Libro De Resúmenes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Very Forward Photon Production in Proton-Proton Collisions Measured by the Lhcf Experiment at the Large Hadron Collider
Very forward photon production in proton-proton collisions measured by the LHCf experiment at the Large Hadron Collider Author: Alessio Tiberio Supervisor: Lorenzo Bonechi The LHC-forward (LHCf) experiment, situated at the LHC accelerator, has measured neutral particles production in a very forward region (pseudo-rapidity η > 8:4) in proton-proton and proton- lead collisions. The main purpose of the LHCf experiment is to test hadronic interaction models used in ground based cosmic rays experiments to simulate cosmic rays induced air-showers in the Earth's atmosphere. Highest energy cosmic rays can only be detected from secondary particles which are produced by the interaction of the primary particle with nuclei of the atmosphere. Studying the development of air showers, it is possible to reconstruct the type and kinematic parameters of primary particle. For this reason, Monte Carlo (MC) simulations with accurate hadronic interaction models are needed to reproduce the development of air-showers. Since the energy flow of secondary particles is concentrated in the forward direction, measurements of particle production at high pseudo-rapidity (i.e. small angles) are very important. Furthermore, soft QCD interactions (non perturbative regime) dominates in the very forward region and MC simulations of air showers are based on phenomenological model, so inputs from experimental data are crucial. The experiment is composed by two independent detectors (Arm1 and Arm2 ) located at 140 m from the ATLAS's interaction point (IP1) on opposite sides [1]. Detectors are placed inside the Target Neutral Absorber (TAN), where the beam pipe from IP1 turns into two separates tubes: the position between the two beam pipes allows to measure particles produced at zero degrees. -
Detection of Cosmic Rays at the LHC Detection of Cosmic Rays at the LHC
Particle and Astroparticle Physics at the Large Hadron Collider --Hadronic Interactions-- Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore November 15th 2019 Outline • Introduction on the LHC and LHC physics program • LHC results for Astroparticle physics • Measurements of event characteristics at 13 TeV • Forward measurements • Cosmic ray measurements • LHC and light ions? • Summary The LHC Machine and Experiments MoEDAL LHCf FASER totem CM energy → Run-1: (2010-2012) 7/8 TeV Run-2: (2015-2018) 13 TeV -> Now 8 experiments Run-2 starts proton-proton Run-2 finished 24/10/18 6:00am 2018 2010-2012: Run-1 at 7/8 TeV CM energy Collected ~ 27 fb-1 2015-2018: Run-2 at 13 TeV CM Energy Collected ~ 140 fb-1 2021-2023/24 : Run-3 Expect ⇨ 14 TeV CM Energy and ~ 200/300 fb-1 The LHC is also a Heavy Ion Collider ALICE Data taking during the HI run • All experiments take AA or pA data (except TOTEM) Expected for Run-3: in addition short pO and OO runs ⇨ pO certainly of interest for Cosmic Ray Physics Community! 4 10 years of LHC Operation • LHC: 7 TeV in March 2010 ->The highest energy in the lab! • LHC @ 13 TeV from 2015 onwards March 30 2010 …waiting.. • Most important highlight so far: …since 4:00 am The discovery of a Higgs boson • Many results on Standard Model process measurements, QCD and particle production, top-physics, b-physics, heavy ion physics, searches, Higgs physics • Waiting for the next discovery… -> Searches beyond the Standard Model 12:58 7 TeV collisions!!! New Physics Hunters -
Event Recorded by ATLAS When the LHC's Beam 2 Reached Closed
A ‘beam splash’ event recorded by ATLAS when the LHC’s beam 2 reached closed collimators near the detector on 20 November. 12 | CERN “The imminent start-up of the LHC is an event that excites everyone who has an interest in the fundamental physics of the Universe.” Kaname Ikeda, ITER Director-General, CERN Bulletin, 19 October 2009. Physics and Experiments The moment that particle physicists around the world had been The EMCal is an upgrade for ALICE, having received full waiting for finally arrived on 20 November 2009 when protons approval and construction funds only in early 2008. It will detect circulated again round the LHC. Over the following days, the high-energy photons and neutral pions, as well as the neutral machine passed a number of milestones, from the first collisions component of ‘jets’ of particles as they emerge from quark� at 450 GeV per beam to collisions at a total energy of 2.36 TeV gluon plasma formed in collisions between heavy ions; most — a world record. At the same time, the LHC experiments importantly, it will provide the means to select these events on began to collect data, allowing the collaborations to calibrate line. The EMCal is basically a matrix of scintillator and lead, detectors and assess their performance prior to the real attack which is contained in ‘supermodules’ that weigh about eight tonnes. It will consist of ten full supermodules and two partial on high-energy physics in 2010. supermodules. The repairs to the LHC and subsequent consolidation work For the ATLAS Collaboration, crucial repair work included following the incident in September 2008 took approximately modifications to the cooling system for the inner detector. -
Sub Atomic Particles and Phy 009 Sub Atomic Particles and Developments in Cern Developments in Cern
1) Mahantesh L Chikkadesai 2) Ramakrishna R Pujari [email protected] [email protected] Mobile no: +919480780580 Mobile no: +917411812551 Phy 009 Sub atomic particles and Phy 009 Sub atomic particles and developments in cern developments in cern Electrical and Electronics Electrical and Electronics KLS’s Vishwanathrao deshpande rural KLS’s Vishwanathrao deshpande rural institute of technology institute of technology Haliyal, Uttar Kannada Haliyal, Uttar Kannada SUB ATOMIC PARTICLES AND DEVELOPMENTS IN CERN Abstract-This paper reviews past and present cosmic rays. Anderson discovered their existence; developments of sub atomic particles in CERN. It High-energy subato mic particles in the form gives the information of sub atomic particles and of cosmic rays continually rain down on the Earth’s deals with basic concepts of particle physics, atmosphere from outer space. classification and characteristics of them. Sub atomic More-unusual subatomic particles —such as particles also called elementary particle, any of various self-contained units of matter or energy that the positron, the antimatter counterpart of the are the fundamental constituents of all matter. All of electron—have been detected and characterized the known matter in the universe today is made up of in cosmic-ray interactions in the Earth’s elementary particles (quarks and leptons), held atmosphere. together by fundamental forces which are Quarks and electrons are some of the elementary represente d by the exchange of particles known as particles we study at CERN and in other gauge bosons. Standard model is the theory that laboratories. But physicists have found more of describes the role of these fundamental particles and these elementary particles in various experiments. -
Particle Accelerators and Experiments Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore
Particle Accelerators and Experiments Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore March 30th- April 2nd Muscat 1 Part I Accelerators 2 Different types of Methodology tools and equipment are needed to observe different sizes of object Only particle accelerators can explore the tiniest objects in the 5 Universe 5 Accelerators are Powerful Microscopes Planck constant They make high energy particle beams h = momentum that allow us to see small things. wavelength p ~ energy seen by low energy seen by high energy beam of particles beam of particles (poorer resolution) (better resolution) High Energy Physics Experiments Rutherford experiment (1909) Centre of mass energy squared s=E1m2 Centre of mass energy squared s=4E1E2 Detectors techniques have followed these developments Accelerators for Charged Particles 9 Recent High Energy Colliders Highest energies can be reached with proton colliders Machine Year Beams Energy (s) Luminosity SPPS (CERN) 1981 pp 630-900 GeV 6.1030cm-2s-1 Tevatron (FNAL) 1987 pp 1800-2000 GeV 1031-1032cm-2s-1 SLC (SLAC) 1989 e+e- 90 GeV 1030cm-2s-1 LEP (CERN) 1989 e+e- 90-200 GeV 1031-1032cm-2s-1 HERA (DESY) 1992 ep 300 GeV 1031-1032cm-2s-1 RHIC (BNL) 2000 pp /AA 200-500 GeV 1032cm-2s-1 LHC (CERN) 2009 pp (AA) 7-14 TeV 1033-1034cm-2s-1 Luminosity = number of events/cross section/sec • Limits on circular machines – Proton colliders: Dipole magnet strength superconducting magnets – Electron colliders: Synchrotron10 radiation/RF power: loss ~E4/R2 How Many Accelerators Worldwide? a) 1-10 b) 10-100 c) 100-1,000 d) 1,000-10,000 e) > 10,000 11 Accelerators Worldwide > 25,000 accelerators in use 12 Accelerators Worldwide 44% Radio- therapy 13 Accelerators Worldwide 44% 40% Radio- Ion therapy implant. -
Fn Ee Rw Ms I
F N E E R W M S I FERMILAB AU.S. DEPARTMENT OF E NERGY L ABORATORY Frascati 8 Photo by Judy Jackson Volume 22 INSIDE: Friday, December 3, 1999 Number 23 2 WhatÕs Next? f 6 Proviso West Career Day 12 The Doctor Is In 14 Talk of the Lab What’s Next by Sharon Butler ? Europe wants one. Japan wants one. The PHYSICISTS AT U.S. wants one, tooÑa 20-mile linear collider with an energy level in the range of 0.5 to 1.5 trillion electron volts and a luminosity of 1034sec-1cm-2, FERMILAB AND enough to probe the realm of the Higgs boson and the putative supersymmetric particles. ItÕs already been dubbed the Next Linear Collider. Prototype of a typical segment of the accelerator THROUGHOUT But, concedes Fermilab Director Mike Witherell, structure in a U.S. NLC. Òthe path to a decision to build a linear collider in THE WORLD ARE this country willÉbe a long and complicated one.Ó As the first order of business, he said: ÒThe U.S. particle physics community must be able to say that the NLC would be of CONTEMPLATING overwhelming scientific importance, of highest priority for the field and worth the investment for both construction and operation.Ó Reaching that level of commitment requires a solid understanding of the BUILDING A capabilities of such a machine, its cost and its physics promise. Which is, in part, the reason why Fermilab joined the U.S. NLC collaboration last summer. POWERFUL NEW ÒOf all the possibilities for future facilitiesÑan electron-positron linear collider, a muon storage ring, or a very large hadron colliderÑthe linear collider is the closest to having a proposal for a real machine on the table,Ó said Steve LINEAR COLLIDER Holmes, associate director for accelerators at Fermilab. -
Femtoscopy of Proton-Proton Collisions in the ALICE Experiment
Femtoscopy of proton-proton collisions in the ALICE experiment DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nicolas Bock, B.Sc. B.Eng., M.Sc. Graduate Program in Physics The Ohio State University 2011 Dissertation Committee: Professor Thomas J. Humanic, Advisor Professor Michael Lisa #1 Professor Klaus Honscheid #2 Professor Richard Furnstahl #3 c Copyright by Nicolas Bock 2011 Abstract The Large Ion Collider Experiment (ALICE) at CERN has been designed to study matter at extreme conditions of temperature and pressure, with the long term goal of observing deconfined matter (free quarks and gluons), study its properties and learn more details about the phase diagram of nuclear matter. The ALICE experiment provides excellent particle tracking capabilities in high multiplicity proton-proton and heavy ion collisions, allowing to carry out detailed research of nuclear matter. This dissertation presents the study of the space time structure of the particle emission region, also known as femtoscopy, in proton- proton collisions at 0.9, 2.76 and 7.0 TeV. The emission region can be characterized by taking advantage of the Bose-Einstein effect for identical particles, which causes an enhancement of produced identical pairs at low relative momentum. The geometry of the emission region is related to the relative momentum distribution of all pairs by the Fourier transform of the source function, therefore the measurement of the final relative momentum distribution allows to extract the initial space-time characteristics. Results show that there is a clear dependence of the femtoscopic radii on event multiplicity as well as transverse momentum, a signature of the transition of nuclear matter into its fundamental components and also of strong interaction among these. -
The Muon Puzzle in Cosmic-Ray Induced Air Showers and Its Connection to the Large Hadron Collider
The Muon Puzzle in cosmic-ray induced air showers and its connection to the Large Hadron Collider 1 2 Johannes Albrecht • Lorenzo Cazon • 1,? 3 Hans Dembinski • Anatoli Fedynitch • 4 5 Karl-Heinz Kampert • Tanguy Pierog • 1 6 Wolfgang Rhode • Dennis Soldin • 1 5 5 Bernhard Spaan • Ralf Ulrich • Michael Unger Abstract High-energy cosmic rays are observed indi- Hadron Collider. An effect that can potentially explain rectly by detecting the extensive air showers initiated the puzzle has been discovered at the LHC, but needs to in Earth's atmosphere. The interpretation of these be confirmed for forward produced hadrons with LHCb, observations relies on accurate models of air shower and with future data on oxygen beams. physics, which is a challenge and an opportunity to test QCD under extreme conditions. Air showers are Keywords cosmic rays, air showers, particle physics, hadronic cascades, which eventually decay into muons. strangeness enhancement, cosmic rays, mass composi- The muon number is a key observable to infer the tion mass composition of cosmic rays. Air shower simula- tions with state-of-the-art QCD models show a signif- icant muon deficit with respect to measurements; this 1 Introduction is called the Muon Puzzle. The origin of this discrep- ancy has been traced to the composition of secondary Cosmic rays are fully-ionised nuclei with relativistic particles in hadronic interactions. The muon discrep- kinetic energies that arrive at Earth. The elements ancy starts at the TeV scale, which suggests that this range from proton to iron, with a negligible fraction change in hadron composition is observable at the Large of heavier nuclei. -
NA61/SHINE Facility at the CERN SPS: Beams and Detector System
Preprint typeset in JINST style - HYPER VERSION NA61/SHINE facility at the CERN SPS: beams and detector system N. Abgrall11, O. Andreeva16, A. Aduszkiewicz23, Y. Ali6, T. Anticic26, N. Antoniou1, B. Baatar7, F. Bay27, A. Blondel11, J. Blumer13, M. Bogomilov19, M. Bogusz24, A. Bravar11, J. Brzychczyk6, S. A. Bunyatov7, P. Christakoglou1, T. Czopowicz24, N. Davis1, S. Debieux11, H. Dembinski13, F. Diakonos1, S. Di Luise27, W. Dominik23, T. Drozhzhova20 J. Dumarchez18, K. Dynowski24, R. Engel13, I. Efthymiopoulos10, A. Ereditato4, A. Fabich10, G. A. Feofilov20, Z. Fodor5, A. Fulop5, M. Ga´zdzicki9;15, M. Golubeva16, K. Grebieszkow24, A. Grzeszczuk14, F. Guber16, A. Haesler11, T. Hasegawa21, M. Hierholzer4, R. Idczak25, S. Igolkin20, A. Ivashkin16, D. Jokovic2, K. Kadija26, A. Kapoyannis1, E. Kaptur14, D. Kielczewska23, M. Kirejczyk23, J. Kisiel14, T. Kiss5, S. Kleinfelder12, T. Kobayashi21, V. I. Kolesnikov7, D. Kolev19, V. P. Kondratiev20, A. Korzenev11, P. Koversarski25, S. Kowalski14, A. Krasnoperov7, A. Kurepin16, D. Larsen6, A. Laszlo5, V. V. Lyubushkin7, M. Mackowiak-Pawłowska´ 9, Z. Majka6, B. Maksiak24, A. I. Malakhov7, D. Maletic2, D. Manglunki10, D. Manic2, A. Marchionni27, A. Marcinek6, V. Marin16, K. Marton5, H.-J.Mathes13, T. Matulewicz23, V. Matveev7;16, G. L. Melkumov7, M. Messina4, St. Mrówczynski´ 15, S. Murphy11, T. Nakadaira21, M. Nirkko4, K. Nishikawa21, T. Palczewski22, G. Palla5, A. D. Panagiotou1, T. Paul17, W. Peryt24;∗, O. Petukhov16 C.Pistillo4 R. Płaneta6, J. Pluta24, B. A. Popov7;18, M. Posiadala23, S. Puławski14, J. Puzovic2, W. Rauch8, M. Ravonel11, A. Redij4, R. Renfordt9, E. Richter-Wa¸s6, A. Robert18, D. Röhrich3, E. Rondio22, B. Rossi4, M. Roth13, A. Rubbia27, A. Rustamov9, M. -
FIAS Scientific Report 2012
FIAS Scientific Report 2012 Frankfurt Institute for Advanced Studies Editor: Dr. Joachim Reinhardt Ruth-Moufang-Str. 1 reinhardt@fias.uni-frankfurt.de 60438 Frankfurt am Main Germany Tel.: +49 (0)69 798 47600 Fax: +49 (0)69 798 47611 fias.uni-frankfurt.de Vorstand: Prof. Dr. Volker Lindenstruth, Vorsitzender Regierungspräsidium Darmstadt Prof. Dr. Dirk H. Rischke Az:II21.1–25d04/11–(12)–545 Prof. Dr. Dr. h.c. mult. Wolf Singer Finanzamt Frankfurt Prof. Dr. Dres. h.c. Horst Stöcker Steuernummer: 47 250 4216 1 – XXI/101 Prof. Dr. Jochen Triesch Freistellungsbescheid vom 16.08.2010 Geschäftsführer: Gisbert Jockenhöfer FIAS Scientific Report 2012 Table of Contents Preface..........................................................................5 Research highlights 2012 . 6 1. Partner Research Centers 1.1 HIC for FAIR / EMMI . 9 1.2 Bernstein Focus Neurotechnology . 11 2. Graduate Schools 2.1 HGS-HIRe / HQM . 14 2.2 FIGSS . 16 3. FIAS Scientific Life 3.1 Seminars and Colloquia . 20 3.2 Organized Conferences. .23 3.2 FIAS Forum . 25 4. Research Reports 4.1 Nuclear Physics, Particle Physics, Astrophysics . 26 4.2 Neuroscience. .59 4.3 Biology, Chemistry, Molecules, Nanosystems . 75 4.4 Scientific Computing, Information Technology . .101 5. Talks and Publications 5.1 Conference and Seminar Talks . 117 5.2 Conference Abstracts and Posters . 126 5.3 Cumulative List of Publications . 129 3 4 Preface In the year 2012 FIAS has continued to carry out its mission as an independent research institute performing cutting-edge research in the natural and computer sciences. An account of recent scientific accomplishments can be found in the brief individual research reports collected in Section 4. -
In Experimental Particle Physics
CAPACITORS UP TO 65 KV AND 20 KJ/S... The Maxwell CCS Series is the ultimate HV VERY RELIABLE. Power Supply performer and only choice for low, medium and high repetition rate Pulse Discharge Systems. With voltages to as high as 65 kV and out put power to 20 kJ/s, when it comes to relia bility, performance and price, we've rewrit ten the specifications for High Voltage Capacitor Charging. Maxwell has successfully applied the CCS to every conceivable Pulsed Power Application. Whether you are developing the latest Pulsed Modulator, Solid State Laser, High Energy Storage Bank or Ultra Fast Excimer, call for the specialist "San Diego Chargers." SERIES CCS Capacitor Charging Power Supplies • Output Power 2, 4, 6, 8, 10, 12 kJ/s (20 kJ/s available as custom). • Output Voltages 1, 2, 3, 5, 10, 20, 30, 40, 50, 60, 65 kV. • 208,400,480 VAC 3 phase all standard. • 22/240 VAC single phase to 6 kW available. • 2 year warranty. ^LM I _________ BIBI™ For information on the CCS, visit: ^^^HS_l_« f_l—li http://www.hvpower.com • «^•!J^/"^»™ Or for our extensive range of HV ™ ™ •TECHNOLOGItS Components and Systems, go to: Energy Products http://www.maxweILcom/energy 4949 Greencraig Lane, San Diego, CA 92123 • (619) 576-7545 • FAX (619) 576-7672 Contents Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to Member State governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly except January and August, in English and French editions. The views expressed are not CERN necessarily those of the CERN management. -
Jan/Feb 2015
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 5 N UMBER 1 J ANUARY /F EBRUARY 2 0 1 5 CERN Courier – digital edition Welcome to the digital edition of the January/February 2015 issue of CERN Courier. CMS and the The coming year at CERN will see the restart of the LHC for Run 2. As the meticulous preparations for running the machine at a new high energy near their end on all fronts, the LHC experiment collaborations continue LHC Run 1 legacy to glean as much new knowledge as possible from the Run 1 data. Other labs are also working towards a bright future, for example at TRIUMF in Canada, where a new flagship facility for research with rare isotopes is taking shape. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. TRIUMF TRIBUTE CERN & Canada’s new Emilio Picasso and research facility his enthusiasm SOCIETY EDITOR: CHRISTINE SUTTON, CERN for rare isotopes for physics The thinking behind DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p26 p19 a new foundation p50 CERNCOURIER www. V OLUME 5 5 N UMBER 1 J AARYN U /F EBRUARY 2 0 1 5 CERN Courier January/February 2015 Contents 4 COMPLETE SOLUTIONS Covering current developments in high-energy Which do you want to engage? physics and related fi elds worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affi liated with CERN, and to their personnel.