Can a Use-Based Taxonomy Be Natural? an Example from Aguaruna Folk Classification of Trees Kevin Jernigan

Total Page:16

File Type:pdf, Size:1020Kb

Can a Use-Based Taxonomy Be Natural? an Example from Aguaruna Folk Classification of Trees Kevin Jernigan Can a Use-based Taxonomy be Natural? An example from Aguaruna folk classification of trees Kevin Jernigan Research Abstract This work examines the classic utilitarian vs. intellectualist most perceptually distinctive organisms have the great- debate in cognitive ethnobiology from a new perspective. est probability of being named. Others (Hunn 1982) have It challenges the notion that classifications based on util- emphasized the importance of usefulness, arguing that ity are artificial, that is, necessarily constructed from a few cultural knowledge should be adaptive. Evidence (Berlin special characteristics. The paper involves a new analysis 1992, Posey 1984) suggests that ecological relationships of ethnographic data collected by the author over multiple also play an important role in classification. field sessions from 2004 to 2010 in nine Aguaruna villag- es in Amazonas, Peru. In previous work, Aguaruna par- Debate has focused not only on the factors motivating ticipants described uses, along with sensory and ecologi- classification but also on the mechanics of how folk taxon- cal characteristics of local tree species. They also stated omies are organized (Atran 1998, Berlin et al. 1974, Hunn which tree folk genera they consider related to each other 1982). An important aspect of these discussions concerns as “companions,” typically placing taxa together in natu- the naturalness of taxonomic schemes. Natural (or gener- al purpose) schemes group together members based on ral groupings. This new synthesis took the descriptions many common shared characteristics (Berlin et al. 1966). of uses and physical characteristics for a sample of 41 Modern scientific classification is a good example. Con- Aguaruna tree folk genera and subjected both to hierar- versely, artificial (or special) classification schemes use a chical cluster analysis to see which would better repro- small number of characteristics designed for a particular duce the folk classification. Use data performed nearly as purpose. For instance, one might classify plants as “ed- well as sensory data in reproducing the natural groupings ible,” “medicinal” or “psychoactive.” Berlin (1991,1992) ar- of trees. This makes sense considering that plant uses gues that the widespread agreement between scientific tend to be based on physical properties (including pres- and folk systems of classification provides good evidence ence of secondary compounds) that related species will often share. Introduction Correspondence Bases for classification Kevin Jernigan, Anthropology Department, University of Alaska, Fairbanks, Alaska, U.S.A. A classic and ongoing debate within the field of ethno- [email protected] biology relates to the relative strengths of intellectualist, ecological, and utilitarian approaches to folk classification (Anderson 2000, 2010, Atran 1998, Berlin 1991, 1992, Hunn 1982, Posey 1984). Folk taxonomic systems typi- cally give linguistic recognition to only a portion of the bio- logical diversity in any given region (Berlin 1991, Hunn Ethnobotany Research & Applications 12:685-703 (2014) 1982). Some authors (Berlin 1991,1992) maintain that the Published: 22 December 2014 www.ethnobotanyjournal.org/vol12/i1547-3465-12-685.pdf 686 Ethnobotany Research & Applications that the latter are general purpose, based on observa- Background tions of the morphological and behavioral qualities of or- ganisms. Similarly, Atran maintains that folk taxonomies Study site are general-purpose schemes that work “to maximize in- ductive potential relative to human interests” (1998:563). This study involves a new analysis of ethnographic data Hunn (1982) has suggested that folk classifications are collected over multiple field sessions of the author and based on an extensive natural core along with a periph- collaborators in nine Aguaruna villages from 2004 to 2010. ery of artificial taxa based on utilitarian considerations. In The previous studies interviewed 30 adult Aguaruna par- any case, major contributors in this field (Berlin 1992, El- ticipants, focusing on the process of tree identification len 2008, Hunn 1982) have largely discussed use-based (Jernigan 2006b, 2008), medical ethnobotany (Jernigan classifications as being artificial rather than natural. The 2009), and knowledge of life histories of local birds and possibility that utility based classification schemes could mammals (Jernigan 2006a, 2010, Jernigan & Dauphine be natural has largely not been explored. The present arti- 2008). The work involved researchers from the University cle examines this assumption through a detailed analysis of Georgia, the University of Alaska, Fairbanks, and the of the Aguaruna life form category númi – “trees.” Specifi- Universidad Nacional Mayor San Marcos in Lima, Peru. cally, it tests the hypothesis: When sensory and ecological characters listed by Aguaruna participants for local trees All work took place on the upper Marañón river (see Fig- are subjected to a hierarchical cluster analysis, the result- ure 1), in the department of Amazonas, Peru, approxi- ing classification will be a natural one. However, a similar mately 300 km northeast of the major Peruvian city of Chi- analysis based on use characters should fail to produce clayo. This is an area of high species diversity of both flora natural groupings. and fauna (Jernigan & Dauphine 2008). These studies all D G D Marañón River G D PERU Marañón River G Nieva River PERU Marañón River Nieva River PERU E K Nieva River B E K F H C E B K AF I H C B J F A H C I Fig 1 J A I J FigureFig 1 1. Study area on the upper Marañón river, Amazonas, Peru. Communities of A) Atash Shinukbau, B) Bajo Ca- chiaco, C) Chiriaco, D) Ciro Alegria, E) Kayamas, F) Pagki, G) Santa Maria de Nieva, H) Tunants, I) Wawas, J) Wichim, Fig 1 and K) Yangunga. Red denotes study communities, grey denotes other communities. www.ethnobotanyjournal.org/vol12/i1547-3465-12-685.pdf Jernigan - Can a Use-based Taxonomy be Natural? An example from 687 Aguaruna folk classification of trees conformed to American Anthropological Association ethi- – “companions.” In previous research (Jernigan 2006a), cal guidelines (1998–2012). For all work, prior informed the author asked Aguaruna participants to group folk gen- consent was obtained first at the community level, then era of trees that they consider to be companions. For ex- from individual participants. Permission was also granted ample, the majority of participants recognized the relat- by the Peruvian Ministry of Agriculture for collecting bo- edness of trees in the genus Cecropia (Urticaceae), in- tanical voucher specimens. cluding satík (Cecropia membranacea Trécul) and súu (Cecropia engleriana Snethl.). As with many of the com- Approximately 40,000 people in this region identify eth- panion groupings, this particular group can be justified in nically as Aguaruna (Lewis et al. 2013). Local traditional terms of both morphological similarities and similar uses. subsistence practices focus on swidden agriculture, sup- Both Cecropia species have palmate leaves with long pet- plemented by wild plant foods and meat from livestock, ioles and clusters of oblong fruit. Both serve as firewood wild game, and fish. Despite some expansion of market and have sap that treats hepatitis and anemia. economies in recent years, local substance activities con- tinue to dominate (Jernigan 2006b). A majority of “companions” form natural groupings from the perspective of modern scientific taxonomy. However, The present analysis relies on interviews from the native occasionally trees that are not biologically closely related communities of Alto Pagki, Atash Shinukbau, Bajo Ca- can also be considered kumpají. For example, the spe- chiaco, Ciro Alegria, Kayamas, Tunants, Wawas, Wichim, cies shijíg (Hevea guianensis Aubl.), tákae (Brosimum and Yangunga (Figure 1). All research participants are parinarioides Ducke) and barát (Chrysophyllum san- Aguaruna speakers, and interviews were carried out by guinolentum subsp. balata (Ducke) T.D. Penn.) are often the author and collaborators in that language. Villages placed together because they each have copious white range in elevation from 300–600 masl, corresponding to sap that serves as a source of rubber. a transition zone between lowland and montane tropical evergreen forest. Methods Aguaruna folk taxonomy In previous work (Jernigan 2006a, 2008, 2009, 2010), The present discussion of Aguaruna folk taxonomy focus- Aguaruna participants freelisted the following for local es on the life form category númi, which includes most tree species: 1) their uses, 2) their physical characteris- of what falls under the English folk category “tree.” How- tics (e.g. “the trunk is smooth” or “the sap is white”) and 3) ever, it excludes soft-wooded taxa such as Carica papaya their ecological relationships with animals (e.g., “the fruit L. (papái) and palms in general (Jernigan 2006b). For a is eaten by tapirs” or “stinging ants live in the trunk”). wider treatment of Aguaruna folk classification see Berlin (1992) and Jernigan (2006b). The present analysis takes a sample of 41 Aguaruna tree folk genera of high salience in freelists that are wide- Aguaruna classification has a built-in mechanism for rec- ly agreed to form 15 distinct groups of related “compan- ognizing the relatedness of certain folk genera within a ions” (Table 1) (Jernigan 2006a). Scientific names in this life form category. Such related taxa are called kumpají table are those accepted in the Tropicos database (Mis- Table 1. Trees used for analysis
Recommended publications
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • Biodiversity in Forests of the Ancient Maya Lowlands and Genetic
    Biodiversity in Forests of the Ancient Maya Lowlands and Genetic Variation in a Dominant Tree, Manilkara zapota (Sapotaceae): Ecological and Anthropogenic Implications by Kim M. Thompson B.A. Thomas More College M.Ed. University of Cincinnati A Dissertation submitted to the University of Cincinnati, Department of Biological Sciences McMicken College of Arts and Sciences for the degree of Doctor of Philosophy October 25, 2013 Committee Chair: David L. Lentz ABSTRACT The overall goal of this study was to determine if there are associations between silviculture practices of the ancient Maya and the biodiversity of the modern forest. This was accomplished by conducting paleoethnobotanical, ecological and genetic investigations at reforested but historically urbanized ancient Maya ceremonial centers. The first part of our investigation was conducted at Tikal National Park, where we surveyed the tree community of the modern forest and recovered preserved plant remains from ancient Maya archaeological contexts. The second set of investigations focused on genetic variation and structure in Manilkara zapota (L.) P. Royen, one of the dominant trees in both the modern forest and the paleoethnobotanical remains at Tikal. We hypothesized that the dominant trees at Tikal would be positively correlated with the most abundant ancient plant remains recovered from the site and that these trees would have higher economic value for contemporary Maya cultures than trees that were not dominant. We identified 124 species of trees and vines in 43 families. Moderate levels of evenness (J=0.69-0.80) were observed among tree species with shared levels of dominance (1-D=0.94). From the paleoethnobotanical remains, we identified a total of 77 morphospecies of woods representing at least 31 plant families with 38 identified to the species level.
    [Show full text]
  • 04 2205 Apocynoideae Calongea.Qxd
    Anales del Jardín Botánico de Madrid Vol. 66(2): 217-262 julio-diciembre 2009 ISSN: 0211-1322 doi: 10.3989/ajbm.2205 Estudios en las Apocynaceae neotropicales XXXIX: revisión de las Apocynoideae y Rauvolfioideae de Honduras por J. Francisco Morales Instituto Nacional de Biodiversidad (INBio). Apto. 23-3100, Santo Domingo de Heredia, Costa Rica. Resumen Abstract Morales, J.F. 2009. Estudios en las Apocynaceae neotropicales Morales, J.F. 2009. Study in Neotropical Apocynaceae XXXIX: XXXIX: revisión de las Apocynoideae y Rauvolfioideae de Hon- review of Apocynoideae and Rauvolfioideae from Honduras. duras. Anales Jard. Bot. Mad. 66(2): 217-262. Anales Jard. Bot. Madrid. 66(2): 217-262 (in Spanish). Se presenta un tratamiento de las subfamilias Apocynoideae y A treatment of the subfamilies Apocynoideae and Rauvol- Rauvolfioideae (Apocynaceae) en la República de Honduras, Cen- fioideae (Apocynaceae) in Honduras, is presented. A total of 55 troamérica. Un total de 55 especies distribuidas en 30 géneros species in 30 genera (Allamanda, Allomarkgrafia, Anechites, As- (Allamanda, Allomarkgrafia, Anechites, Aspidosperma, Beau- pidosperma, Beaumontia, Carissa, Cascabela, Catharanthus, montia, Carissa, Cascabela, Catharanthus, Echites, Fernaldia, Fors- Echites, Fernaldia, Forsteronia, Lacmellea, Macropharynx, Ma- teronia, Lacmellea, Macropharynx, Malouetia, Mandevilla, Mese- louetia, Mandevilla, Mesechites, Nerium, Odontadenia, Pentali- chites, Nerium, Odontadenia, Pentalinon, Plumeria, Prestonia, non, Plumeria, Prestonia, Rauvolfia, Rhabdadenia,
    [Show full text]
  • Incidence of Extra-Floral Nectaries and Their Effect on the Growth and Survival of Lowland Tropical Rain Forest Trees
    Incidence of Extra-Floral Nectaries and their Effect on the Growth and Survival of Lowland Tropical Rain Forest Trees Honors Research Thesis Presented in Partial Fulfillment of the Requirements for graduation “with Honors Research Distinction in Evolution and Ecology” in the undergraduate colleges of The Ohio State University by Andrew Muehleisen The Ohio State University May 2013 Project Advisor: Dr. Simon Queenborough, Department of Evolution, Ecology and Organismal Biology Incidence of Extra-Floral Nectaries and their Effect on the Growth and Survival of Lowland Tropical Rain Forest Trees Andrew Muehleisen Evolution, Ecology & Organismal Biology, The Ohio State University, OH 43210, USA Summary Mutualistic relationships between organisms have long captivated biologists, and extra-floral nectaries (EFNs), or nectar-producing glands, found on many plants are a good example. The nectar produced from these glands serves as food for ants which attack intruders that may threaten their free meal, preventing herbivory. However, relatively little is known about their impact on the long-term growth and survival of plants. To better understand the ecological significance of EFNs, I examined their incidence on lowland tropical rain forest trees in Yasuni National Park in Amazonian Ecuador. Of those 896 species that were observed in the field, EFNs were found on 96 species (11.2%), widely distributed between different angiosperm families. This rate of incidence is high but consistent with other locations in tropical regions. Furthermore, this study adds 13 new genera and 2 new families (Urticaceae and Caricaceae) to the list of taxa exhibiting EFNs. Using demographic data from a long-term forest dynamics plot at the same site, I compared the growth and survival rates of species that have EFNs with those that do not.
    [Show full text]
  • Tropical Rainforests Getting Their Fix: the Ecological Drivers and Consequences of Nitrogen-Fixing Trees in Regenerating Costa Rican Rainforests Benton Taylor
    Tropical rainforests getting their fix: The ecological drivers and consequences of nitrogen-fixing trees in regenerating Costa Rican rainforests Benton Taylor Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Benton Taylor All rights reserved ABSTRACT Tropical rainforests getting their fix: The ecological drivers and consequences of nitrogen-fixing trees in regenerating Costa Rican rainforests Benton Taylor Tropical rainforests have an unparalleled capacity to sequester carbon, harbor biodiversity, and cycle water and nutrients due to their high rates of primary production. The large biomass stocks and rapid regeneration rates of these forests are often attributed to ample soil nitrogen and quick recovery of the nitrogen cycle in tropical soils following disturbance. Symbiotic nitrogen-fixing trees, which are relatively abundant at tropical latitudes, have the greatest capacity to provide tropical rainforests with new nitrogen, yet the ecological drivers of tropical symbiotic nitrogen fixers and their effects on the forests they inhabit are not well understood. This dissertation consists of four chapters that examine the patterns, environmental controls, and ecological consequences of symbiotic nitrogen-fixing trees in regenerating and intact rainforests in the Caribbean lowlands of Costa Rica. In chapter 1, I use field sampling in a chronosequence of rainforest plots to show that symbiotic nitrogen fixation declines through succession despite increases in the basal area of nitrogen-fixing trees. Chapters 2 and 3 describe results from a controlled shadehouse experiment assessing the effects of light, soil nitrogen, and plant competition on nitrogen fixation rates and the growth and biomass allocation of nitrogen fixers and non-fixers.
    [Show full text]
  • Forest Regeneration on the Osa Peninsula, Costa Rica Manette E
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-27-2012 Forest Regeneration on the Osa Peninsula, Costa Rica Manette E. Sandor University of Connecticut, [email protected] Recommended Citation Sandor, Manette E., "Forest Regeneration on the Osa Peninsula, Costa Rica" (2012). Master's Theses. 369. https://opencommons.uconn.edu/gs_theses/369 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. Forest Regeneration on the Osa Peninsula, Costa Rica Manette Eleasa Sandor A.B., Vassar College, 2004 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science At the University of Connecticut 2012 i APPROVAL PAGE Masters of Science Thesis Forest Regeneration on the Osa Peninsula, Costa Rica Presented by Manette Eleasa Sandor, A.B. Major Advisor________________________________________________________________ Robin L. Chazdon Associate Advisor_____________________________________________________________ Robert K. Colwell Associate Advisor_____________________________________________________________ Michael R. Willig University of Connecticut 2012 ii Acknowledgements Funding for this project was provided through the Connecticut State Museum of Natural History Student Research Award and the Blue Moon Fund. Both Osa Conservation and Lapa Ríos Ecolodge and Wildlife Resort kindly provided the land on which various aspects of the project took place. Three herbaria helpfully provided access to their specimens: Instituto Nacional de Biodiversidad (INBio) in Costa Rica, George Safford Torrey Herbarium at the University of Connecticut, and the Harvard University Herbaria.
    [Show full text]
  • Host-Generalist Fungal Pathogens of Seedlings May Maintain Forest
    1 Supporting Information 2 Article title: : Host-generalist fungal pathogens of seedlings may maintain forest diversity via 3 host-specific impacts and differential susceptibility among tree species 4 Authors: Erin R. Spear and Kirk D. Broders 5 6 The following Supporting Information is available for this article: 7 Fig. S1 Examples of disease symptoms in the forests of Panama. 8 Fig. S2 Details of shadehouse-based inoculation experiments. 9 Fig. S3 Rank abundance plot and OTU accumulation curve. 10 Fig. S4 Overlap in fungal OTUs among sampling years, methods used to obtain symptomatic 11 seedlings, isolation media, and tissue sampled. 12 Fig. S5 Correlation between OTU host range and isolation frequency. 13 Table S1 Taxonomic assignments, traits, sampling effort, and observed OTUs for tree species 14 evaluated in our survey and experimental approaches. 15 Table S2 Methodological details pertaining to the multi-year collection of symptomatic 16 seedlings, and microbial isolation and sequencing. 17 Table S3 Average light levels, air temperatures, and relative humidities of the shadehouses 18 used for inoculation experiments versus ambient conditions. 19 Table S4 Estimated taxonomic placement, isolation frequency, number of observed hosts, 20 estimated host specialization, and phylogenetic pattern of host use of the OTUs. 21 Table S5 Overlap in seedling-associated OTUs among tree species. 22 Table S6 Results of the beta-binomial generalized linear regression with the proportion of 23 diseased seedlings as a function of seed size and shade tolerance. 24 Table S7 Average estimates based on the best-ranked beta-binomial generalized linear 1 25 regressions with the proportion of diseased seedlings as a function of seed size and spatial 26 distribution relative to annual rainfall.
    [Show full text]
  • Catalogue of the Flora of the Bahía Honda Region
    LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 CATALOGUELJL©2004 LJL©2004 OF LJL©2004 THE FLORA LJL©2004 OF LJL©2004 THE BAHÍALJL©2004 HONDA LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004REGION LJL©2004 (VERAGUAS, LJL©2004 LJL©2004 PANAMA) LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004Alicia LJL©2004 Ibáñez, LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004Santiago LJL©2004 Castroviejo, LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004José LJL©2004 Luis FernándezLJL©2004 LJL©2004 Alonso LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 & LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004 LJL©2004Mireya LJL©2004 D.
    [Show full text]
  • A Revised Classification of the Apocynaceae S.L
    THE BOTANICAL REVIEW VOL. 66 JANUARY-MARCH2000 NO. 1 A Revised Classification of the Apocynaceae s.l. MARY E. ENDRESS Institute of Systematic Botany University of Zurich 8008 Zurich, Switzerland AND PETER V. BRUYNS Bolus Herbarium University of Cape Town Rondebosch 7700, South Africa I. AbstractYZusammen fassung .............................................. 2 II. Introduction .......................................................... 2 III. Discussion ............................................................ 3 A. Infrafamilial Classification of the Apocynaceae s.str ....................... 3 B. Recognition of the Family Periplocaceae ................................ 8 C. Infrafamilial Classification of the Asclepiadaceae s.str ..................... 15 1. Recognition of the Secamonoideae .................................. 15 2. Relationships within the Asclepiadoideae ............................. 17 D. Coronas within the Apocynaceae s.l.: Homologies and Interpretations ........ 22 IV. Conclusion: The Apocynaceae s.1 .......................................... 27 V. Taxonomic Treatment .................................................. 31 A. Key to the Subfamilies of the Apocynaceae s.1 ............................ 31 1. Rauvolfioideae Kostel ............................................. 32 a. Alstonieae G. Don ............................................. 33 b. Vinceae Duby ................................................. 34 c. Willughbeeae A. DC ............................................ 34 d. Tabernaemontaneae G. Don ....................................
    [Show full text]
  • Rapid Ecological Assessment Aguacaliente Wildlife Sanctuary
    RAPID ECOLOGICAL ASSESSMENT AGUACALIENTE WILDLIFE SANCTUARY Jan C. Meerman Augustin Howe, Steven Choco, Adriano Ack, Elam Choc, Santos Kok & Alberto Muku This report was prepared for: Aguacaliente Management Team under grants provided by PACT with additional assistance from Belize Tropical Forest Studies. December, 2006 RAPID ECOLOGICAL ASSESSMENT AGUACALIENTE WILDLIFE SANCTUARY J an C. Meerman Augustin Howe, Steven Choco, Adriano Ack, Elam Choc, Santos Kok & Alberto Muku Page: 1. Introduction 1 1.1. General Introduction 1 1.2. History of Research 4 1.3. Climate 5 1.4. Socio-economic Context 7 1.5. Socio-economic characteristics influenced by the site 10 1.5.1. Past use 10 1.5.2. Present use 11 2. Geology 14 3. Hydrology 15 4. Vegetation/Ecosystems 18 4.1. Ecosystems 18 4.2. Flora 30 5. Fauna 5.1. Invertebrates 38 5.2. Fish 39 5.3. Amphibians 40 5.4. Reptiles 41 5.5. Birds 42 5.6. Mammals 50 6. Threats 51 7. Zonation 52 8. Next steps 53 8.1. Conservation Targets 53 8.2. Compatible uses 53 8.3. Monitoring 54 9. Literature 55 10. Appendices 56 Transect data Swamp forest: Aguacaliente Variant 0 Species list: Plants 1 Species list: Butterflies 12 Species list: Fishes 14 Species list: Amphibians and Reptiles 15 Species list: Birds 16 Species list: Mammals 24 This report was prepared for: Aguacaliente Management Team under a grant provided by PACT with additional assistance from Belize Tropical Forest Studies: DECEMBER 2006 Figures: Page Figure 1. Location within Belize 1 Figure 2. Map of Aguacaliente Wildlife Sanctuary plus surrounding 2 communities, roads, rivers and streams Figure 3.
    [Show full text]
  • FOODS for EARL Y MAN the Foods Used by Early Man We Do Not Know
    FOODS FOR EARLY MAN The foods used by early man we do not know much about except to know that he did live, must have eaten and did pass this way. I surmise in many places in this work that the known distribution of sorne of our useful plants may have come about by early man carrying them along, even if sometimes uninten­ tionally. I am sure that there are interesting things to be known about the useful plants that were not understood or even sur­ mised by early man. Maize and ordinary beans (no beans really are ordinary) go far toward balancing a diet. Add a few more things, perhaps essentials, from chile peppers, avocados and the many other fruits, and the life span might increase. Who discovered these thing; and how did it come about that these foods seemed to have been used together? Pre-Columbian but relatively recent residents of our area obviously did use these foods together and carne to like and to appreciate them, and these foods weregoodforthem! The reason why they were good for them surely did not occur to these ancient people. Foods from plants Many plants produce more food than they need to build tissue or as energy. These foods are stored by the plant for later use or perhaps as reserves to help assure the perpetuation of the species. These reserves are mostly the plant products appropri~ ated by man and by other animals. The reserve foods of plants -are of three general classes, carbohydrates, proteins and fats. Man, in the course of time, has learned to cultivate those plants which store an abundance of reserve foods.
    [Show full text]
  • Genetic Diversity of Amsonia Orientalis
    Biologia 69/6: 742—749, 2014 Section Botany DOI: 10.2478/s11756-014-0368-6 Genetic diversity of Amsonia orientalis Cem Tolga Gurkanli¨ 1*, Ibrahim˙ Ozkoc¨ ¸2,EmineBanuAydin 2,ArdaAcem˙i3 &FazılOzen¨ 3 1Department of Fisheries Technology Engineering, Fatsa Faculty of Marine Sciences, Ordu University, 52400,Fatsa, Ordu/Turkey; e–mail: [email protected], [email protected] 2Department of Biology, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Atakum, Samsun/Turkey 3Department of Biology, Faculty of Arts and Sciences, Kocaeli University, 41380, Kocaeli/Turkey Abstract: Amsonia orientalis Decne. (Apocynaceae), is a rare and threatened plant species which is located only in a constricted area in northeast of Greece and northwest of Turkey in the world. Although phylogenetic analysis depending on nucleotide sequences of genes from different sources (nucleus, mitochondria and chloroplast) became a major tool for classification of plant species, there is still a big lack of information about A. orientalis in the international molecular data bases such as NCBI. In the current study, we phylogenetically analyzed three commonly used molecular markers (18S rDNA, 18S-28S rDNA-ITS region and trnL–F intergenic spacer) from A. orientalis samples collected from Turkey to determine the genetic diversity and also to question the systematic position of A. orientalis.Asaresult,A. orientalis samples clearly showed close relation with Alyxieae tribe rather than Vinceae. And this result brings the necessity to reconsider the morphological characters that have used to delimit the tribes of Rauvolfioideae. Key words: Amsonia orientalis; Apocynaceae; 18S rDNA; 18S–28S rDNA-ITS; trnL–F spacer Introduction Ozen¨ (2006) implemented an ex situ protection since the habitats of the plant were under serious threat.
    [Show full text]