Public Release Summary

Total Page:16

File Type:pdf, Size:1020Kb

Public Release Summary PUBLIC RELEASE SUMMARY on the Evaluation of the New Active Monepantel in the Product Zolvix Monepantel Broad Spectrum Oral Anthelmintic for Sheep APVMA Product Number 62752 JUNE 2010 © Commonwealth of Australia 2010 This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced without permission from the Australian Pesticides & Veterinary Medicines Authority. Requests and inquiries concerning reproduction and rights can be made to: The Manager, Public Affairs Australian Pesticides and Veterinary Medicines Authority PO Box 6182 KINGSTON ACT 2604 Australia Email: [email protected] This document is published by the APVMA. In referencing this document the APVMA should be cited as both author and publisher. ISSN: 1443-1335 Website: This publication is available from the APVMA website: http://www.apvma.gov.au Comments and enquiries may be directed to: Contact Officer Veterinary Medicines Program Australian Pesticides & Veterinary Medicines Authority PO Box 6182 KINGSTON ACT 2604 Australia Telephone: +61 2 6210 4700 Fax: +61 2 6210 4776 Email: #[email protected] CONTENTS iii CONTENTS PREFACE V About this document v Making a submission v Further information vi 1 INTRODUCTION 1 2 CHEMISTRY AND MANUFACTURE 2 2.1 ACTIVE CONSTITUENT 2 2.2 PRODUCT 3 2.3 RECOMMENDATION 3 3 TOXICOLOGICAL ASSESSMENT 5 3.1 EVALUATION OF TOXICOLOGY 5 3.2 PUBLIC HEALTH STANDARDS 9 4 RESIDUES ASSESSMENT 10 4.1 INTRODUCTION 10 4.2 DATA PROVIDED 10 4.3 EVALUATION SUMMARY 10 4.4 CONCLUSIONS AND RECOMMENDATIONS 15 5 ASSESSMENT OF OVERSEAS TRADE ASPECTS OF RESIDUES IN FOOD 17 6 OCCUPATIONAL HEALTH AND SAFETY ASSESSMENT 20 6.1 HEALTH HAZARDS 20 6.2 FORMULATION, PACKAGING, TRANSPORT, STORAGE AND RETAILING 20 6.3 USE PATTERN 20 6.4 EXPOSURE DURING USE 20 6.5 EXPOSURE DURING RE-ENTRY 21 6.6 RECOMMENDATIONS FOR SAFE USE 21 6.7 CONCLUSION 21 7 ENVIRONMENTAL ASSESSMENT 22 7.1 INTRODUCTION 22 7.2 ENVIRONMENTAL CHEMISTRY AND FATE 22 7.3 ENVIRONMENTAL EFFECTS 23 7.4 PREDICTION OF ENVIRONMENTAL RISK 24 7.5 CONCLUSION 25 iv PUBLIC RELEASE SUMMARY – [PRODUCT NAME] 8 EFFICACY AND SAFETY ASSESSMENT 27 8.1 EVALUATION OF EFFICACY DATA 27 8.2 EVALUATION OF TARGET ANIMAL SAFETY DATA 29 8.3 CONCLUSIONS 31 9 LABELLING REQUIREMENTS 32 ABBREVIATIONS 75 GLOSSARY 78 REFERENCES 79 LIST OF TABLES Table 1: The Limits of Quantification (LOQs) and Limits of Detection (LODs) for the analytical method 12 Table 2: MRL Standard - Table 1 Amendments 16 Table 3: MRL Standard – Table 3 Amendments 16 Table 4: Comparison of the recommended Australian and overseas monepantel MRLs/tolerances 18 PREFACE v PREFACE The Australian Pesticides and Veterinary Medicines Authority (APVMA) is an independent statutory authority with responsibility for assessing and approving agricultural and veterinary chemical products prior to their sale and use in Australia. In undertaking this task, the APVMA works in close cooperation with advisory agencies, including the Department of Health and Aging, Office of Chemical Safety and Environmental Health (OCSEH), Department of the Environment, Water, Heritage and the Arts (DEWHA), and State Departments of Primary Industry. The APVMA has a policy of encouraging openness and transparency in its activities and of seeking community involvement in decision making. Part of that process is the publication of public release summaries for all products containing new active ingredients. The information and technical data required by the APVMA to assess the safety of new chemical products and the methods of assessment must be undertaken according to accepted scientific principles. Details are outlined in the APVMA’s publication Vet MORAG: Manual of Requirements and Guidelines. This Public Release Summary is intended as a brief overview of the assessment that has been completed by the APVMA and its advisory agencies. It has been deliberately presented in a manner that is likely to be informative to the widest possible audience thereby encouraging public comment. About this document This is a Public Release Summary. It indicates that the Australian Pesticides and Veterinary Medicines Authority (APVMA) is considering an application for registration of an agricultural or veterinary chemical. It provides a summary of the APVMA’s assessment. Comment is sought from industry groups and stakeholders on the information contained within this document. Making a submission In accordance with sections 12 and 13 of the Agvet Code, the APVMA invites any person to submit a relevant written submission as to whether the application for registration of Zolvix Monepantel Broad Spectrum Oral Anthelmintic for Sheep should be granted. Submissions should relate only to matters that the APVMA is required by legislation to take into account in deciding whether to grant the application. These grounds include occupational health and safety, chemistry and manufacture, residues, safety and first aid, environmental fate and toxicity, trade and efficacy. Submissions should state the grounds on which they are based. Comments received outside these grounds cannot be considered by the APVMA. vi PUBLIC RELEASE SUMMARY – ZOLVIX MONEPANTEL BROAD SPECTRUM ORAL ANTHELMINTIC FOR SHEEP Submissions must be received by the APVMA by close of business on Monday 5 July 2010 and be directed to the contact listed below. All submissions to the APVMA will be acknowledged in writing via email or by post. Relevant comments will be taken into account by the APVMA in deciding whether the product should be registered and in determining appropriate conditions of registration and product labelling. When making a submission please include: • Contact name • Company or Group name (if relevant) • Postal Address • Email Address (if available) • The date you made the submission. All personal and confidential commercial information (CCI)1 material contained in submissions will be treated confidentially. Written submissions on the APVMA’s proposal to grant the application for registration that relate to the grounds for registration should be addressed in writing to: Zuzanna Rajczyk Veterinary Medicines Program Australian Pesticides and Veterinary Medicines Authority PO Box 6182 Symonston ACT 2609 Phone: (02) 6210 4733 Fax: (02) 6210 4741 Email: [email protected] Further information Further information can be obtained via the contact details provided above. Further information on public release summaries can be found on the APVMA website: http://www.apvma.gov.au 1 A full definition of "confidential commercial information" is contained in the Agvet Code. INTRODUCTION 1 1 INTRODUCTION The Australian Pesticides and Veterinary Medicines Authority (APVMA) has before it an application from Novartis Animal Health Australasia Pty Ltd for registration of a new product, Zolvix Monepantel Broad Spectrum Oral Anthelmintic for Sheep, containing the new active constituent monepantel. This publication provides a summary of the data assessed and an outline of the regulatory considerations for the proposed registration of Zolvix Monepantel Broad Spectrum Oral Anthelmintic for Sheep. Internal parasites are a major problem in sheep in Australia. Anthelmintics are used to control worms in sheep, however development of resistance to the commonly used anthelmintics is becoming an increasing problem. Monepantel is a new amino-acetonitrile derivative (AAD) anthelmintic with a novel mode of action. It acts on a nematode-specific ACR-23 nicotinic acetylcholine receptor sub-unit. Zolvix Monepantel Broad Spectrum Oral Anthelmintic for Sheep is an oral drench that contains 25 mg/mL monepantel. The proposed use is for the treatment and control of AAD-sensitive strains of gastro-intestinal roundworms (nematodes), including macrocyclic lactone, benzimidazole (white), levamisole (clear) and morantel-resistant strains in sheep. The proposed dose rate is 2.5 mg monepantel/kg bodyweight (1 mL Zolvix/10 kg bodyweight). Zolvix Monepantel Broad Spectrum Oral Anthelmintic for Sheep is administered as a single treatment. If repeat treatments are necessary, sheep are not to be retreated less than 21 days after the last treatment and after 3 consecutive treatments, 115 days must elapse before treating again with Zolvix. Zolvix Monepantel Broad Spectrum Oral Anthelmintic for Sheep will be packaged in 0.25L, 0.5L, 1L, 2.5L, 5L and 10L containers. Zolvix Monepantel Broad Spectrum Oral Anthelmintic for Sheep is currently registered in New Zealand, Uruguay and 27 countries in the European Union. The APVMA seeks public comment on the product outlined in this document prior to the product being registered for use in Australia. The APVMA will consider all responses received during the public consultation period in deciding whether the product should be registered and in determining conditions of registration and product labelling. 2 PUBLIC RELEASE SUMMARY – ZOLVIX MONEPANTEL BROAD SPECTRUM ORAL ANTHELMINTIC FOR SHEEP 2 CHEMISTRY AND MANUFACTURE 2.1 ACTIVE CONSTITUENT Monepantel is a new active constituent and there is no compendial specification available. The Pharmaceutical Chemistry Section of the APVMA has evaluated the chemistry aspects of monepantel (manufacturing process, quality control procedures, batch analysis results and analytical methods). The chemical active constituent monepantel has the following properties: COMMON NAME (ISO): Monepantel (INN) CHEMICAL NAME: N-[(1S)-1-Cyano-2-(5-cyano-2-fluoromethylphenoxy)-1-methylethyl]-4- trifluoromethylsulfanylbenzamide CHIRALITY: The active substance has one
Recommended publications
  • Witola, Basis of Anthelmintic Resistance and Development Of
    9/8/2016 Basis of Anthelmintic Resistance and Novel Approaches to Development of New Efficacious Anthelmintic Drugs William H. Witola, BVetMed, MSc., Ph.D. Department of Pathobiology College of Veterinary Medicine University of Illinois at Urbana-Champaign E-mail: [email protected] Current Anthelmintics 3 Classes of anthelmintic drugs registered in the USA : 1.) Benzimidazoles • Fenbendazole, Safeguard, Panacur 2.) Macrocyclic Lactones • Avermectins: Ivermectin, Ivomec, Primectin, Privermectin • Eprinomectin: Eprinex • Doramectin: Dectomax • Milbimycins: Moxidectin, Cydectin, Quest 3.) Nicotinic Agonists • Imidothiazoles: Levamisole, Prohibit • Tetrahydropyrimidines: Morantel, Rumatel, Positive Goat Pellet, Goat dewormer, Pyrantel, Strongid Spiroindoles (Not registered in US) Amino-acetonitriles (Not registered in US ) How do anthelmintic drugs kill parasites? • Benzimidazoles (Valbazen, Safeguard): Bind to a parasite protein called β-tubulin leading to collapse of parasite skeleton structure. • Avermectin/Milbemycins (Ivomec, cydectin): Bind to proteins in throat (pharynx) of parasite leading to paralysis – parasite can’t eat anymore & dies of starvation! • Imidazothiazoles/Tetrahydropyrimidine (Levamisole, Pyrantel, Morantel): bind to acetylcholine receptors causing muscle paralysis. 1 9/8/2016 Status of Anthelmintics Efficacy Drug Host First 1st Report of Approved Resistance Benzimidazoles : Thiabendazole, Albendazole Sheep, 1961 1964 goat, Horse, 1962 1965 Imidothiazoles-tetrahydropyrimidines : Levamisole, Sheep 1970 1979 Pyrantel
    [Show full text]
  • Chemotherapy of Gastrointestinal Helminths
    Chemotherapy of Gastrointestinal Helminths Contributors J. H. Arundel • J. H. Boersema • C. F. A. Bruyning • J. H. Cross A. Davis • A. De Muynck • P. G. Janssens • W. S. Kammerer IF. Michel • M.H. Mirck • M.D. Rickard F. Rochette M. M. H. Sewell • H. Vanden Bossche Editors H. Vanden Bossche • D.Thienpont • P.G. Janssens UNIVERSITATS- BlfiUOTHElC Springer-Verlag Berlin Heidelberg New York Tokyo Contents CHAPTER 1 Introduction. A. DAVIS A. Pathogenic Mechanisms in Man 1 B. Modes of Transmission 2 C. Clinical Sequelae of Infection 3 D. Epidemiological Considerations 3 E. Chemotherapy 4 F. Conclusion 5 References 5 CHAPTER 2 Epidemiology of Gastrointestinal Helminths in Human Populations C. F. A. BRUYNING A. Introduction 7 B. Epidemiological or "Mathematical" Models and Control 8 C. Nematodes 11 I. Angiostrongylus costaricensis 11 II. Anisakis marina 12 III. Ascaris lumbricoides 14 IV. Capillaria philippinensis 21 V. Enterobius vermicularis 23 VI. Gnathostoma spinigerum 25 VII. Hookworms: Ancylostoma duodenale and Necator americanus . 26 VIII. Oesophagostoma spp 32 IX. Strongyloides stercoralis 33 X. Ternidens deminutus 34 XI. Trichinella spiralis 35 XII. Trichostrongylus spp 38 XIII. Trichuris trichiura 39 D. Trematodes 41 I. Echinostoma spp 41 II. Fasciolopsis buski 42 III. Gastrodiscoides hominis 44 IV. Heterophyes heterophyes 44 V. Metagonimus yokogawai 46 X Contents E. Cestodes 47 I. Diphyllobothrium latum 47 II. Dipylidium caninum 50 III. Hymenolepis diminuta 51 IV. Hymenolepis nana 52 V. Taenia saginata 54 VI. Taenia solium 57 VII. Cysticercosis cellulosae 58 References 60 CHAPTER 3 Epidemiology and Control of Gastrointestinal Helminths in Domestic Animals J. F. MICHEL. With 20 Figures A. Introduction 67 I.
    [Show full text]
  • NON-HAZARDOUS CHEMICALS May Be Disposed of Via Sanitary Sewer Or Solid Waste
    NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste (+)-A-TOCOPHEROL ACID SUCCINATE (+,-)-VERAPAMIL, HYDROCHLORIDE 1-AMINOANTHRAQUINONE 1-AMINO-1-CYCLOHEXANECARBOXYLIC ACID 1-BROMOOCTADECANE 1-CARBOXYNAPHTHALENE 1-DECENE 1-HYDROXYANTHRAQUINONE 1-METHYL-4-PHENYL-1,2,5,6-TETRAHYDROPYRIDINE HYDROCHLORIDE 1-NONENE 1-TETRADECENE 1-THIO-B-D-GLUCOSE 1-TRIDECENE 1-UNDECENE 2-ACETAMIDO-1-AZIDO-1,2-DIDEOXY-B-D-GLYCOPYRANOSE 2-ACETAMIDOACRYLIC ACID 2-AMINO-4-CHLOROBENZOTHIAZOLE 2-AMINO-2-(HYDROXY METHYL)-1,3-PROPONEDIOL 2-AMINOBENZOTHIAZOLE 2-AMINOIMIDAZOLE 2-AMINO-5-METHYLBENZENESULFONIC ACID 2-AMINOPURINE 2-ANILINOETHANOL 2-BUTENE-1,4-DIOL 2-CHLOROBENZYLALCOHOL 2-DEOXYCYTIDINE 5-MONOPHOSPHATE 2-DEOXY-D-GLUCOSE 2-DEOXY-D-RIBOSE 2'-DEOXYURIDINE 2'-DEOXYURIDINE 5'-MONOPHOSPHATE 2-HYDROETHYL ACETATE 2-HYDROXY-4-(METHYLTHIO)BUTYRIC ACID 2-METHYLFLUORENE 2-METHYL-2-THIOPSEUDOUREA SULFATE 2-MORPHOLINOETHANESULFONIC ACID 2-NAPHTHOIC ACID 2-OXYGLUTARIC ACID 2-PHENYLPROPIONIC ACID 2-PYRIDINEALDOXIME METHIODIDE 2-STEP CHEMISTRY STEP 1 PART D 2-STEP CHEMISTRY STEP 2 PART A 2-THIOLHISTIDINE 2-THIOPHENECARBOXYLIC ACID 2-THIOPHENECARBOXYLIC HYDRAZIDE 3-ACETYLINDOLE 3-AMINO-1,2,4-TRIAZINE 3-AMINO-L-TYROSINE DIHYDROCHLORIDE MONOHYDRATE 3-CARBETHOXY-2-PIPERIDONE 3-CHLOROCYCLOBUTANONE SOLUTION 3-CHLORO-2-NITROBENZOIC ACID 3-(DIETHYLAMINO)-7-[[P-(DIMETHYLAMINO)PHENYL]AZO]-5-PHENAZINIUM CHLORIDE 3-HYDROXYTROSINE 1 9/26/2005 NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste 3-HYDROXYTYRAMINE HYDROCHLORIDE 3-METHYL-1-PHENYL-2-PYRAZOLIN-5-ONE
    [Show full text]
  • Review Article a BRIEF REVIEW on the MODE of ACTION of ANTINEMATODAL DRUGS
    Acta Veterinaria-Beograd 2017, 67 (2), 137-152 UDK: 615.284.03 DOI: 10.1515/acve-2017-0013 Review article A BRIEF REVIEW ON THE MODE OF ACTION OF ANTINEMATODAL DRUGS ABONGWA Melanie, MARTIN Richard J., ROBERTSON Alan P.* Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA (Received 01 May, Accepted 24 May 2017) Anthelmintics are some of the most widely used drugs in veterinary medicine. Here we review the mechanism of action of these compounds on nematode parasites. Included are the older classes of compounds; the benzimidazoles, cholinergic agonists and macrocyclic lactones. We also consider newer anthelmintics, including emodepside, derquantel and tribendimidine. In the absence of vaccines for most parasite species, control of nematode parasites will continue to rely on anthelmintic drugs. As a consequence, vigilance in detecting drug resistance in parasite populations is required. Since resistance development appears almost inevitable, there is a continued and pressing need to fully understand the mode of action of these compounds. It is also necessary to identify new drug targets and drugs for the continued effective control of nematode parasites. Key words: anthelmintic, parasite, benzimidazoles, avermectins, cholinergic, emodepside, derquantel INTRODUCTION Anthelmintics are drugs that are used to treat infections caused by parasitic worms (helminths) [1]. There are three major groups of helminths namely: nematodes (roundworms), trematodes (fl ukes) and cestodes (tapeworms). These groups of helminths are divided into two phyla; nematodes (roundworms) and platyhelminths (trematodes and cestodes) [2]. Anthelmintics either kill worms or cause their expulsion from the body, without causing any signifi cant damage to the host [3].
    [Show full text]
  • (12) STANDARD PATENT (11) Application No. AU 2015276941 B2 (19) AUSTRALIAN PATENT OFFICE
    (12) STANDARD PATENT (11) Application No. AU 2015276941 B2 (19) AUSTRALIAN PATENT OFFICE (54) Title Parasiticidal compositions comprising indole derivatives, methods and uses thereof (51) International Patent Classification(s) C07D 401/04 (2006.01) C07D 209/10 (2006.01) A01N 43/38 (2006.01) C07D 401/12 (2006.01) A01N 43/40 (2006.01) HO3K 5/04 (2006.01) A01P 15/00 (2006.01) HO3K 7/00 (2006.01) C07D 209/08 (2006.01) (21) Application No: 2015276941 (22) Date of Filing: 2015.06.19 (87) WIPO No: W015/196014 (30) Priority Data (31) Number (32) Date (33) Country 62/014,245 2014.06.19 US (43) Publication Date: 2015.12.23 (44) Accepted Journal Date: 2018.07.19 (71) Applicant(s) Merial, Inc. (72) Inventor(s) Meng, Charles;Le Hir De Fallois, Loic (74) Agent / Attorney FB Rice Pty Ltd, L 23 44 Market St, Sydney, NSW, 2000, AU (56) Related Art Spycher, S., et al. "Mode of action-based classification and prediction of activity of uncouplers for the screening of chemical inventories."(2008) SAR and QSAR in Environmental Research vol 19(5-6) page 433-463. JOHN F. POLETTO ET AL, "Synthesis and antiinflammatory evaluation of certain 5-alkoxy-2,7-dialkyltryptamines", JOURNAL OF MEDICINAL CHEMISTRY, (1973), vol. 16, no. 7, pages 757 - 765 CONDE J J ET AL, "Towards the synthesis of osteoclast inhibitor SB-242784", TETRAHEDRON LETTERS, (2003), vol. 44, no. 15, pages 3081 - 3084 WANG ET AL, JOURNAL OF FLUORINE CHEMISTRY, (2007), vol. 128, no. 10, pages 1143 - 1152 WO 2012088431 Al WO 2011060746 Al HONG X ET AL, "Photodesulfonylation of indoles initiated by electron transfer from triethylamine", TETRAHEDRON LETTERS, (2006) vol.
    [Show full text]
  • Feed Inspector's Manual
    Feed Inspector’s Manual Sixth Edition Published by Association of American Feed Control Officials Inspection and Sampling Committee © February 2017 TABLE OF CONTENTS Chapter One - Introduction ............................................................................................................ 1 Chapter Two - Safety ...................................................................................................................... 3 Chapter Three - Sampling............................................................................................................... 14 Chapter Four - Label Review........................................................................................................ 37 Chapter Five - Feed Investigations ............................................................................................... 75 Chapter Six - GMP Inspections ................................................................................................. 78 Chapter Seven - Feed Ingredients ................................................................................................... 98 Chapter Eight - VFD's...................................................................................................................101 Chapter Nine - BSE .................................................................................................................... 105 - FDA Compliance Guide 67 ............................................................................... 108 - FDA Compliance Guide 68 ...............................................................................
    [Show full text]
  • Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock
    Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock 1 Identification of Petitioned Substance* 2 3 Chemical Names: 48 Ivermectin: Heart Guard, Sklice, Stomectol, 4 Moxidectin:(1'R,2R,4Z,4'S,5S,6S,8'R,10'E,13'R,14'E 49 Ivomec, Mectizan, Ivexterm, Scabo 6 5 ,16'E,20'R,21'R,24'S)-21',24'-Dihydroxy-4 50 Thiabendazole: Mintezol, Tresaderm, Arbotect 6 (methoxyimino)-5,11',13',22'-tetramethyl-6-[(2E)- 51 Albendazole: Albenza 7 4-methyl-2-penten-2-yl]-3,4,5,6-tetrahydro-2'H- 52 Levamisole: Ergamisol 8 spiro[pyran-2,6'-[3,7,1 9]trioxatetracyclo 53 Morantel tartrate: Rumatel 9 [15.6.1.14,8.020,24] pentacosa[10,14,16,22] tetraen]- 54 Pyrantel: Banminth, Antiminth, Cobantril 10 2'-one; (2aE, 4E,5’R,6R,6’S,8E,11R,13S,- 55 Doramectin: Dectomax 11 15S,17aR,20R,20aR,20bS)-6’-[(E)-1,2-Dimethyl-1- 56 Eprinomectin: Ivomec, Longrange 12 butenyl]-5’,6,6’,7,10,11,14,15,17a,20,20a,20b- 57 Piperazine: Wazine, Pig Wormer 13 dodecahydro-20,20b-dihydroxy-5’6,8,19-tetra- 58 14 methylspiro[11,15-methano-2H,13H,17H- CAS Numbers: 113507-06-5; 15 furo[4,3,2-pq][2,6]benzodioxacylooctadecin-13,2’- Moxidectin: 16 [2H]pyrano]-4’,17(3’H)-dione,4’-(E)-(O- Fenbendazole: 43210-67-9; 70288-86-7 17 methyloxime) Ivermectin: 59 Thiabendazole: 148-79-8 18 Fenbendazole: methyl N-(6-phenylsulfanyl-1H- 60 Albendazole: 54965-21-8 19 benzimidazol-2-yl) carbamate 61 Levamisole: 14769-72-4 20 Ivermectin: 22,23-dihydroavermectin B1a +22,23- 21 dihydroavermectin B1b 62 Morantel tartrate: 26155-31-7 63 Pyrantel: 22204-24-6 22 Thiabendazole: 4-(1H-1,3-benzodiazol-2-yl)-1,3- 23 thiazole
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,393,221 B2 W (45) Date of Patent: Jul.19, 2016
    USOO9393221B2 (12) United States Patent (10) Patent No.: US 9,393,221 B2 W (45) Date of Patent: Jul.19, 2016 (54) METHODS AND COMPOUNDS FOR FOREIGN PATENT DOCUMENTS REDUCING INTRACELLULAR LIPID STORAGE WO WO2007096,251 8, 2007 OTHER PUBLICATIONS (75) Inventor: Sean Wu, Brookline, MA (US) Onyesom and Agho, Asian J. Sci. Res., Oct. 2010, vol. 4, No. 1, p. (73) Assignee: THE GENERAL, HOSPITAL 78-83. CORPORATION, Boston, MA (US) Davis et al., Br J Clin Pharmacol., 1996, vol. 4, p. 415-421.* Schweiger et al., Am J Physiol Endocrinol Metab, 2009, vol. 279, E289-E296. (*) Notice: Subject to any disclaimer, the term of this Maryam Ahmadian et al., Desnutrin/ATGL is regulated by AMPK patent is extended or adjusted under 35 and is required for a brown adipose phenotype, Cell Metabolism, vol. U.S.C. 154(b) by 748 days. 13, pp. 739-748, 2011. Mohammadreza Bozorgmanesh et al., Diabetes prediction, lipid (21) Appl. No.: 13/552,975 accumulation product, and adiposity measures; 6-year follow-up: Tehran lipid and glucose study, Lipids in Health and Disease, vol. 9, (22) Filed: Jul.19, 2012 pp. 1-9, 2010. Judith Fischer et al., The gene encoding adipose triglyceride lipase (65) Prior Publication Data (PNPLA2) is mutated in neutral lipid storage disease with myopathy, Nature Genetics, vol.39, pp. 28-30, 2007. US 2013/OO23488A1 Jan. 24, 2013 Astrid Gruber et al., The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase, vol. 285, pp. 12289-12298, Related U.S.
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]
  • 01 Front.Pdf (2.451Mb)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. VETERINARY ANTHELMINTICS: THEIR EFFICACY AND EFFECTS ON ABOMASAL PHYSIOLOGY A thesis presented in partial fulfilment of the requirements for the degree of MASTER OF VETERINARY SCIENCE in Veterinary Clinical Pharmacology at Massey University NICHOLAS CHARLES WHELAN March 1998 For Pauline, with all my love iii ABSTRACT PART 1. A Review of the Veterinary Anthelmintic Literature A comprehensive review was undertaken of the pharmacology, efficacy, side effects and toxicity of veterinary anthelmintics used against nematode parasites. Anthelmintics reviewed for use in cattle, sheep, goats, horses, dogs and cats include copper, nicotine, arsenic, tetrachlorethylene, phenothiazine, diethylcarbamazine, piperazine, toluene, cyacethydrazide, bephenium, thenium, organophosphates, and methyridine. The review was limited to cattle for the benzimidazoles, pyrantel, morantel, tetramisole, levamisole, avermectin and milbemycins anthelmintics. Efficacy data is provided in a tabular format which classifies each anthelmintic according to method of administration and dose. PART2 Efficacy of two formulations of moxidectin pour-on and the effects of treatment on serum pepsinogen and gastrin levels and tissue gastrin in cattle Three groups of eight yearling Friesian bulls were used to compare the efficacy of two 5 g/L pour-on formulations of moxidectin applied at 1ml/10kg (500 mcg moxidectin per kg bodyweight) in removing naturally acquired gastrointestinal parasites. At slaughter, 14-16 days after treatment, the burdens of Ostertagia spp. and Trichostrongylus axei were significantly lower in both the treated groups versus the controls (P<0.01 ).
    [Show full text]
  • 2.Anthelmintics
    Anthelmintic Anthelmintic or antihelminthics are a group of antiparasitic drugs that expel parasitic worms (helminths) and other internal parasites from the body by either stunning or killing them and without causing significant damage to the host. They may also be called vermifuges (those that stun) or vermicides (those that kill). Anthelmintics are used to treat people who are infected by helminths, a condition called helminthiasis. These drugs are also used to treat infected animals. Antiparasitics that specifically target worms of the genus Ascaris are called ascaricides. Classification: Benzimidazoles: Albendazole – effective against threadworms, roundworms, whipworms, tapeworms, hookworms Mebendazole – effective against various nematodes Thiabendazole – effective against various nematodes Fenbendazole – effective against various parasites Triclabendazole – effective against liver flukes Flubendazole – effective against most intestinal parasites Abamectin (and by extension ivermectin) - effective against most common intestinal worms, except tapeworms, for which praziquantel is commonly used in conjunction for mass dewormings Diethylcarbamazine – effective against Wuchereria bancrofti, Brugia malayi, Brugia timori, and Loa loa. Pyrantel pamoate – effective against most nematode infections residing within the intestines `Levamisole Salicylanilide – mitochondrial un-couplers (used only for flatworm infections): Niclosamide Oxyclozanide Nitazoxanide – readily kills Ascaris lumbricoides,[5] and also possess antiprotozoal effects[6]
    [Show full text]
  • (11) Application No. AU 2006302237 C1 (19) AUSTRALIAN PATENT OFFICE
    (12) STANDARD PATENT (11) Application No. AU 2006302237 C1 (19) AUSTRALIAN PATENT OFFICE (54) Title Multi-functional ionic liquid compositions (51) International Patent Classification(s) C11D 17/00 (2006.01) (21) Application No: 2006302237 (22) Date of Filing: 2006.10.10 (87) WIPO No: WO07/044693 (30) Priority Data (31) Number (32) Date (33) Country 60/764,850 2006.02.02 US 60/724,605 2005.10.07 US 60/724,604 2005.10.07 US (43) Publication Date: 2007.04.19 (44) Accepted Journal Date: 2012.03.08 (44) Amended Journal Date: 2012.11.08 (71) Applicant(s) The University of Alabama (72) Inventor(s) Hough, Whitney L.;Davis Jr., James Hillard;Daly, Daniel T.;Spear, Scott K.;Smiglak, Marcin;Swatloski, Richard P.;Pernak, Juliusz;Rogers, Robin D. (74) Agent / Attorney Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001 (56) Related Art D3: WELTON, Thomas: "Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis" CHEMICAL REVIEWS, Vol. 99, No. 8, 7 July 1999, pages 2071-2083. JP 2005-082512 A (MEDOREKKUSU KK) 31 March 2005 AU 2005232025 A1 (THE UNIVERSITY OF YORK) 20 October 2005 WO 2002/0079269 A1 (THE UAB RESEARCH FOUNDATION) 10 October 2002 EP 1405646 A2 (YUNG SHIN PHARM. IND. CO. LTD.) 7 April 2004 PICQUET, M., et. al.: "Ionic liquids: media for better molecular catalysis" TOPICS IN CATALYSIS, vol. 29, no. 3-4, 1 June 2004 (2004-06-01), pages 139-143 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIN (10) International Publication Number (43) International Publication Date PCT 19 April 2007 (19.04.2007) WO 2007/044693 A3 (51) International Patent Classification: Tuscaloosa, AL 35401 (US).
    [Show full text]