Anhui Information

Total Page:16

File Type:pdf, Size:1020Kb

Anhui Information Anhui Information Overview Anhui is located in southeast China. The capital, Hefei, is in the center of the province where it lies roughly 250 miles (402 km) from Shanghai and 275 miles (442 km) west of the Pacific Ocean. It ranks as China’s 22nd largest province with an area of 55,000 sq mi (142,450 sq km) yet it constitutes the 8th largest provincial population boasting an impressive 64,610,000 people. The population density is 429 p/sq km, roughly 3.2 times the national average. Anhui Geography Anhui is covered in the north by the North China Planes. The planes, coupled with the flatlands of the Huai He watershed in central Anhui, provide the fertile land and development-friendly landscape that sustains the region’s dense population (although mild flooding occurs somewhat commonly around the Huia He watershed during the summer monsoon season). The southern region of Anhui is sparsely populated due to the Dabie mountain range in the east and an opposing mountainous region to the west, where the famous Huangshan and Jiuhua mountains reside. The Yangtze River enters the province from the southwest and winds between the two mountainous regions on its way northeast, where it reaches Nanjing. Anhui borders six provinces: Jiangsu, Zhejiang, Jiangxi, Hubei, Henan, and Shandong. Anhui Demographics Currently Anhui is comprised of 99% of Han Chinese and .6% Hui. A small amount of She are also present. The homogenization occurred largely during the Qing Dynasty. Although traces of the earlier indigenous cultures remain, like most areas of eastern China, Anhui has been largely linguistically and culturally integrated with the rest of the country. Anhui History Anhui was the birthplace of many well-known Chinese figures, the most prominent being Laozi, the famous Daoist philosopher. It officially became a province in the 17th century after the Manchu conquered China, ending the Ming Dynasty (1368 AD-1644 AD). The subsequent Qing Dynasty ruled from 1644 to 1912. Anhui’s culture prior to the Qing Dynasty divided into four distinct parts that each had its own culture. The section of Anhui encompassing the North China Plane was integrated culturally and geographically with much of what is now Henan province. In central Anhui, the Huai He watershed formed a densely populated region of its own. Due to river traffic the area along the Yangtze was closely related to both Hubei and Jiangsu to the west and east respectively. Finally, the isolating hills of the southeast spurred the growth of another distinct culture. Anhui Industry Anhui is part of the Shanghai Special Economic Zone and therefore it is home to four of China’s industrial centers: Hefei, Bengbu, Huainan, and Ma’anshan. The vast diversity of landscape and natural resources allows each of the four cities to specialize in the industry suited to the region or culture. Hefei is largely a manufacturing center. Bengbu, now a city famous for its food, has roughly 45% of its production from food- related industry. Huainan focuses on the production and output of coal while Ma’anshan mostly relies on steel production. .
Recommended publications
  • Research Article Stability and Complexity Analysis of Temperature Index Model Considering Stochastic Perturbation
    Hindawi Advances in Mathematical Physics Volume 2018, Article ID 2789412, 18 pages https://doi.org/10.1155/2018/2789412 Research Article Stability and Complexity Analysis of Temperature Index Model Considering Stochastic Perturbation Jing Wang Faculty of Science, Bengbu University, Bengbu 233030, China Correspondence should be addressed to Jing Wang; [email protected] Received 20 October 2017; Accepted 12 December 2017; Published 1 January 2018 Academic Editor: Giampaolo Cristadoro Copyright © 2018 Jing Wang. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A temperature index model with delay and stochastic perturbation is constructed in this paper. It explores the infuence of parameters and stochastic factors on the stability and complexity of the model. Based on historical temperature data of four cities of Anhui Province in China, the temperature periodic variation trends of approximately sinusoidal curves of four cities are given, respectively. In addition, we analyze the existence conditions of the local stability of the temperature index model without stochastic term and estimate its parameters by using the same historical data of the four cities, respectively. Te numerical simulation results of the four cities are basically consistent with the descriptions of their historical temperature data, which proves that the temperature index model constructed has good ftting degree. It also shows that unreasonable delay parameter can make the model lose stability and improve the complexity. Stochastic factors do not usually change the trend in temperature, but they can cause high frequency fuctuations in the process of temperature evolution.
    [Show full text]
  • Appendix 1: Rank of China's 338 Prefecture-Level Cities
    Appendix 1: Rank of China’s 338 Prefecture-Level Cities © The Author(s) 2018 149 Y. Zheng, K. Deng, State Failure and Distorted Urbanisation in Post-Mao’s China, 1993–2012, Palgrave Studies in Economic History, https://doi.org/10.1007/978-3-319-92168-6 150 First-tier cities (4) Beijing Shanghai Guangzhou Shenzhen First-tier cities-to-be (15) Chengdu Hangzhou Wuhan Nanjing Chongqing Tianjin Suzhou苏州 Appendix Rank 1: of China’s 338 Prefecture-Level Cities Xi’an Changsha Shenyang Qingdao Zhengzhou Dalian Dongguan Ningbo Second-tier cities (30) Xiamen Fuzhou福州 Wuxi Hefei Kunming Harbin Jinan Foshan Changchun Wenzhou Shijiazhuang Nanning Changzhou Quanzhou Nanchang Guiyang Taiyuan Jinhua Zhuhai Huizhou Xuzhou Yantai Jiaxing Nantong Urumqi Shaoxing Zhongshan Taizhou Lanzhou Haikou Third-tier cities (70) Weifang Baoding Zhenjiang Yangzhou Guilin Tangshan Sanya Huhehot Langfang Luoyang Weihai Yangcheng Linyi Jiangmen Taizhou Zhangzhou Handan Jining Wuhu Zibo Yinchuan Liuzhou Mianyang Zhanjiang Anshan Huzhou Shantou Nanping Ganzhou Daqing Yichang Baotou Xianyang Qinhuangdao Lianyungang Zhuzhou Putian Jilin Huai’an Zhaoqing Ningde Hengyang Dandong Lijiang Jieyang Sanming Zhoushan Xiaogan Qiqihar Jiujiang Longyan Cangzhou Fushun Xiangyang Shangrao Yingkou Bengbu Lishui Yueyang Qingyuan Jingzhou Taian Quzhou Panjin Dongying Nanyang Ma’anshan Nanchong Xining Yanbian prefecture Fourth-tier cities (90) Leshan Xiangtan Zunyi Suqian Xinxiang Xinyang Chuzhou Jinzhou Chaozhou Huanggang Kaifeng Deyang Dezhou Meizhou Ordos Xingtai Maoming Jingdezhen Shaoguan
    [Show full text]
  • Procured Contracts February/13
    Implementation Schedule of Remaining Contracts Not Procured Yet Public Disclosure Authorized 1USD=6.3 CNY (based on the exchange rate as of Nov, 2012) February/13 Estimated Base Costs Expected Comp- Sub- Procure- Prequa- Review by Expected Contract Contract Construction No. onent Component component Sub-component Contract Name ment lifica- WB (Prior Bid Opening Remark Package No. Type Duration No. No. Mothod tion /Post) Date CNY10,000 USD10,000 (month) Wuxiaojie Storm Drainage Pump Civil 1 HSFS/S5/C1 7200.00 1142.86 NCB NO Prior Jan/13 17 in the bidding Huaishang Station & Associated Works Suburban District Flood Public Disclosure Authorized Works Environment Management & 3 Infrastructure 3 Storm Drainage Improvement and Infrastructure Reconstruction & Improvement Expansion of HSFS/S5/C6-N- Wangxiaogou Pump Civil 2 3478.00 552.06 NCB NO Post Apr/13 16 B Stations and Works Wangxiaogou Intake Ditch Public Disclosure Authorized Lilou Road (Donghai New Addition Civil 4 LZUI/S10/C1 Avenue - Huangshan 10572.00 1678.10 NCB NO Prior Apr/13 12 Project of Mid- Works Urban Urban(south of Avenue) Term Adjustment Environment Huai River) 2 3 Infrastructure Infrastructure Fengandong Road Improvement Improvement New Addition (High Speed Rail Civil 5 LZUI/S10/C2 10351.00 1643.02 NCB NO Prior Apr/13 12 Project of Mid- Culvert - Mid. Ring Works Term Adjustment Road) Civil Works Contracts Total 31601.00 5016.03 Public Disclosure Authorized Preparation of Rules and Operational Procedures for Mohekou Industrial Bid evaluation 6 C Zone (MIZ), and - 20 TA QCBS - Prior Aug/12 12 is in process Bidding Document to Select a Professional Technical Operator for MIZ Services, 4 Training and Study Tour Institutional & Financial Bid evaluation 7 E - 32 TA QBS - Prior Aug/12 12 Strengthening of is in process Utility Companies Strategy and Selection of Bengbu 8 F - 21 TA CQS - Prior Mar/13 7 Water Sector Development TA and Training Total - 73 Procured Contracts February/13 Review Estimated Cost Cost of Signed Contract Procure- Contract by WB Bid Opening Contract No.
    [Show full text]
  • Supplement of Modeling Diurnal Variation of Surface PM2.5
    Supplement of Atmos. Chem. Phys., 20, 2839–2863, 2020 https://doi.org/10.5194/acp-20-2839-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Modeling diurnal variation of surface PM2:5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and anthropogenic emission Qiuyan Du et al. Correspondence to: Chun Zhao ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. Supporting materials for “Modeling diurnal variation of surface PM2.5 concentration over East China with WRF-Chem: Impacts from boundary layer mixing and anthropogenic emission” Figure S1. Spatial distribution of peak diurnal index of surface PM2.5 concentrations in the four months from experiments CTL1, CTL2, and CTL3. The observations are shown as the color filled circles. The observations at the stations within one city are averaged and shown as one circle as they are too close to be shown distinctly. Figure S2. Comparison between monthly mean surface PM2.5 concentrations and diurnal index of surface PM2.5 concentrations at each observational site over the YRD region of East China (within black box of Fig. 1a) for April and October from observations and experiments CTL1, CTL2, and CTL3. Figure S3a. Relative contribution (normalized by monthly mean surface PM2.5 concentrations for each month) to surface PM2.5 concentrations every 3-hour from individual process (transport, emission, dry and wet deposition, PBL mixing, chemical production/loss) averaged over Nanjing(a) for January, April, July, and October of 2018 from experiments CTL1, CTL2, and CTL3.
    [Show full text]
  • Analysis of Historic Rainfall Characteristics for Robust Wheat Cropping in North Anhui
    Analysis of historic rainfall characteristics for robust wheat cropping in North Anhui Hui Su, Yibo Wu, Yulei Zhu, Youhong Song Anhui Agricultural University, School of Agronomy, Hefei, 233036. Corresponding email: [email protected] Abstract Northern part of Anhui is one of major wheat producing areas in China. The total amount of rainfall is sufficient for wheat season; however, it is unevenly distributed at the different growth stages, resulting in risk of yield losses. In order to optimise the cultivation in North Anhui, it is essential to characterise the rainfall pattern for wheat growth particularly in the critical period (i.e. the months of sowing and harvesting). By analysing the rainfall data from 1955 to 2017, this study characterised the rainfall pattern from six sites representing different regions of North Anhui. The frequency of continuous rainfall days during sowing and harvesting periods were quantified based on 63 years rainfall distribution. The characterisation of rainfall in six representative sites in North Anhui were able to be used to guide wheat sowing and harvesting, which could help farmers to make decisions and avoid likelihood of cropping risks. Key Words Winter wheat, rainfall pattern, sustainable cropping, China Introduction Huang-Huai-Hai plain is a major wheat production area in China (Yang, 2018). The northern part of Anhui province belongs to south Huang-Huai-Hai plain. The wheat sowing time normally varies 1 week before or after October 15 and harvesting is tightly closing to May 31 in the following year. The climate characteristics particularly rainfall distribution over the season are complicated in North Anhui as it is in the transitional zone between the North and South China.
    [Show full text]
  • World Bank Document
    CONFORMED COPY LOAN NUMBER 4597 CHA Public Disclosure Authorized Loan Agreement (Huai River Pollution Control Project) between PEOPLE’S REPUBLIC OF CHINA and Public Disclosure Authorized INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT Dated September 24, 2001 LOAN NUMBER 4597 CHA Public Disclosure Authorized LOAN AGREEMENT AGREEMENT, dated September 24, 2001, between PEOPLE'S REPUBLIC OF CHINA (the Borrower) and INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT (the Bank). WHEREAS (A) the Borrower, having satisfied itself as to the feasibility and priority of the project described in Schedule 2 to this Agreement (the Project), has requested the Bank to assist in the financing of the Project; (B) the Project will be carried out by the Borrower's Provinces of Anhui and Shandong (collectively, the Project Provinces and individually, a Project Province) with the Borrower’s assistance and, as part of such assistance, the Borrower will make the proceeds of the loan provided for in Article II of this Agreement (the Loan) available to each of the Project Provinces, as set forth in this Agreement; and WHEREAS the Bank has agreed, on the basis, inter alia, of the foregoing, to extend the Loan to the Borrower upon the terms and conditions set forth in this Agreement and in the Project Agreement of even date herewith between the Bank and the Public Disclosure Authorized Project Provinces (the Project Agreement); NOW THEREFORE the parties hereto hereby agree as follows: ARTICLE I General Conditions; Definitions Section 1.01. The "General Conditions Applicable to Loan and Guarantee Agreements for Single Currency Loans" of the Bank, dated May 30, 1995, as amended through October 6, 1999 (the General Conditions), constitute an integral part of this Agreement.
    [Show full text]
  • Study on the Spatial-Temporal Pattern Evolution and Countermeasures of Regional Coordinated Development in Anhui Province, China
    Current Urban Studies, 2020, 8, 115-128 https://www.scirp.org/journal/cus ISSN Online: 2328-4919 ISSN Print: 2328-4900 Study on the Spatial-Temporal Pattern Evolution and Countermeasures of Regional Coordinated Development in Anhui Province, China Yizhen Zhang1,2*, Weidong Cao1,2, Kun Zhang3 1School of Geography and Tourism, Anhui Normal University, Wuhu, China 2Urban and Regional Planning Research Center of Anhui Normal University, Wuhu, China 3College of Tourism, Huaqiao University, Quanzhou, China How to cite this paper: Zhang, Y. Z., Cao, Abstract W. D., & Zhang, K. (2020). Study on the Spatial-Temporal Pattern Evolution and Regional coordinated development was an important measure to resolve new Countermeasures of Regional Coordinated contradictions in the new era, and it has gradually become a hotspot in geog- Development in Anhui Province, China. raphy research. At three time points of 2010, 2013, and 2017, by constructing Current Urban Studies, 8, 115-128. an evaluation index system for the city comprehensive competitiveness, the https://doi.org/10.4236/cus.2020.81005 entropy method and the coupling coordination model were used to study the Received: March 2, 2020 coordinated development pattern of cities in Anhui Province. Moreover, we Accepted: March 27, 2020 tried to raise the issue of regional coordinated development in Anhui Prov- Published: March 30, 2020 ince and corresponding countermeasures. The results showed that the com- Copyright © 2020 by author(s) and prehensive competitiveness of cities in Anhui Province has strong spatio- Scientific Research Publishing Inc. temporal heterogeneity. The spatial development pattern with Hefei as the This work is licensed under the Creative core was more obvious.
    [Show full text]
  • Best-Performing Cities: China 2018
    Best-Performing Cities CHINA 2018 THE NATION’S MOST SUCCESSFUL ECONOMIES Michael C.Y. Lin and Perry Wong MILKEN INSTITUTE | BEST-PERFORMING CITIES CHINA 2018 | 1 Acknowledgments The authors are grateful to Laura Deal Lacey, executive director of the Milken Institute Asia Center, Belinda Chng, the center’s director for policy and programs, and Ann-Marie Eu, the Institute’s senior associate for communications, for their support in developing this edition of our Best- Performing Cities series focused on China. We thank the communications team for their support in publication as well as Kevin Klowden, the executive director of the Institute’s Center for Regional Economics, Minoli Ratnatunga, director of regional economic research at the Institute, and our colleagues Jessica Jackson and Joe Lee for their constructive comments on our research. About the Milken Institute We are a nonprofit, nonpartisan think tank determined to increase global prosperity by advancing collaborative solutions that widen access to capital, create jobs, and improve health. We do this through independent, data-driven research, action-oriented meetings, and meaningful policy initiatives. About the Asia Center The Milken Institute Asia Center promotes the growth of inclusive and sustainable financial markets in Asia by addressing the region’s defining forces, developing collaborative solutions, and identifying strategic opportunities for the deployment of public, private, and philanthropic capital. Our research analyzes the demographic trends, trade relationships, and capital flows that will define the region’s future. About the Center for Regional Economics The Center for Regional Economics promotes prosperity and sustainable growth by increasing understanding of the dynamics that drive job creation and promote industry expansion.
    [Show full text]
  • Quantitative Assessment and Diagnosis for Regional Agricultural Drought Resilience Based on Set Pair Analysis and Connection Entropy
    Article Quantitative Assessment and Diagnosis for Regional Agricultural Drought Resilience Based on Set Pair Analysis and Connection Entropy Menglu Chen 1, Shaowei Ning 1, Yi Cui 2,*, Juliang Jin 1, Yuliang Zhou 1 and Chengguo Wu 1 1 School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; [email protected] (M.C.); [email protected] (S.N.); [email protected] (J.J.); [email protected] (Y.Z.); [email protected] (C.W.) 2 State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China * Correspondence: [email protected]; Tel.: +86-13102218320 Received: 27 February 2019; Accepted: 02 April 2019; Published: 5 April 2019 Abstract:Assessment and diagnosis of regional agricultural drought resilience (RADR) is an important groundwork to identify the shortcomings of regional agriculture to resist drought disasters accurately. In order to quantitatively assess the capacity of regional agriculture system to reduce losses from drought disasters under complex conditions and to identify vulnerability indexes, an assessment and diagnosis model for RADR was established. Firstly, this model used the improved fuzzy analytic hierarchy process to determine the index weights, then proposed an assessment method based on connection number and an improved connection entropy. Furthermore, the set pair potential based on subtraction was used to diagnose the vulnerability indexes. In addition, a practical application had been carried out in the region of the Huaibei Plain in Anhui Province. The evaluation results showed that the RADR in this area from 2005 to 2014 as a whole was in a relatively weak situation. However, the average grade values had decreased from 3.144 to 2.790 during these 10 years and the RADR had an enhanced tendency.
    [Show full text]
  • Online Appendix (474.67
    How do Tax Incentives Aect Investment and Productivity? Firm-Level Evidence from China ONLINE APPENDIX Yongzheng Liu School of Finance Renmin University of China E-mail: [email protected] Jie Mao School of International Trade and Economics University of International Business and Economics E-mail: [email protected] 1 Appendix A: Supplementary Figures and Tables Figure A1: The Distribution of Estimates for the False VAT Reform Variable Panel A. ln(Investment) Panel B. ln(TFP, OP method) 15 50 40 10 30 20 5 Probabilitydensity Probability density 10 0 0 -0.10 0.00 0.10 0.384 -0.02 0.00 0.02 0.089 The simulated VAT reform estimate The simulated VAT reform estimate reference normal, mean .0016 sd .03144 reference normal, mean .00021 sd .00833 Notes: The gure plots the density of the estimated coecients of the false VAT reform variable from the 500 simulation tests using the specication in Column (3) of Table 2. The vertical red lines present the treatment eect estimates reported in Column (3) of Table 2. Source: Authors' calculations. 2 Table A1: Evolution of the VAT Reform in China Stage of the Reform Industries Covered (Industry Classication Regions Covered (Starting Codes) Time) Machine and equipment manufacturing (35, 36, 39, 40, 41, 42); Petroleum, chemical, and pharmaceutical manufacturing (25, 26, 27, 28, 29, 30); Ferrous and non-ferrous metallurgy (32, 33); The three North-eastern provinces: Liaoning (including 1 (July 2004) Agricultural product processing (13, 14, 15, 17, 18, 19, 20, 21, Dalian city), Jilin and Heilongjiang. 22); Shipbuilding (375); Automobile manufacturing (371, 372, 376, 379); Selected military and hi-tech products (a list of 249 rms, 62 of which are in our sample).
    [Show full text]
  • Anhui Huainan Urban Water Systems Integrated Rehabilitation Project
    China, People's Republic of: Anhui Huainan Urban Water Systems Integrated Rehabilitation Project Project Name Anhui Huainan Urban Water Systems Integrated Rehabilitation Project Project Number 46078-002 Country China, People's Republic of Project Status Active Project Type / Modality Loan of Assistance Technical Assistance Source of Funding / Loan 3054-PRC: Anhui Huainan Urban Water Systems Integrated Rehabilitation Project Amount Ordinary capital resources US$ 150.00 million TA 8491-PRC: Strengthening Urban Flood Management in Huainan Municipality Multi-Donor Trust Fund under the Water Financing Partnership Facility US$ 500,000.00 Strategic Agendas Environmentally sustainable growth Inclusive economic growth Drivers of Change Sector / Subsector Agriculture, natural resources and rural development - Water-based natural resources management Water and other urban infrastructure and services - Urban flood protection - Urban sewerage Gender Equity and Effective gender mainstreaming Mainstreaming Description The impact of the project will be improved urban water environment, public health, and quality of life for urban residents in the Huainan municipality. The outcome of the project will be improved management of surface water resources in the Huainan municipality. The project will have the following components which are all linked to each other: Component 1: Improvement of wastewater collection and transmission systems. This component will include installation of 115.2-kilometer (km) new main wastewater collection and transmission pipes in
    [Show full text]
  • International System Summary: CHINA
    International System Summary: CHINA UIC Map of China’s High-Speed Rail Lines China is the fourth largest country in the world and domestic product (GDP) per capita of $8,400 ranks 120th. ranks first in total population. Bordering a total of 14 dif- Facing congested passenger and freight rail conditions, ferent countries, including Russia, India, Kazakhstan, and China chose to invest in capacity improvements on the ex- Vietnam, China has a widely diverse land use, terrain, and isting rail system and develop a dedicated high-speed rail climate. Maintaining several significant urban centers, network connecting the major population centers. The including Shanghai with 16.6 million people and Beijing figure above displays the International Union of Railways (capital) with 12.2 million people, the country is listed as (UIC) map of the 6,300 km (3,900 miles) of current and 47 percent urban. The country’s GDP of $11.29 trillion 7,200 km (4,500 miles) of planned high-speed rail network ranks as the third largest economy, following the Euro- lines in China. pean Union as a whole and the United States.. Its gross INTERNATIONAL HIGH-SPEED RAIL SYSTEM SUMMARY: CHINA | 1 SY STEM DESCRIPTION AND HISTORY Speed Year Length Stage According to the UIC, the first high-speed rail line seg- km/h mph Opened km miles ment in the China opened in 2003 between Qinhuangdao Under Consturction: Guangzhou – Zhuhai 160 100 2011 49 30 and Shenyang. The 405 km (252 mile) segment operates (include Extend Line) at a speed of 200 km/h (125 mph) is now part of a 6,299 Wuhan – Yichang 300 185 2011 293 182 km (3,914 mile) network of high-speed rail lines stretching Tianjin – Qinhuangdao 300 185 2011 261 162 across China operating at maximum operating speeds of Nanjing – Hangzhou 300 185 2011 249 155 at least 160 km/h (100 mph) as shown in the table below.
    [Show full text]