Die Sauzei-Zone (Mitteljura, Unter-Bajocium) Im Gebiet Des

Total Page:16

File Type:pdf, Size:1020Kb

Die Sauzei-Zone (Mitteljura, Unter-Bajocium) Im Gebiet Des 37 Zitteliana 94 Die Sauzei-Zone (Mitteljura, Unter-Bajocium) n München, 31.12.2020 im Gebiet des Hohenzollern (Schwäbische Alb, n Manuscript: SW-Deutschland) received: 23.04.2019 Volker Dietze1*, Norbert Wannenmacher & Günter Schweigert2 revision: accepted, 10.09.2019 1Meraner Str. 41, 86720 Nördlingen, Deutschland available online, 17.11.2020 2Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Deutschland n ISSN 0373-9627 *Author for correspondence and reprint requests; E-mail: [email protected] n ISBN 978-3-946705-08-6 Zitteliana 94, 37–83. Zusammenfassung Die Sauzei-Zone im Gebiet der Zollernalb (SW-Deutschland) kann in drei Ammoniten-Faunenhorizonte gegliedert werden: (1) den dila- tus-Horizont an der Basis der Sauzei-Zone, (2) den hier neu aufgestellten quenstedti-Horizont und (3) den bislang der basalen Humphrie- sianum-Zone zugerechneten carinodiscus- [vormals ohmerti-] Horizont. Sonninia ohmerti Dietze et al., 2008 wird nun als jüngeres sub- jektives Synonym von S. carinodiscus (Quenstedt, 1886) betrachtet. Die Ammonitenfaunen dieser drei Horizonte mit zahlreichen aus Süddeutschland bisher unbekannten Taxa werden detailliert beschrieben. Die Schichtenfolge wird mit denjenigen anderer Fundorte in Süddeutschland, Südengland und Frankreich korreliert. Schlüsselwörter: Unter-Bajocium, Sauzei-Zone, Ammoniten, Biostratigraphie, Zollernalb, SW-Deutschland Abstract The Sauzei Zone in the area around the Hohenzollern Castle (Swabian Alb, SW Germany) is subdivided into three ammonite faunal horizons: (1) the dilatus horizon at base; (2) the herein newly established quenstedti horizon; and (3) the carinodiscus [formerly ohmerti] horizon, previously attributed to the Humphriesianum Zone. Sonninia ohmerti Dietze et al., 2008 is regarded now as a junior subjective sy- nonym of S. carinodiscus (Quenstedt, 1886). The ammonite faunas of these horizons yield numerous taxa previously not recorded for SW Germany and are described in detail. The stratigraphic succession is correlated with other sites in SW Germany, S England and France. Key words: Lower Bajocian, Sauzei Zone, ammonites, biostratigraphy, Zollernalb, SW Germany 1. Einleitung ser Korallenschicht hingegen bereits den „Braunjura δ“ (heute Gosheim-Formation/Ostreenkalk-Forma- Ammoniten und andere Fossilien aus der Sauzei- tion) beginnen. Rieber (1922) lieferte als Erster aus Zone (Unter-Bajocium) der Zollernalb wurden schon dem südwestlichen Teil der Zollernalb genauere von Oppel (1856–1858), Quenstedt (1856–1857, Informationen zu diesem Übergangsbereich von 1886–1887) und Engel (1908) beschrieben oder einer sandig-kalkigen in eine eisenoolithische Fazi- aufgelistet. Oppel (1856–1858) begründete die von es. Von ihm stammt die noch heute gebräuchliche ihm eingeführten Zonen des Ammonites sauzei (ur- Schichtbezeichnung „Unter-δ-Oolith“ für den ersten sprünglich als Subzone) und des A. humphriesia- eisenoolithischen Schichtabschnitt, der den silizi- nus auch anhand der Verhältnisse am Hohenzol- klastischen Blaukalk im Bereich der Zollernalb über- lern. Quenstedt (1886–1887) bildete einige typische lagert. Obwohl der „Unter-δ-Oolith“ weder in den Ammoniten aus der Sauzei-Zone der Zollernalb, vor Symbolschlüssel des LGRB (Landesamt für Geolo- allem vom Hohenzollern selbst, ab (vgl. Kapitel 5). gie, Rohstoffe und Bergbau, Baden-Württemberg) Schon zuvor hatten Quenstedt (1851, 1857) und noch in die digitale lithostratigraphische Datenbank sein Schüler Pfizenmayer (1853) eine Riffkorallen- „LithoLex“ Eingang gefunden hat, verwenden wir führende Gesteinsbank knapp oberhalb des Einset- hier diese informelle Schichtbezeichnung für den zens einer eisenoolithischen Fazies als „Korallen- Humphriesioolith der Zollernalb. Schmierer (1925, schicht“ bezeichnet und lithostratigraphisch noch unveränderter Nachdruck 1985; 1926) beschrieb dem „Braunjura γ“ (heute Wedelsandstein-Formati- lediglich kursorisch den Blaukalk vom „Stettener on) zugeschlagen. Später ließ Frank (1945) mit die- Wald“ und erwähnte wichtige Aufschlüsse aus der Zitteliana 94 38 Abbildung 1: Lage des Untersuchungsgebiets (grau unterlegt) mit den wichtigsten der in dieser Arbeit erwähnten Lokalitäten. „Blaukalkzone“ bei Streichen. Dietl (1978) vermute- 2. Material te unter Bezugnahme auf die Angaben von Rieber (1922), dass im Raum Hechingen die Sauzei-Zone Im Laufe der letzten 15 Jahre wurden mit großem noch bis in den Unter-δ-Oolith hinaufreiche. In Über- zeitlichem und körperlichem Aufwand mehrere Pro- sichtsliteratur wurde die Sauzei-Zone ungefähr mit file (Hechingen-Beuren im NE bis Balingen-Streichen dem Blaukalk gleichgesetzt (z.B. Geyer & Gwin- im SW) im Übergangsbereich Blaukalk (oberster ner 1984, 2011). Eine Profilserie der Braunjura γ/δ- Bereich der Wedelsandstein-Formation) – Unter-δ- Grenzschichten publizierten Dietl & Rieber (1980, Oolith (Gosheim-Formation) der Zollernalb unter- Abb. 2). Feinstratigraphische Aufnahmen einiger sucht und daraus Ammoniten horizontiert geborgen. weniger Aufschlüsse im Untersuchungsgebiet und Wegen der im unverwitterten Zustand außerordent- südwestlich davon verdanken wir Kiefer (1982, 1984) lichen Härte des Gesteins konnte im Regelfall nur der sowie Kiefer & Schweizer (1986). Die erste biostra- vorderste, der Verwitterung ausgesetzte Bereich des tigraphische Feingliederung eines Aufschlusses auf Profils bis maximal etwa einen Meter in den Hang der Zollernalb (Balingen-Streichen) mit Faunenho- hinein abgegraben werden. Diese Ammonitenfunde rizonten stammt von Dietze et al. (2008). Diese lie- sowie einige wenige zusätzliche, uns von Sammlern ßen die Humphriesianum-Zone (Pinguis-Subzone) überlassene Stücke sind Grundlage dieser Arbeit. aus historischen Gründen mit dem ohmerti-Horizont Sämtliche abgebildeten und im Text erwähnten Am- (jetzt als carinodiscus-Horizont bezeichnet) begin- moniten sind, mit Ausnahme des auf Taf. 17, Fig. 2 nen, welcher hier nun der Sauzei-Zone zugerech- abgebildeten Stücks, in der Sammlung des Staat- net wird. Trotz dieser vielen Vorarbeiten blieben die lichen Museums für Naturkunde Stuttgart (SMNS) Informationen über die Sauzei-Zone im Gebiet der hinterlegt. Zollernalb in feinstratigraphischer Hinsicht rudimen- tär. Ziel dieser Arbeit ist eine präzise Dokumentation Abkürzungen: dieses Abschnitts und seine biostratigraphische In- terpretation. Fundorte: Ho-P = Hohenzollern – Beim Pumphaus, Ho-AS = Hohenzollern – Alter Steinbruch, Th-StW = 39 Zitteliana 94 Abbildung 2: Profile der untersuchten Aufschlüsse der Zollernalb. Die untere Verbindungslinie markiert die Grenze zwischen dem Oberen Blaukalk (Wedelsandstein-Formation) und dem Unter-δ-Oolith (Gosheim-Formation). Die obere Verbindungslinie markiert die Oberkante des Schichtkomplexes UO-1 (unterhalb der ersten oolithischen Tonmergellage). Abkürzungen: Ob. Blaukalk = Oberer Blaukalk; Wedels.-Form. = Wedelsandstein-Formation. Thanheim – Stich Wald; Th-StB = Thanheim – Stich Tonstein (ca. 2,5 m) und abschließend Bach; Th-So = Thanheim – Sommerstaigweg; Th- Oberer Blaukalk (= OBK; ca. 0,4–1,0 m). Ledig- Au I, II, IV = Thanheim – Aubenstall I, II, IV; Th-Hö = lich in einer im Top des Oberen Blaukalks liegenden, Thanheim – Höhberg; Ba-Str = Balingen-Streichen. zentimeterdünnen sandigen Schicht finden sich Typen: HT = Holotypus, LT = Lectotypus, ST = häufiger Ammoniten, die jedoch meistens deformiert Syntypus. oder unvollständig erhalten sind. Dimorphismus: [M] = Makroconch; [m] = Mikroconch. Gosheim-Formation: Die Schichtfolge der Gosheim-Formation im Un- 3. Beschreibung der Profile tersuchungsgebiet wird seit Rieber (1922) als Unter- δ-Oolith (= UO) bezeichnet. Seine Mächtigkeit 3.1 Einleitende Bemerkungen beträgt im Gebiet des Hohenzollerns im Regelfall 1,2–1,4 m. Er setzt über dem Oberen Blaukalk stets Obwohl der Obere Blaukalk und der unmittelbar mit einer meist 0,6–0,8 m (minimal 0,45 m, maximal aufliegende Unter-δ-Oolith (informelle Schichtbe- 0,9 m) mächtigen Bankfolge (= UO-1) ein, die nach zeichnung für den Humphriesioolith der Zollernalb) oben zu immer stärker eisenoolithisch wird und in im Untersuchungsgebiet durchgehend vorhanden die in wechselnden Niveaus – wie im Übrigen auch sind, gibt es doch nur recht wenige, im Regelfall schon im Oberen Blaukalk – Anreicherungen von En- sehr kleinräumige Aufschlüsse, in denen Untersu- tolium corneolum (Young & Bird), vgl. Johnson 1984 chungen möglich sind. Es handelt sich um natürliche [vormals: Pecten spathulatus Roemer → Fazies der Aufschlüsse im Wald oder in Wasserrissen, bei de- „Spathulatus-Bank“] eingeschaltet sind. Lediglich im nen die Schichten als schmale Felsnasen vorragen. stärker eisenoolithischen oberen Drittel der Schicht Ganz überwiegend ist der hier untersuchte Schicht- UO-1 fehlt diese Fazies der „Spathulatus-Bank“. abschnitt jedoch verrutscht oder unzugänglich un- Darüber liegt eine Wechselfolge von eisenoolithi- ter mächtigem Hangschutt verborgen. Die nach- schen Mergelkalk- und Kalkmergelbänken (UO-2). folgenden Schichtbeschreibungen erfolgen jeweils Prinzipiell lässt sich der Unter-δ-Oolith in allen un- vom Liegenden zum Hangenden. Die Zollernalb liegt tersuchten Aufschlüssen in sechs Abschnitte unter- im Übergangsbereich der Ostreenkalk-Formation im gliedern (Schichten UO-1a bis UO-1e sowie Schicht NE mit der Gosheim-Formation im SW. UO-2), die jedoch schon im Dezimeterbereich unter- Die lithostratigraphische Abfolge ist in allen be- schiedlich mächtig und faziell unterschiedlich aus- schriebenen Aufschlüssen prinzipiell dieselbe: gebildet sein können. Diese kleinsträumigen faziellen Unterschiede zwischen und innerhalb
Recommended publications
  • First Record of Non-Mineralized Cephalopod Jaws and Arm Hooks
    Klug et al. Swiss J Palaeontol (2020) 139:9 https://doi.org/10.1186/s13358-020-00210-y Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access First record of non-mineralized cephalopod jaws and arm hooks from the latest Cretaceous of Eurytania, Greece Christian Klug1* , Donald Davesne2,3, Dirk Fuchs4 and Thodoris Argyriou5 Abstract Due to the lower fossilization potential of chitin, non-mineralized cephalopod jaws and arm hooks are much more rarely preserved as fossils than the calcitic lower jaws of ammonites or the calcitized jaw apparatuses of nautilids. Here, we report such non-mineralized fossil jaws and arm hooks from pelagic marly limestones of continental Greece. Two of the specimens lie on the same slab and are assigned to the Ammonitina; they represent upper jaws of the aptychus type, which is corroborated by fnds of aptychi. Additionally, one intermediate type and one anaptychus type are documented here. The morphology of all ammonite jaws suggest a desmoceratoid afnity. The other jaws are identifed as coleoid jaws. They share the overall U-shape and proportions of the outer and inner lamellae with Jurassic lower jaws of Trachyteuthis (Teudopseina). We also document the frst belemnoid arm hooks from the Tethyan Maastrichtian. The fossils described here document the presence of a typical Mesozoic cephalopod assemblage until the end of the Cretaceous in the eastern Tethys. Keywords: Cephalopoda, Ammonoidea, Desmoceratoidea, Coleoidea, Maastrichtian, Taphonomy Introduction as jaws, arm hooks, and radulae are occasionally found Fossil cephalopods are mainly known from preserved (Matern 1931; Mapes 1987; Fuchs 2006a; Landman et al. mineralized parts such as aragonitic phragmocones 2010; Kruta et al.
    [Show full text]
  • Paléontologie Au Luxembourg (2) A
    Paléontologie au Luxembourg (2) A. Di Cencio, D. Sadki, R. Weis (eds.) R. Weis D. Sadki, A. Di Cencio, Les ammonites de la Minette Andrea Di Cencio, Driss Sadki, Paléontologie au Luxembourg (2) Luxembourg au Paléontologie Robert Weis (eds.) Ferrantia Travaux scientifiques du Musée national d'histoire naturelle Luxembourg www.mnhn.lu 83 2020 Ferrantia 83 2020 2020 83 Ferrantia est une revue publiée à intervalles non réguliers par le Musée national d’histoire naturelle à Luxembourg. Elle fait suite, avec la même tomaison, aux T M ’ L parus entre 1981 et 1999. Comité de rédaction: Eric Buttini Guy Colling Alain Frantz Thierry Helminger Ben Thuy Mise en page: Romain Bei Design: Thierry Helminger Prix du volume: 20 € Rédaction: Échange: Musée national d’histoire naturelle Exchange MnhnL Rédaction Ferrantia c/o Musée national d’histoire naturelle 25, rue Münster 25, rue Münster L-2160 Luxembourg L-2160 Luxembourg Tél +352 46 22 33 - 1 Tél +352 46 22 33 - 1 Fax +352 46 38 48 Fax +352 46 38 48 Internet: http://www.mnhn.lu/ferrantia/ Internet: http://www.mnhnl.lu/biblio/exchange email: [email protected] email: [email protected] Page de couverture: Bredyia subinsignis (Oppel, 1856), DOU833. Natural History Museum of Luxembourg. Citation: Di Cencio A., Sadki D., Weis R. (eds.) 2020. - Paléontologie au Luxembourg (2) - Les ammonites de la Minette. Ferrantia 83, Musée national d’histoire naturelle, Luxembourg, 129 p. Date de publication: 15 décembre 2020 (réception du manuscrit: 19 mai 2020) Impression: Imprimerie Centrale climatiquement neutre Impression | LU-319-JR8FDJV | www.natureOffice.com Ferrantia est publiée sous la licence Creative Commons BY-NC-ND 3.0 LU.
    [Show full text]
  • Early Bajocian Type Sonniniids and Hammatoceratids SW Germany
    Boletín del Instituto de Fisiografía y Geología 91, 2021 1 New information on the Early Bajocian types of sonniniids and hammatoceratids (Ammonitina) described by W. Waagen (1867) from Gingen/Fils (SW Germany) Driss Sadki & Volker Dietze Sadki D. & Dietze V., 2021. New information on the Early Bajocian types of sonniniids and hammatoceratids (Ammonitina) described by W. Waagen (1867) from Gingen/Fils (SW Germany). Boletín del Instituto de Fisiografía y Geología 91: 1-16. Rosario, 08/05/2021. ISSN 1666-115X. Abstract. The type specimens of the species of sonniniids and hammatoceratids (Ammonitina) from the Lower Bajocian of Gingen/Fils (SW Germany) described by Waagen in 1867, and deposited in the Bavarian State Collection for Palaeontology and Geology in Munich, are revised. They are referred to the morphogenera Euhoploceras, Shirbuirnia, Papilliceras, Sonninia, Witchellia, and Fissilobiceras: E. adicrum (Waagen, 1867), E. polyacanthum (Waagen, 1867), E. mayeri (Waagen, 1867), S. gingensis (Waagen, 1867), P. mesacanthum (Waagen, 1867), S. patella (Waagen, 1867), W. jugifera (Waagen, 1867), and F. fissilobatum (Waagen, 1867). A lectotype is designated for E. Recibido 17/09/2020 Aceptado 29/10/2020 mayeri (Waagen, 1867). Keywords: Sonniniidae ▪ Hammatoceratidae ▪ Ammonitina ▪ Middle Jurassic ▪ Lower Bajocian ▪ W. Waagen ▪ Disponible vía Internet Southwest Germany. & versión impresa 08/05/2021 Resumen. Nueva información sobre los tipos de sonníniidos y hammatocerátidos (Ammonitina, Cephalopoda) del Editor: H. Parent Bajociano Inferior de Gingen/Fils (SO de Alemania) descriptos por W. Waagen (1867). Los especímenes tipo de sonníniidos y hammatocerátidos (Ammonitina) del Bajociano Inferior de Gingen/Fils (SO de Alemania) descriptos por Waagen en 1867, actualmente depositados en el Bayerischen Staatssammlung für Paläontologie und Geologie in München, son revisados y referidos a los morfogéneros Euhoploceras, Shirbuirnia, Papilliceras, Sonninia, Witchellia, y Fissilobiceras: E.
    [Show full text]
  • Aalenian – Bathonian) of the Mecsek Mountains, Southern Hungary
    GEOLOGICA CARPATHICA, APRIL 2018, 69, 2, 117–127 doi: 10.1515/geoca-2018-0007 Carbon cycle history through the Middle Jurassic (Aalenian – Bathonian) of the Mecsek Mountains, Southern Hungary GREGORY D. PRICE 1, , ISTVÁN FŐZY 2 and ANDRÁS GALÁCZ 3 1 School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom; [email protected] 2 Department of Palaeontology and Geology, Hungarian Natural History Museum, POB 137, Budapest, H-1431 Hungary; [email protected] 3 Department of Palaeontology, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, H-1117 Hungary; [email protected] (Manuscript received June 9, 2017; accepted in revised form January 16, 2018) Abstract: A carbonate carbon isotope curve from the Aalenian–Bathonian interval is presented from the Óbánya valley, of the Mecsek Mountains, Hungary. This interval is certainly less well constrained and studied than other Jurassic time slices. The Óbánya valley lies in the eastern part of the Mecsek Mountains, between Óbánya and Kisújbánya and provides exposures of an Aalenian to Lower Cretaceous sequence. It is not strongly affected by tectonics, as compared to other sections of eastern Mecsek of the same age. In parts, a rich fossil assemblage has been collected, with Bathonian ammonites being especially valuable at this locality. The pelagic Middle Jurassic is represented by the Komló Calcareous Marl Formation and thin-bedded limestones of the Óbánya Limestone Formation. These are overlain by Upper Jurassic siliceous limestones and radiolarites of the Fonyászó Limestone Formation. Our new data indicate a series of carbon isotope anomalies within the late Aalenian and early-middle Bajocian.
    [Show full text]
  • Evolution of Habitat Depth in the Jurassic– Cretaceous Ammonoids
    COMMENTARY COMMENTARY Evolution of habitat depth in the Jurassic– Cretaceous ammonoids Kazuyoshi Moriya1 oxygen isotopic analyses of shell materials of Department of Earth Sciences, Faculty of Education and Integrated Arts and Sciences, ammonoids reveal the temperature at which Waseda University, Shinjuku-ku, Tokyo 169-8050, Japan the shell was secreted. This technique, called oxygen isotopic thermometry, has been widely Ammonoids, a group of cephalopods with body fossils and close modern relatives. For used in paleoclimatological and paleobiologi- external chambered shells, arose in the early example, although one may usually imagine that cal research. It was also applied to ammonoid Devonian and went extinct at the Cretaceous/ ammonoids were planktic or nektic organisms fossils more than 40 y ago (2, 3). Many scien- Paleogene (K/Pg) boundary. During their 340- within a water column, like the Nautilus,which tists, however, assumed that ammonoids were planktic or nektic organisms, so their discus- million-y history, ammonoids suffered three is the sole surviving cephalopod bearing an sion focused mainly on growth rates inferred major diversity crises at the end of the Devonian, external chambered shell, there is very little by identifying sinusoidal patterns, hence sea- Permian, and Triassic Periods, and the terminal direct evidence showing the habitat depth of sonality, in the temperature data. Among extinction event at the K/Pg boundary. Because ammonoids within an ancient water column. those previous workers, Anderson et al. (4) of their rapid morphological evolution and rich Sessa et al. (1) shed new light on the habitat analyzed oxygen isotopic composition of the fossil record, ammonoids have been used to depth of the Cretaceous ammonoids using geo- middle Jurassic ammonoids and compared determine the relative age of marine strata and chemical proxy records.
    [Show full text]
  • Abstracts and Program. – 9Th International Symposium Cephalopods ‒ Present and Past in Combination with the 5Th
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265856753 Abstracts and program. – 9th International Symposium Cephalopods ‒ Present and Past in combination with the 5th... Conference Paper · September 2014 CITATIONS READS 0 319 2 authors: Christian Klug Dirk Fuchs University of Zurich 79 PUBLICATIONS 833 CITATIONS 186 PUBLICATIONS 2,148 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Exceptionally preserved fossil coleoids View project Paleontological and Ecological Changes during the Devonian and Carboniferous in the Anti-Atlas of Morocco View project All content following this page was uploaded by Christian Klug on 22 September 2014. The user has requested enhancement of the downloaded file. in combination with the 5th International Symposium Coleoid Cephalopods through Time Abstracts and program Edited by Christian Klug (Zürich) & Dirk Fuchs (Sapporo) Paläontologisches Institut und Museum, Universität Zürich Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ 2 Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ 9th International Symposium Cephalopods ‒ Present and Past in combination with the 5th International Symposium Coleoid Cephalopods through Time Edited by Christian Klug (Zürich) & Dirk Fuchs (Sapporo) Paläontologisches Institut und Museum Universität Zürich, September 2014 3 Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ Scientific Committee Prof. Dr. Hugo Bucher (Zürich, Switzerland) Dr. Larisa Doguzhaeva (Moscow, Russia) Dr. Dirk Fuchs (Hokkaido University, Japan) Dr. Christian Klug (Zürich, Switzerland) Dr. Dieter Korn (Berlin, Germany) Dr. Neil Landman (New York, USA) Prof. Pascal Neige (Dijon, France) Dr.
    [Show full text]
  • The Marine Jurassic of Argentina: a Biostratigraphic Framework
    326 by Alberto C. Riccardi The marine Jurassic of Argentina: a biostratigraphic framework Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. Email: [email protected] In Argentina the best and most complete marine Juras- sic succession is exposed between 32° and 39° S, along a N-S belt roughly coincident with the border with Chile. Here all stages, except the Kimmeridgian, are represented by marine facies. Ammonites have provided a biostratigraphic framework to date and correlate lithostratigraphic units and sequences, to reconstruct the history of the marine fill, and allow the development of other palaeontological and geological studies. Recent studies on the systematics and/or biostratigra- phy of Andean ammonites have provided the basis for the presentation of a summary of the 45 ammonite zones of the Jurassic of west-central Argentina and to stress its significance in reconstructing the palaeogeographic evolution of that region. Introduction Jurassic rocks in Argentina are present over extensive areas (see Fig- ure 1) and include a large variety of marine and continental facies (see Riccardi et al., 1992). South of 39°S marine Jurassic consists of Pliensbachian-Lower Toarcian and uppermost Jurassic strata, repre- sented respectively in central and southern Patagonia. North of 39°S marine Jurassic is exposed along a N-S belt roughly coincident with the boundary between Argentina and Chile, up to 31°S where it becomes restricted to Chile. The marine Jurassic generally rests unconformably on Upper Triassic (west-central Argentina) and Upper Jurassic vulcanites (southern Patagonia) or on Upper Paleozoic (west-central Patago- nia).
    [Show full text]
  • Lower Bajocian (Middle Jurassic) Ammonites of the Manflas Area In
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zitteliana Serie A+B gemeinsam Jahr/Year: 2019 Band/Volume: 93 Autor(en)/Author(s): Dietze Volker, Hillebrandt Axel v. Artikel/Article: On the occurrence of the Indonesian ammonite Macrocephalites keeuwensis Boehm [M & m] from Kachchh (Western India) 25-46 25 Zitteliana 93 Lower Bajocian (Middle Jurassic) Ammonites of the Manflas area in Atacama Province, Northern Chile, Part 2: Giebeli Zone Paläontologie Bayerische GeoBio- & Geobiologie Staatssammlung Center LMU München für Paläontologie und Geologie LMU München Volker Dietze1* & Axel von Hillebrandt2 n München, 2019 1 Meraner Str. 41, 86720 Nördlingen, Germany n Manuscript received 2 09.06.2018; revision Kurfürstenstr. 101, 10787 Berlin, Germany accepted 10.07.2018; available online: 01.03.2019 *Corresponding author: [email protected] n ISSN 0373-9627 n ISBN 978-3-946705-05-5 Zitteliana 93, 25 – 46. Abstract Ammonite faunas are described from the submicrostoma (Submicrostoma Subzone) and giebeli horizons (Multiformis Subzone) of the Giebeli Zone (Lower Bajocian, Middle Jurassic) of the Manflas area (Chile, Copiapó Province). The faunas are correlated with those from the Giebeli Zone of the Paso del Espinacito section and the Neuquén Basin in Argentina. There is evidence for one additional, still un- described faunal horizon in the top of the Multiformis Subzone with an “unusual sonniniid assemblage”. One new species, Latiwitchellia atacamensis n. sp., is erected. Key words: Ammonites, Chile, Lower Bajocian biozonation, eastern Pacific 1. Introduction For a general introduction we refer to Dietze & Hillebrandt (2012), who described in detail the am- monites and stratigraphy of the Lower Bajocian Sin- gularis Zone of the area around Manflas (Copiapó Province, Northern Chile, SE Copiapó; Text-fig.
    [Show full text]
  • Lower and Middle Jurassic Ammonoids of the Shemshak Group in Alborz, Iran and Their Palaeobiogeographical and Biostratigraphical Importance
    Lower and Middle Jurassic ammonoids of the Shemshak Group in Alborz, Iran and their palaeobiogeographical and biostratigraphical importance KAZEM SEYED−EMAMI, FRANZ T. FÜRSICH, MARKUS WILMSEN, MAHMOUD R. MAJIDIFARD, and ALI SHEKARIFARD Seyed−Emami, K., Fürsich, F.T., Wilmsen, M., Majidifard, M.R., and Shekarifard, A. 2008. Lower and Middle Jurassic ammonoids of the Shemshak Group in Alborz, Iran and their palaeobiogeographical and biostratigraphical importance. Acta Palaeontologica Polonica 53 (2): 237–260. The Shemshak Group at Shahmirzad (northern Iran) is characterized by the most frequent and extensive marine intercala− tions and contains the most abundant and diverse ammonite faunas hitherto known from the Lower and lower Middle Ju− rassic strata of the Alborz Range. So far, 62 ammonite taxa have been recorded from this area, including 25 taxa from ear− lier studies. The taxa belong to the families Cymbitidae, Echioceratidae, Amaltheidae, Dactylioceratidae, Hildoceratidae, Graphoceratidae, Hammatoceratidae, Erycitidae, and Stephanoceratidae with the new species Paradumortieria elmii and Pleydellia (P.?) ruttneri. The fauna represents the Late Sinemurian, Late Pliensbachian, Toarcian, Aalenian, and Early Bajocian. Palaeobiogeographically, it is closely related to the Northwest European (Subboreal) Province, and exhibits only minor relations with the Mediterranean (Tethyan) Province. Key words: Ammonitida, biostratigraphy, palaeobiogeography, Jurassic, Shemshak Group, Alborz Mountains, Iran. Kazem Seyed−Emami [[email protected]] and Ali Shekarifard, School of Mining Engineering, University College of En− gineering. University of Tehran, P.O. Box 11365−4563, Tehran, Iran; Franz T. Fürsich [[email protected]−erlangen.de] and Markus Wilmsen [[email protected]−erlangen.de], Geozentrum Nordbayern der Universität Erlangen−Nürnberg, Fachgruppe PaläoUmwelt, Loewenichstraße 28, D−91054 Erlangen, Germany; Mahmoud R.
    [Show full text]
  • Ammonites from the Latest Aalenian–Earliest Bathonian of La Baume (Castellane Area, SE France): Palaeontology and Biostratigraphy
    1661-8726/08/030563-16 Swiss J. Geosci. 101 (2008) 563–578 DOI 10.1007/s00015-008-1297-6 Birkhäuser Verlag, Basel, 2008 Ammonites from the latest Aalenian–earliest Bathonian of La Baume (Castellane area, SE France): palaeontology and biostratigraphy KENNETH DE BAETS 1, 2, *, FABRIZIO CECCA 3, MYETTE GUIOMAR 4 & JACQUES VERNIERS 1 Key words: ammonites, Aalenian–Bathonian interval, France, biodiversity, taxonomy, biostratigraphy ABSTRACT Middle Jurassic strata are naturally exposed around the village called La (Parkinsoni Zone) and probably one lower Bathonian Zone (Zigzag Zone) Baume, near Castellane (Alpes de Haute Provence, SE France). We have re- were found. A major gap of both the Niortense Zone and the Garantiana alized both a detailed log and a bed-by-bed sampling for ammonite biostra- Zone, which was not previously described, was detected at the boundary be- tigraphy in a 68 metres thick succession of subpelagic marls and limestones tween members 2 and 3. The main palaeontological interest of the ammonite (“Calcaires à Zoophycos”) that spans the Middle Jurassic from uppermost fauna from La Baume is the richness and diversity of the family Sonniniidae, Aalenian to lowermost Bathonian. The subpelagic succession can be roughly which is the subject of a systematic study and figurated along with some bio- subdivided into three members. Ammonites from the Upper Aalenian Con- stratigraphically significant forms. Biostratigraphical results and open prob- cavum Zone, all Lower Bajocian Zones (Discites Zone, Laeviuscula Zone lems are discussed. including Ovale Subzone, Humpriesianum Zone), one Upper Bajocian Zone Introduction biostratigraphical subdivisions of the geological formations ex- posed. The Jurassic successions in the area of the Réserve Géologique des Alpes de Haute Provence are widely known because of Geological setting the excellent quality of the exposures, the abundance of am- monoids and the easy access.
    [Show full text]
  • Cretaceous Ammonoids
    COMMENTARY Evolution of habitat depth in the Jurassic– Cretaceous ammonoids Kazuyoshi Moriya1 oxygen isotopic analyses of shell materials of Department of Earth Sciences, Faculty of Education and Integrated Arts and Sciences, ammonoids reveal the temperature at which Waseda University, Shinjuku-ku, Tokyo 169-8050, Japan the shell was secreted. This technique, called oxygen isotopic thermometry, has been widely Ammonoids, a group of cephalopods with body fossils and close modern relatives. For used in paleoclimatological and paleobiologi- external chambered shells, arose in the early example, although one may usually imagine that cal research. It was also applied to ammonoid Devonian and went extinct at the Cretaceous/ ammonoids were planktic or nektic organisms fossils more than 40 y ago (2, 3). Many scien- Paleogene (K/Pg) boundary. During their 340- within a water column, like the Nautilus,which tists, however, assumed that ammonoids were planktic or nektic organisms, so their discus- million-y history, ammonoids suffered three is the sole surviving cephalopod bearing an sion focused mainly on growth rates inferred major diversity crises at the end of the Devonian, external chambered shell, there is very little by identifying sinusoidal patterns, hence sea- Permian, and Triassic Periods, and the terminal direct evidence showing the habitat depth of sonality, in the temperature data. Among extinction event at the K/Pg boundary. Because ammonoids within an ancient water column. those previous workers, Anderson et al. (4) of their rapid morphological evolution and rich Sessa et al. (1) shed new light on the habitat analyzed oxygen isotopic composition of the fossil record, ammonoids have been used to depth of the Cretaceous ammonoids using geo- middle Jurassic ammonoids and compared determine the relative age of marine strata and chemical proxy records.
    [Show full text]
  • Ritterbush, K. A., and M. Foote. 2017. Association Between Geographic
    Paleobiology, 43(2), 2017, pp. 209–223 DOI: 10.1017/pab.2016.25 Association between geographic range and initial survival of Mesozoic marine animal genera: circumventing the confounding effects of temporal and taxonomic heterogeneity Kathleen A. Ritterbush and Michael Foote Abstract.—We investigate the association between geographic range and survival in Mesozoic marine animal genera. Previous work using data from the Paleobiology Database (paleobiodb.org) demonstrated greater survivorship overall among Phanerozoic genera that were widespread during their stage of first appearance, but this relationship did not hold during the Mesozoic. To explore this unexpected result, we consider geographic range in conjunction with temporal variation in survival and variation in survival among higher taxa. Because average range and average survival are negatively correlated among stages, for reasons that are still unclear, and because the data are heavily influenced by cephalopods, which include many wide-ranging and short-lived genera, the effect of geographic range on survival is obscured in the aggregate data. Thus, range is not a significant predictor of survival when data are analyzed in aggregate, but it does have a significant effect when variation in average range and average survival among stages and classes is taken into account. The best-fitting models combine range with both temporal and taxonomic heterogeneity as predictive factors. Moreover, when we take stage-to-stage variation into account, geographic range is an important predictor of survival within most classes. Cephalopod genera must be more widespread than genera in other classes for geographic range to significantly increase odds of survival, and factoring in survival heterogeneity of superfamilies further increases model fit, demonstrating a nested nature in the sensitivity of range and taxonomic aggregation.
    [Show full text]