properties like mag- erties including magnetoresistance.2 Depending on the crys- nitude of magnetization, Curie temperature and low-field tallographic arrangement of B cations, double perovskites are magnetoresistance.12,13 It has been found that the site disorder classified as random, rock salt or layered.3 For example, can be influenced by preparative conditions such as heat treat- Ca FeReO has rock salt arrangement4 while PrBaCo O 2 6 2 5 þ d ment temperature,12,14 treatment time14 etc. Therefore, it is adopts layered structure.5 Though B site ordered double per- possible to tune the magnetic properties of A BB0O through ovskites are of interest for magnetoresistive and ferromagnetic 2 6 suitable selection of B/B0 cations and preparative conditions. (FM) properties, it has been observed that comparable ionic Though double perovskite oxides in the A BB0O family have radii and oxidation states of different cations at the B site can 2 6 been actively investigated, there are only a few reports on the lead to mixed crystallographic occupation and result in what Co based double perovskite, Sr FeCoO .15,16 Earlier studies is known as antisite disorder.3 Depending on the type, size 2 6 on the chemically similar single perovskite SrFe Co O and charge of the cations present at the B site, different mag- 1-x x 3 [x ¼ 0.5] reported a high T of340Kandsaturationmagnet- netic properties varying from antiferromagnetism6,7 (AFM) to c ization of 3 l .17,18 Meanwhile, Maignan et al., reported spin glass8,9 (SG) have been reported in double perovskites. B SrFe Co O to be ferromagnetic below T 200 K with a Most of the Fe based double perovskites display a high mag- 0.5 0.5 3 c saturation magnetization of 1.5 l at 5 K.15 Ab initio band netic transition temperature, which is surprising given the fact B structure calculations on Sr2FeCoO6 showed that both Co and Fe make comparable contributions to ferromagnetism of the 19 4þ 5 4þ 4 a)Electronic addresses: [email protected] and [email protected]. compound where Co (d L)andFe (d L)inhighspin ac.in. (HS) states can lead to metallicity and ferromagnetism. 0021-8979/2012/111(5)/053905/7/$30.00 111, 053905-1 VC 2012 American Institute of Physics Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions 053905-2 Pradheesh et al. J. Appl. Phys. 111, 053905 (2012) However, owing to the comparable ionic radii and valence goodness-of-fit (v2) of the refinement for I4/m and Pm3m states of Fe and Co (both in 4 þ state), it is surprising that Co space groups, and it is found that the former gives a better fit. doped SrFeO3 showed ferromagnetism. The absence of a lin- The temperature evolution of unit cell volume is presented in 0 0 ear B-O-B -O-B chain consequent to tilts in the BO6 and B O6 Fig. 2(b). The variation of cell volume was modeled using the octahedra can cause 90 and 180 superexchange interac- Gru¨neisen approximation,27 tions.20,21 Moreover, comparable ionic radii of the B site cati- ons combined with antisite disorder can lead to magnetic VðTÞ¼cUðTÞ=K0 þ V0; ð frustration in the double perovskites. Cluster glass phenom- HD=T UðTÞ¼9Nk TðT=H Þ3 x3=ðex À 1Þdx: enon in Sr2Mn1-xFexMoO6 (Ref. 20) was attributed to the B D 0 local magnetic frustration developed due to the competing nearest neighbor (NN) and next nearest neighbor (NNN) Here, U(T) is the specific internal energy, c is the Gru¨neisen superexchange interactions. Incompatible superexchange parameter, K0 is the incompressibility, V0 is the volume at interactions and magnetic frustration due to the site disorder T ¼ 0 K, and HD is the Debye temperature. The resulting fit 0 22 of the B and B cations were observed in Sr2FeTiO6-d. These is shown as a solid line in Fig. 2(b). Note that the fit deviates observations point to the fact that mixed valence state of the B from the data at T 75 K where the volume displays a and B0 ions and their crystallographic disorder can lead to a hump-like feature (a magnified low-temperature region spin glass state as it would create mixed interactions and ran- where the fit deviates from the data is shown in the inset 23 domness. In the present study on Sr2FeCoO6,through (1)). This is inferred as magnetoelastic or magnetovolume detailed structural and magnetic investigations, we observe an effect coinciding with the magnetic transition. In this respect, inhomogeneous magnetic state with the characteristics of a further studies aimed at investigating magneto-structural spin glass phase arising from incompatible magnetic interac- coupling and polarization measurements would be reward- 21 tions and crystallographic disorder. ing. The value of HD obtained from the fit is 463 K and ˚ 3 V0 ¼ 227.89 A . The HD of Sr2FeCoO6 lies in the range of II. EXPERIMENTAL DETAILS values estimated for double perovskites like Sr2FeTeO6 28 assuming two different HD’s for light and heavy atoms. In Polycrystalline samples of Sr2FeCoO6 were prepared by sol-gel method as described elsewhere.24 The gel was Fig. 2(c) we show the temperature variation of the lattice pa- dried at 120 C and the final sintering of the sample was rameters a and c. An important structural parameter charac- done at 1050 C for 36 h.
Recommended publications
  • SPASER As a Complex System: Femtosecond Dynamics Traced by Ab-Initio Simulations
    SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations Item Type Conference Paper Authors Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea Citation Juan Sebastian Totero Gongora ; Andrey E. Miroshnichenko ; Yuri S. Kivshar and Andrea Fratalocchi " SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations ", Proc. SPIE 9746, Ultrafast Phenomena and Nanophotonics XX, 974618 (March 14, 2016); doi:10.1117/12.2212967; http:// dx.doi.org/10.1117/12.2212967 Eprint version Publisher's Version/PDF DOI 10.1117/12.2212967 Publisher SPIE-Intl Soc Optical Eng Journal Ultrafast Phenomena and Nanophotonics XX Rights Copyright 2016 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Download date 27/09/2021 00:14:10 Link to Item http://hdl.handle.net/10754/619757 SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations Juan Sebastian Totero Gongoraa, Andrey E. Miroshnichenkob, Yuri S. Kivsharb, and Andrea Fratalocchia aPRIMALIGHT, King Abdullah University of Science and Technology (KAUST),Thuwal 23955-6900, Saudi Arabia bNonlinear Physics Centre, Australian National University, Canberra ACT 2601, Australia. ABSTRACT Integrating coherent light sources at the nanoscale with spasers is one of the most promising applications of plasmonics. A spaser is a nano-plasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and the resonant cavity replaced by a nanoparticle supporting localized plasmonic modes.
    [Show full text]
  • Phase Transitions in Spin Glasses
    Phase Transitions in Spin Glasses Peter Young Talk available at http://physics.ucsc.edu/˜peter/talks/columbia.pdf e-mail:[email protected] Supported by the Hierarchical Systems Research Foundation. Recent collaborators: H. G. Katzgraber, L. W. Lee, J. Pixley, D. Larson, V. Martin-Mayor, A. Tarancon, L. A. Fernandez, S. Gaviro, Colloquium at Columbia University, October 19, 2009. – p.1 Overview • Basic Introduction • What is a spin glass? Why are they important? • Why are Monte Carlo simulations for spin glasses hard? • Try to answer two important questions concerning phase transitions in spin glasses: • Is there a phase transition in an isotropic Heisenberg spin glass? • Is there a transition in an Ising spin glass in a magnetic field (Almeida-Thouless line)? – p.2 What is a spin glass? A system with disorder and frustration. or Most theory uses the simplest model with these ingredients: the Edwards-Anderson Model: H = − Jij Si · Sj − hi · Si . i,j i hXi X Interactions are quenched and are random (have either sign). 2 1/2 Take a Gaussian distribution: [Jij ]av = 0; [Jij ]av = J (= 1) Spins, Si, fluctuate and have m–components: m = 1 (Ising) m = 2 (XY) m = 3 (Heisenberg). – p.3 Spin Glass Systems • Metals: Diluted magnetic atoms, e.g. Mn, in non-magnetic metal, e.g. Cu. RKKY interaction: cos(2kF Rij ) Jij ∼ 3 Rij Random in magnitude and sign, which gives frustration. Note: Mn (S-state ion) has little anisotropy; → Heisenberg spin glass. • Important because relevant to other systems: • “Vortex glass” transition in superconductors • Optimization problems in computer science (including solving optimization problems on a quantum computer) • Protein folding • Error correcting codes – p.4 Slow Dynamics (free) energy Slow dynamics The dynamics is very slow barrier at low T .
    [Show full text]
  • Coexistence of Superparamagnetism and Ferromagnetism in Co-Doped
    Available online at www.sciencedirect.com ScienceDirect Scripta Materialia 69 (2013) 694–697 www.elsevier.com/locate/scriptamat Coexistence of superparamagnetism and ferromagnetism in Co-doped ZnO nanocrystalline films Qiang Li,a Yuyin Wang,b Lele Fan,b Jiandang Liu,a Wei Konga and Bangjiao Yea,⇑ aState Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, People’s Republic of China bNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People’s Republic of China Received 8 April 2013; revised 5 August 2013; accepted 6 August 2013 Available online 13 August 2013 Pure ZnO and Zn0.95Co0.05O films were deposited on sapphire substrates by pulsed-laser deposition. We confirm that the magnetic behavior is intrinsic property of Co-doped ZnO nanocrystalline films. Oxygen vacancies play an important mediation role in Co–Co ferromagnetic coupling. The thermal irreversibility of field-cooling and zero field-cooling magnetizations reveals the presence of superparamagnetic behavior in our films, while no evidence of metallic Co clusters was detected. The origin of the observed superparamagnetism is discussed. Ó 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Dilute magnetic semiconductors; Superparamagnetism; Ferromagnetism; Co-doped ZnO Dilute magnetic semiconductors (DMSs) have magnetic properties in this system. In this work, the cor- attracted increasing attention in the past decade due to relation between the structural features and magnetic their promising technological applications in the field properties of Co-doped ZnO films was clearly of spintronic devices [1]. Transition metal (TM)-doped demonstrated. ZnO is one of the most attractive DMS candidates The Zn0.95Co0.05O films were deposited on sapphire because of its outstanding properties, including room- (0001) substrates by pulsed-laser deposition using a temperature ferromagnetism.
    [Show full text]
  • Solid State Physics 2 Lecture 5: Electron Liquid
    Physics 7450: Solid State Physics 2 Lecture 5: Electron liquid Leo Radzihovsky (Dated: 10 March, 2015) Abstract In these lectures, we will study itinerate electron liquid, namely metals. We will begin by re- viewing properties of noninteracting electron gas, developing its Greens functions, analyzing its thermodynamics, Pauli paramagnetism and Landau diamagnetism. We will recall how its thermo- dynamics is qualitatively distinct from that of a Boltzmann and Bose gases. As emphasized by Sommerfeld (1928), these qualitative di↵erence are due to the Pauli principle of electons’ fermionic statistics. We will then include e↵ects of Coulomb interaction, treating it in Hartree and Hartree- Fock approximation, computing the ground state energy and screening. We will then study itinerate Stoner ferromagnetism as well as various response functions, such as compressibility and conduc- tivity, and screening (Thomas-Fermi, Debye). We will then discuss Landau Fermi-liquid theory, which will allow us understand why despite strong electron-electron interactions, nevertheless much of the phenomenology of a Fermi gas extends to a Fermi liquid. We will conclude with discussion of electrons on the lattice, treated within the Hubbard and t-J models and will study transition to a Mott insulator and magnetism 1 I. INTRODUCTION A. Outline electron gas ground state and excitations • thermodynamics • Pauli paramagnetism • Landau diamagnetism • Hartree-Fock theory of interactions: ground state energy • Stoner ferromagnetic instability • response functions • Landau Fermi-liquid theory • electrons on the lattice: Hubbard and t-J models • Mott insulators and magnetism • B. Background In these lectures, we will study itinerate electron liquid, namely metals. In principle a fully quantum mechanical, strongly Coulomb-interacting description is required.
    [Show full text]
  • Arxiv:Cond-Mat/0503344 V1 15 Mar 2005 Local Vs. Global Variables For
    Local vs. Global Variables for Spin Glasses C. M. Newman∗ D. L. Stein† newman@ cims.nyu.edu dls @ physics.arizona.edu Courant Institute of Mathematical Sciences Depts. of Physics and Mathematics New York University University of Arizona New York, NY 10012, USA Tucson, AZ 85721, USA Abstract We discuss a framework for understanding why spin glasses differ so remarkably from ho- mogeneous systems like ferromagnets, in the context of the sharply divergent low temperature behavior of short- and infinite-range versions of the same model. Our analysis is grounded in understanding the distinction between two broad classes of thermodynamic variables – those that describe the global features of a macroscopic system, and those that describe, or are sen- sitive to, its local features. In homogeneous systems both variables generally behave similarly, but this is not at all so in spin glasses. In much of the literature these two different classes of variables were commingled and confused. By analyzing their quite different behaviors in finite- and infinite-range spin glass models, we see the fundamental reason why the two sys- tems possess very different types of low-temperature phases. In so doing, we also reconcile apparent discrepancies between the infinite-volume limit and the behavior of large, finite vol- umes, and provide tools for understanding inhomogeneous systems in a wide array of contexts. We further propose a set of ‘global variables’ that are definable and sensible for both short- range and infinite-range spin glasses, and allow a meaningful basis for comparison of their arXiv:cond-mat/0503344 v1 15 Mar 2005 low-temperature properties.
    [Show full text]
  • Study of Spin Glass and Cluster Ferromagnetism in Rusr2eu1.4Ce0.6Cu2o10-Δ Magneto Superconductor Anuj Kumar, R
    Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10-δ magneto superconductor Anuj Kumar, R. P. Tandon, and V. P. S. Awana Citation: J. Appl. Phys. 110, 043926 (2011); doi: 10.1063/1.3626824 View online: http://dx.doi.org/10.1063/1.3626824 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v110/i4 Published by the American Institute of Physics. Related Articles Annealing effect on the excess conductivity of Cu0.5Tl0.25M0.25Ba2Ca2Cu3O10−δ (M=K, Na, Li, Tl) superconductors J. Appl. Phys. 111, 053914 (2012) Effect of columnar grain boundaries on flux pinning in MgB2 films J. Appl. Phys. 111, 053906 (2012) The scaling analysis on effective activation energy in HgBa2Ca2Cu3O8+δ J. Appl. Phys. 111, 07D709 (2012) Magnetism and superconductivity in the Heusler alloy Pd2YbPb J. Appl. Phys. 111, 07E111 (2012) Micromagnetic analysis of the magnetization dynamics driven by the Oersted field in permalloy nanorings J. Appl. Phys. 111, 07D103 (2012) Additional information on J. Appl. Phys. Journal Homepage: http://jap.aip.org/ Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded Information for Authors: http://jap.aip.org/authors Downloaded 12 Mar 2012 to 14.139.60.97. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions JOURNAL OF APPLIED PHYSICS 110, 043926 (2011) Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10-d magneto superconductor Anuj Kumar,1,2 R. P. Tandon,2 and V. P. S. Awana1,a) 1Quantum Phenomena and Application Division, National Physical Laboratory (CSIR), Dr.
    [Show full text]
  • Arxiv:1902.01645V1 [Cond-Mat.Mtrl-Sci] 5 Feb 2019 Magnetic Phases of Fe-Cr Alloys Are Fairly Complex
    The Dynamics of Magnetism in Fe-Cr Alloys with Cr Clustering Jacob B. J. Chapman,∗ Pui-Wai Ma, and S. L. Dudarev UK Atomic Energy Authority, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom The dynamics of magnetic moments in iron-chromium alloys with different levels of Cr clustering show unusual features resulting from the fact that even in a perfect body-centred cubic structure, magnetic moments experience geometric magnetic frustration resembling that of a spin glass. Due to the long range exchange coupling and configuration randomness, magnetic moments of Cr solutes remain non-collinear at all temperatures. To characterise magnetic properties of Fe-Cr alloys, we explore the temperature dependence of magnetisation, susceptibility, Curie temperature and spin- spin correlations with spatial resolution. The static and dynamic magnetic properties are correlated with the microstructure of Fe-Cr, where magnetisation and susceptibility are determined by the size of Cr precipitates at nominal Cr concentrations. The Curie temperature is always maximised when the solute concentration of Cr in the α phase is close to 5 to 6 at.%, and the susceptibility of Fe atoms is always enhanced at the boundary between a precipitate and solid solution. Interaction between Cr and Fe stimulates magnetic disorder, lowering the effective Curie temperature. Dynamic simulation of evolution of magnetic correlations shows that the spin-spin relaxation time in Fe-Cr alloys is in the 20 to 40 ps range. I. INTRODUCTION and 84 at.% Cr, Fe magnetic moments prevent long range AFM-like correlations, causing the moments to freeze 15 Iron and chromium are the main components of steels.
    [Show full text]
  • Bose-Einstein Condensation in Quantum Glasses
    Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions Bose-Einstein condensation in Quantum Glasses Giuseppe Carleo, Marco Tarzia, and Francesco Zamponi∗ Phys. Rev. Lett. 103, 215302 (2009) Collaborators: Florent Krzakala, Laura Foini, Alberto Rosso, Guilhem Semerjian ∗Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 Rue Lhomond, 75231 Paris Cedex 05 March 29, 2010 Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions Outline 1 Motivations Supersolidity of He4 Helium 4: Monte Carlo results 2 The quantum cavity method Regular lattices, Bethe lattices and random graphs Recursion relations Bose-Hubbard models on the Bethe lattice 3 A lattice model for the superglass Extended Hubbard model on a random graph Results A variational argument 4 Discussion Disordered Bose-Hubbard model: the Bose glass 3D spin glass model with quenched disorder Quantum Biroli-M´ezard model: a lattice glass model 5 Conclusions Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions Outline 1 Motivations Supersolidity of He4 Helium 4: Monte Carlo results 2 The quantum cavity method Regular lattices, Bethe lattices and random graphs Recursion relations Bose-Hubbard models on the Bethe lattice 3 A lattice model for the superglass Extended Hubbard model on a random graph Results A variational argument 4 Discussion Disordered Bose-Hubbard model: the Bose glass 3D spin glass model with quenched disorder Quantum Biroli-M´ezard model: a lattice glass model 5 Conclusions Experimental Results Discovery by Kim & Chan in He4 (Nature & Science 2004). Motivations• The quantumExperimental cavity method A lattice modelResults for the superglass Discussion Conclusions Reproduced after by many4 other groups.
    [Show full text]
  • Ferromagnetic State and Phase Transitions
    Ferromagnetic state and phase transitions Yuri Mnyukh 76 Peggy Lane, Farmington, CT, USA, e-mail: [email protected] (Dated: June 20, 2011) Evidence is summarized attesting that the standard exchange field theory of ferromagnetism by Heisenberg has not been successful. It is replaced by the crystal field and a simple assumption that spin orientation is inexorably associated with the orientation of its carrier. It follows at once that both ferromagnetic phase transitions and magnetization must involve a structural rearrangement. The mechanism of structural rearrangements in solids is nucleation and interface propagation. The new approach accounts coherently for ferromagnetic state and its manifestations. 1. Weiss' molecular and Heisenberg's electron Its positive sign led to a collinear ferromagnetism, and exchange fields negative to a collinear antiferromagnetism. Since then it has become accepted that Heisenberg gave a quantum- Generally, ferromagnetics are spin-containing materials mechanical explanation for Weiss' "molecular field": that are (or can be) magnetized and remain magnetized "Only quantum mechanics has brought about in the absence of magnetic field. This definition also explanation of the true nature of ferromagnetism" includes ferrimagnetics, antiferromagnetics, and (Tamm [2]). "Heisenberg has shown that the Weiss' practically unlimited variety of magnetic structures. theory of molecular field can get a simple and The classical Weiss / Heisenberg theory of straightforward explanation in terms of quantum ferromagnetism, taught in the universities and presented mechanics" (Seitz [1]). in many textbooks (e. g., [1-4]), deals basically with the special case of a collinear (parallel and antiparallel) spin arrangement. 2. Inconsistence with the reality The logic behind the theory in question is as follows.
    [Show full text]
  • Introduction to AC Susceptibility
    QuantumDesign Introduction to: AC Susceptibility AC Magnetic Measurements Dinesh Martien Introduction AC magnetic measurements, in which an AC field is applied to a sample and the resulting AC moment is measured, are an important tool for characterizing many materials. Because the induced sample moment is time-dependent, AC measurements yield information about magnetization dynamics which are not AC Magnetometry obtained in DC measurements, where the sample moment is constant during the measurement time. This application note In AC magnetic measurements, a small AC drive magnetic field will briefly describe how AC magnetic measurements are is superimposed on the DC field, causing a time-dependent performed, discuss the meaning of the data that come out of moment in the sample. The field of the time-dependent an AC measurement, and show some measurement examples. moment induces a current in the pickup coils, allowing meas- urement without sample motion. The detection circuitry is configured to detect only in a narrow frequency band, normally DC Magnetometry at the fundamental frequency (that of the AC drive field). DC magnetic measurements determine the equilibrium value In order to understand what is measured in AC magnetometry, of the magnetization in a sample. The sample is magnetized first consider very low frequencies, where the measurement is by a constant magnetic field and the magnetic moment of the most similar to DC magnetometry. In this case, the magnetic sample is measured, producing a DC magnetization curve moment of the sample follows the M(H) curve that would be M(H) . The moment is measured by force, torque or induc- measured in a DC experiment.
    [Show full text]
  • Band Ferromagnetism in Systems of Variable Dimensionality
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 10, No. 11, November 2008, p.3058 - 3068 Band ferromagnetism in systems of variable dimensionality C. M. TEODORESCU*, G. A. LUNGU National Institute of Materials Physics, Atomistilor 105b, P.O. Box MG-7, RO-77125 Magurele-Ilfov, Romania The Stoner instability of the paramagnetic state, yielding to the occurence of ferromagnetism, is reviewed for electron density of states reflecting changes in the dimensionality of the system. The situations treated are one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) cases and also a special case where the density of states has a parabolic shape near the Fermi level, and is half-filled at equilibrium. We recover the basic results obtained in the original work of E.C. Stoner [Proc. Roy. Soc. London A 165, 372 (1938)]; also we demonstrate that in 1D and 2D case, whenever the Stoner criterion is satisfied, the system evolves spontaneously towards maximum polarization allowed by Hund's rules. For the 3D case, the situation is that: (i) when the Stoner criterion is satisfied, but the ratio between the Hubbard repulsion energy and the Fermi energy is between 4/3 and 3/2, the system evolves towards a ferromagnetic state with incomplete polarization (the polarization parameter is between 0 and 1); (ii) when , the system evolves towards maximum polarization. This situation was also recognized in the original paper of Stoner, but with no further analysis of the obtained polarizations nor comparison with experimental results. We apply the result of calculation in order to predict the Hubbard interaction energy.
    [Show full text]
  • Condensed Matter Option MAGNETISM Handout 1
    Condensed Matter Option MAGNETISM Handout 1 Hilary 2014 Radu Coldea http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option Syllabus The lecture course on Magnetism in Condensed Matter Physics will be given in 7 lectures broken up into three parts as follows: 1. Isolated Ions Magnetic properties become particularly simple if we are able to ignore the interactions between ions. In this case we are able to treat the ions as effectively \isolated" and can discuss diamagnetism and paramagnetism. For the latter phenomenon we revise the derivation of the Brillouin function outlined in the third-year course. Ions in a solid interact with the crystal field and this strongly affects their properties, which can be probed experimentally using magnetic resonance (in particular ESR and NMR). 2. Interactions Now we turn on the interactions! I will discuss what sort of magnetic interactions there might be, including dipolar interactions and the different types of exchange interaction. The interactions lead to various types of ordered magnetic structures which can be measured using neutron diffraction. I will then discuss the mean-field Weiss model of ferromagnetism, antiferromagnetism and ferrimagnetism and also consider the magnetism of metals. 3. Symmetry breaking The concept of broken symmetry is at the heart of condensed matter physics. These lectures aim to explain how the existence of the crystalline order in solids, ferromagnetism and ferroelectricity, are all the result of symmetry breaking. The consequences of breaking symmetry are that systems show some kind of rigidity (in the case of ferromagnetism this is permanent magnetism), low temperature elementary excitations (in the case of ferromagnetism these are spin waves, also known as magnons), and defects (in the case of ferromagnetism these are domain walls).
    [Show full text]