Ortiz.Pdf (1.397Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Ortiz.Pdf (1.397Mb) CHARACTERIZATION OF PHENOLIC COMPOUNDS FROM PECAN KERNELS AND THEIR BIOLOGICAL EFFECTS ON ADIPOGENESIS AND INFLAMMATION A Thesis by ANA GABRIELA ORTIZ QUEZADA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2010 Major Subject: Food Science and Technology Characterization of Phenolic Compounds from Pecan Kernels and Their Biological Effects on Adipogenesis and Inflammation Copyright 2010 Ana Gabriela Ortiz Quezada CHARACTERIZATION OF PHENOLIC COMPOUNDS FROM PECAN KERNELS AND THEIR BIOLOGICAL EFFECTS ON ADIPOGENESIS AND INFLAMMATION A Thesis by ANA GABRIELA ORTIZ QUEZADA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Luis Cisneros-Zevallos Leonardo Lombardini Committee Members, Joseph Awika Chaodong Wu Chair of Food Science and Technology Faculty, Jimmy T. Keeton August 2010 Major Subject: Food Science and Technology iii ABSTRACT Characterization of Phenolic Compounds from Pecan Kernels and Their Biological Effects on Adipogenesis and Inflammation. (August 2010) Ana Gabriela Ortiz Quezada, B. S., Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey Campus Co-Chairs of Advisory Committee: Dr. Luis Cisneros-Zevallos Dr. Leonardo Lombardini Pecan [Carya illinoinensis (Wangenh.) K. Koch] kernels from four cultivars were screened for their phenolic content and antioxidant capacity. Ellagitannin content was quantified by HPLC after hydrolysis as free ellagic acid. Characterization of phenolic compounds present in defatted pecan was conducted by liquid chromatography- mass spectrometry. In addition, ellagic acid metabolites, urolithin A and urolithin B, were evaluated for their anti-adipogenic and anti-inflammatory effects in 3T3-L1 preadiadipocyte cells by protein and gene expression. Variations among cultivars were observed. „GraCross‟ and „Desirable‟ showed the highest total phenolic content; in the same way, „GraCross‟ had the highest values for condensed tannin content, antioxidant capacity using the 2, 2-diphenyl-1-picryl- hydrazyl (DPPH) assay and the oxygen radical absorbance capacity (ORAC). According to these results, the cultivar with the highest condensed tannin content had the highest antioxidant capacity using the DPPH and ORAC assays. „Desirable‟ and „Kiowa‟ had the highest ellagitannin content. Even though ellagitannins comprise a small percentage iv compared to condensed tannins, the latter have restricted bioavailability and up to trimers can be absorbed. Eleven ellagitannins were identified for the first time in pecans. Their masses ranged from 433 to 1207 m/z. Condensed tannins up to pentamers were detected. Other compounds included gallic acid, ellagic acid, and isorhamnetin in the glucoside, pentosyl and galloyl pentosyl forms. Ellagitannins are metabolized in vivo yielding urolithins which are absorbed by the gut. Urolithins are derivatives from ellagic acid. These compounds, urolithin A and urolithin B, were used to treat 3T3-L1 preadypocytes as an obesity model. Results of the adipocytes‟ protein expression immediately after differentiation indicated no inhibition of differentiation of the preadipocytes after treating cells with urolithins and ellagic acid. Results on the mature adipocytes indicated that treatments with 25 µM of urolithin A, urolithin B, and ellagic acid during differentiation did not significantly reduce their lipid content. Inflammatory effects in 3T3-L1 adipocytes were evaluated by the LPS model through protein and gene expression. Urolithin A and ellagic acid reduced p-NF-κB protein expression. Urolithin A and urolithin B reduced TNF-α mRNA basal expression, a protective effect in a non-inflammatory state. Interleukin-6 (IL-6) expression was increased by urolithins and lipopolysaccharide (LPS), probablly due to a synergistic inflammatory effect coming from different pathways. v DEDICATION To my parents, José Antonio and Socorro, for giving me life, love, support, and guidance. To my brothers Gustavo and Mauricio, who have walked next to me in life. To my boyfriend Rolando, for his love, support, endless patience, for making me laugh and enjoy life. And to God. vi ACKNOWLEDGEMENTS I would like to thank my committee co-chairs, Dr. Cisneros and Dr. Lombardini, for the opportunity given to me to do my degree, for trusting me and for their support. Thanks to my committee members, Dr. Awika, for his support and guidance and Dr. Wu, for letting me work in his lab, for helping me understand adypocytes and for his guidance, support and patience throughout the course of this research. Thanks to Dr. Morgan, who listened and guided me and to Dr. Sturino, for letting me work in his lab. My gratitude to my friends and colleagues from food science and horticulture: Gabriela Angel, Alex Puerta, Nenge Njongmeta, Congmei Cao, Judith Turlington. Special thanks to the biochemists, Freddy Ibañez and Paula Castillo, for their technical support, for giving me hope and for the good times in the lab. Thanks to colleagues from CEBAS in Murcia, Spain, Dr. Francisco Tomás-Barberán, for letting me work in his lab, and to Dr. Rocío González-Barrio, for her support no matter where we were. This project was supported thanks to the financial support of the Vegetable and Fruit Improvement Center (VFIC), Texas Pecan Board, and the Texas Pecan Growers Association. Thanks to my parents, for their continuous encouragement; my brothers, for being there for me, and to my beloved boyfriend, for his love. vii TABLE OF CONTENTS Page ABSTRACT .............................................................................................................. iii DEDICATION .......................................................................................................... v ACKNOWLEDGEMENTS ...................................................................................... vi TABLE OF CONTENTS .......................................................................................... vii LIST OF FIGURES ................................................................................................... ix LIST OF TABLES .................................................................................................... xii CHAPTER I INTRODUCTION AND LITERATURE REVIEW ............................ 1 Tannins ........................................................................................... 3 Tannins bioavailability ................................................................... 6 Health benefits ................................................................................ 7 Obesity overview ............................................................................ 8 Adipose tissue and gene expression ............................................... 10 Objectives ....................................................................................... 13 II PECAN CULTIVAR SCREENING FOR PHENOLICS, ANTIOXIDANT CAPACITY, AND POLYPHENOLIC CHARACTERIZATION BY LC-MS .................................................. 14 Summary ........................................................................................ 14 Introduction .................................................................................... 14 Materials and methods ................................................................... 16 Results and discussion .................................................................... 23 Conclusions .................................................................................... 51 viii CHAPTER Page III EFFECTS OF UROLITHINS A AND B AS METABOLITES FROM PECAN ELLAGITANNINS ON ADIPOGENESIS IN 3T3-L1 CELLS ............................................................................... 52 Summary .............................................................................................. 52 Introduction .......................................................................................... 53 Materials and methods ......................................................................... 55 Results and discussion .......................................................................... 59 Conclusions .......................................................................................... 74 IV EFFECTS OF UROLITHINS A AND B IN INFLAMMATION WITH 3T3-L1 CELLS ......................................................................... 75 Summary .............................................................................................. 75 Introduction .......................................................................................... 75 Materials and methods ......................................................................... 77 Results and discussion .......................................................................... 82 Conclusions .......................................................................................... 94 V CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH ...................................................................... 95 REFERENCES .......................................................................................................... 97 VITA ......................................................................................................................... 120 ix LIST OF FIGURES Page Figure 1 Examples of a condensed (A) and a hydrolyzable (B) tannin ................... 5 Figure 2 Condensed
Recommended publications
  • Walnut Polyphenol
    ORYZA OIL & FAT CHEMICAL CO., L TD. WALNUT POLYPHENOL Hepatoprotective & Anti-oxidative Extract For Metabolic Syndrome ■ WALNUT POLYPHENOL-P10,P30 (Powder,Food Grade) ■ WALNUT POLYPHENOL-WSP10 (Water-soluble Powder,Food Grade) ■ WALNUT POLYPHENOL-PC10,PC30 (Powder,Cosmetic Grade) ■ WALNUT POLYPHENOL-WSPC10 (Water-soluble Powder,Cosmetic Grade) ■ WALNUT POLYPHENOL-LC (Water-soluble Liquid,Cosmetic Grade) ■ WALNUT SEED OIL (Oil,Food & Cosmetic Grade) ORYZA OIL & FAT CHEMICAL CO., LTD ver. 1.0 HS WALNUT POLYPHENOL ver.1.0 HS WALNUT POLYPHENOL Hepatoprotective & Anti-oxidative Extract For Metabolic Syndrome 1. Introduction Recently, there is an increased awareness on metabolic syndrome – a condition characterized by a group of metabolic risk factors in one person. They include abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, insulin resistance, prothrombotic state & proinflammatory state. The dominant underlying risk factors appear to be abdominal obesity and insulin resistance. In addition, non-alcoholic fatty liver disease (NAFLD) is the most commonly associated “liver” manifestation of metabolic syndrome which can progress to advance liver disease (e.g. cirrhosis) with associated morbidity and mortality. Lifestyle therapies such as weight loss significantly improve all aspects of metabolic syndrome, as well as reducing progression of NAFLD and cardiovascular mortality. Walnut (Juglans regia L. seed) is one the most popular nuts consumed in the world. It is loaded in polyunsaturated fatty acids – linoleic acid (LA), oleic acid and α-linolenic acid (ALA), an ω3 fatty acid. It has been used since ancient times and epidemiological studies have revealed that incorporating walnuts in a healthy diet reduces the risk of cardiovascular diseases. Recent investigations reported that walnut diet improves the function of blood vessels and lower serum cholesterol.
    [Show full text]
  • Tannins: Current Knowledge of Food Sources, Intake, Bioavailability and Biological Effects
    S310 DOI 10.1002/mnfr.200900039 Mol. Nutr. Food Res. 2009, 53, S310 – S329 Review Tannins: Current knowledge of food sources, intake, bioavailability and biological effects Jos Serrano1, Riitta Puupponen-Pimi2, Andreas Dauer3, Anna-Marja Aura2 and Fulgencio Saura-Calixto4 1 Universidad Complutense de Madrid, Depto. Nutricin y Bromatologa I, Madrid, Spain 2 VTT Technical Research Center of Finland 3 Hexal AG, Holzkirchen, Germany 4 Consejo Superior de Investigaciones Cientficas, Instituto del Frio, Depto. Metabolismo y Nutricin, Madrid, Spain Tannins are a unique group of phenolic metabolites with molecular weights between 500 and 30000 Da, which are widely distributed in almost all plant foods and beverages. Proanthocyanidins and hydrolysable tannins are the two major groups of these bioactive compounds, but complex tannins containing structural elements of both groups and specific tannins in marine brown algae have also been described. Most literature data on food tannins refer only to oligomeric compounds that are extracted with aqueous-organic solvents, but a significant number of non-extractable tannins are usu- ally not mentioned in the literature. The biological effects of tannins usually depend on their grade of polymerisation and solubility. Highly polymerised tannins exhibit low bioaccessibility in the small intestine and low fermentability by colonic microflora. This review summarises a new approach to analysis of extractable and non-extractable tannins, major food sources, and effects of storage and processing on tannin content and bioavailability. Biological properties such as antioxidant, antimicro- bial and antiviral effects are also described. In addition, the role of tannins in diabetes mellitus has been discussed. Keywords: Bioavailability / Diet / Hydrolysable tannins / Proanthocyanidins / Tannins / Received: November 27, 2007; revised: January 25, 2009; accepted: February 9, 2009 1 Introduction weight having the ability to complex strongly with carbohy- drates and proteins [9].
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Ellagic Acid and Urolithin
    UNIVERSITY OF CALIFORNIA Los Angeles Ellagic Acid and Urolithin A Improve Insulin Sensitivity in Diet-Induced Insulin Resistant Mice and Reduce Detrimental Effects of Palmitate Administration in Differentiated C2C12 Myotubes. A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biochemistry, Molecular and Structural Biology by Brenda Chan 2018 © Copyright by Brenda Chan 2018 ABSTRACT OF THE THESIS Ellagic Acid and Urolithin A Improve Insulin Sensitivity in Diet-Induced Insulin Resistant Mice and Reduce Detrimental Effects of Palmitate Administration in Differentiated C2C12 Myotubes. by Brenda Chan Master of Science in Biochemistry, Molecular and Structural Biology University of California, Los Angeles, 2018 Professor Catherine F. Clarke, Chair Insulin resistance has been spreading as food and sedentary lifestyles are becoming more common. Major bodily complications often result, necessitating a search for affordable solutions. Phytochemicals are commonly used in alternative medicine but less so in areas where obesity and T2D prevail. This thesis studies ellagic acid (EA) and its metabolite urolithin A (UA) as potential treatments for insulin resistance, focusing on the main site of glucose uptake, skeletal muscle. In diet-induced insulin-resistant mice, long-term dietary EA&UA administration reduced glucose levels in IPITTs, while UA alone also reduced serum FFA and fasting glucose levels. Mitochondrial turnover and ROS detoxification markers increased with treatment, indicating improved mitochondrial quality control. Differentiated C2C12 mouse myotubes were utilized to study cellular effects of EA and UA. In insulin resistant myotubes, treatment enhanced ATP ii production and reduced ROS, cytotoxicity, and apoptosis. With insulin, UA increased uncoupled respiration while decreasing ROS, implying increased fuel oxidation without adding oxidative stress.
    [Show full text]
  • Pomegranate: Nutraceutical with Promising Benefits on Human Health
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 Review Pomegranate: nutraceutical with promising benefits on human health Anna Caruso 1, +, Alexia Barbarossa 2,+, Antonio Tassone 1 , Jessica Ceramella 1, Alessia Carocci 2,*, Alessia Catalano 2,* Giovanna Basile 1, Alessia Fazio 1, Domenico Iacopetta 1, Carlo Franchini 2 and Maria Stefania Sinicropi 1 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende (Italy); anna.caruso@unical .it (Ann.C.), [email protected] (A.T.), [email protected] (J.C.), [email protected] (G.B.), [email protected] (A.F.), [email protected] (D.I.), [email protected] (M.S.S.) 2 Department of Pharmacy‐Drug Sciences, University of Bari “Aldo Moro”, 70126, Bari (Italy); [email protected] (A.B.), [email protected] (Al.C.), [email protected] (A.C.), [email protected] (C.F.) + These authors equally contributed to this work. * Correspondence: [email protected] Abstract: The pomegranate, an ancient plant native to Central Asia, cultivated in different geographical areas including the Mediterranean basin and California, consists of flowers, roots, fruits and leaves. Presently, it is utilized not only for the exterior appearance of its fruit but above all, for the nutritional and health characteristics of the various parts composing this last one (carpellary membranes, arils, seeds and bark). The fruit, the pomegranate, is rich in numerous chemical compounds (flavonoids, ellagitannins, proanthocyanidins, mineral salts, vitamins, lipids, organic acids) of high biological and nutraceutical value that make it the object of study for many research groups, particularly in the pharmaceutical sector.
    [Show full text]
  • In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: a Case of Padma Hepatenr Formulation
    Article In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: A Case of Padma Hepatenr Formulation Daniil N. Olennikov 1,*, Nina I. Kashchenko 1,: and Nadezhda K. Chirikova 2,: Received: 28 August 2015 ; Accepted: 30 September 2015 ; Published: 13 October 2015 1 Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh’yanovoy Street 6, Ulan-Ude 670-047, Russia; [email protected] 2 Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677-027, Russian; [email protected] * Correspondence: [email protected]; Tel.: +7-9021-600-627; Fax: +7-3012-434-243 : These authors contributed equally to this work. Abstract: Chebulic ellagitannins (ChET) are plant-derived polyphenols containing chebulic acid subunits, possessing a wide spectrum of biological activities that might contribute to health benefits in humans. The herbal formulation Padma Hepaten containing ChETs as the main phenolics, is used as a hepatoprotective remedy. In the present study, an in vitro dynamic model simulating gastrointestinal digestion, including dialysability, was applied to estimate the bioaccessibility of the main phenolics of Padma Hepaten. Results indicated that phenolic release was mainly achieved during the gastric phase (recovery 59.38%–97.04%), with a slight further release during intestinal digestion. Dialysis experiments showed that dialysable phenolics were 64.11% and 22.93%–26.05% of their native concentrations, respectively, for gallic acid/simple gallate esters and ellagitanins/ellagic acid, in contrast to 20.67% and 28.37%–55.35% for the same groups in the non-dialyzed part of the intestinal media.
    [Show full text]
  • Raspberry Pomace - Composition, Properties and Application
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE European Journal ISSN 2449-8955 Review Article of Biological Research Raspberry pomace - composition, properties and application Agnieszka Joanna Brodowska Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland * Corresponding author: Agnieszka Brodowska; E-mail: [email protected] Received: 19 February 2017; Revised submission: 24 March 2017; Accepted: 03 April 2017 Copyright: © The Author(s) 2017. European Journal of Biological Research © T.M.Karpi ński 2017. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial 4.0 International License, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. DOI : http://dx.doi.org/10.5281/zenodo.495190 ABSTRACT industry by-product, is considered as a potential food ingredient. Its pomace contains plenty of Raspberry pomace can be valorised due to its valuable components such as carbohydrates, nutritionally favourable effect on human health. proteins, fats, fibre, flavours, pectins, vitamins, It is an important source of polyphenols, ellagic similar to the composition of whole raspberries [2]. acid, ellagitannins, tocopherols, unsaturated fatty Moreover, raspberry pomace is rich in a large group acids, and dietary fibre. Thus, raspberry pomace of various phenolics especially ellagitannins, can be considered as a potential raw material to proanthocyanidins, anthocyanins, flavonols, and receive products rich in polyphenols or dietary phenolic acids (especially, ellagic acid) which are fibre, which can provide healthy properties to food also predominant in berries [3].
    [Show full text]
  • 6 Health Aspects and Antiaflatoxigenic Activity of Phytochemicals in Tree
    OF Health Aspects 6 and Antiaflatoxigenic Activity of Phytochemicals in Tree Nuts Russell]. Molyneux, Noreen Mahoney, long H. Kim, and Bruce C. Campbell CONTENTS 6.1 Introduction............................................................................................................................. 95 6.2 Aflatoxinsin Tree Nuts ........................................................................................................... 96 6.3 Allatoxin Resistance Phytochemicals in Tree Nuts................................................................97 6.3.1 Varietal Resistance of Tree Nut Species .....................................................................98 6.3.2 Antiaflatoxigenic Constituents in Specific Tissues .....................................................98 6.4 Isolation and Identification of Walnut Antiatlatoxigenic Constituents...................................99 6.4.1 Bioassay-Directed Fractionation .................................................................................99 6.4.2 Analysis of Hydrolysable Tannin Content in Walnuts ..............................................100 6.4.3 Gallic and Ellagic Acid Content in Tree Nuts...........................................................101 6.4.3.1 Variation of Gallic and Ellagic Acids with Maturity .................................101 6.4.3.2 Variation of Gallic and Ellagic Acids with Cultivar..................................101 6.4.3.3 Structure—Activity Relationships ...............................................................103 6.5 Mechanism
    [Show full text]
  • Table 2 of Supporting Information
    Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2016 Table S1 Supplementary Information. Optimized SRM conditions used for quantification for the analysis of phenolic compounds by UPLC-MS/MS. Quantification Phenolic compound MW Collision energy Standard used for quantification SRM Cone voltage (v) (eV) Catechol 110 108.9 90.9 40 15 Catechol Catechol sulfate 190 189 109 20 15 Catechol Catechol glucuronide 286 285 123 40 15 Catechol Pyrogallol sulfate 206 205 125 20 15 Catechol Methyl pyrogallol sulfate 220 219 124 20 25 Catechol Pyrogallol glucuronide 302 301 125 20 10 Catechol Pyrogallol glucuronide-sulfate 382 381 125 20 10 Catechol p-Hydroxybenzoic acid 138 137 93 30 15 p-Hydroxybenzoic acid Hydroxybenzoic acid 138 137 93 30 15 p-Hydroxybenzoic acid Protocatechuic acid 154 153 109 40 15 Protocatechuic acid Gallic acid 170 169 125 35 10 Gallic acid Gallic acid hexoside 332 331 169 40 15 Gallic acid Mono-O-galloylquinic acid 344 343 191 40 15 Gallic acid Di-O-galloylquinic acid 496 495 191 40 25 Gallic acid Tri-O-galloylquinic acid 648 647 495 40 15 Gallic acid Tetra-O-galloylquinic acid 630 629 477 40 15 Gallic acid Mono-O-galloylshikimic acid 326 325 169 40 20 Gallic acid Di-O-galloylshikimic acid 478 477 325 40 20 Gallic acid Gallic acid sulphate 250 249 169 35 15 Gallic acid Gallic acid glucuronide 346 345 169 35 15 Gallic acid Syringic acid 198 197 182 30 10 Syringic acid Ellagic acid arabinoside 434 433 300 40 30 Ellagic acid Ellagic acid glucuronide
    [Show full text]
  • Concentrations of Blood Serum and Urinal Ellagitannin Metabolites Depend Largely on the Post-Intake Time and Duration of Strawberry Phenolics Ingestion in Rats
    Pol. J. Food Nutr. Sci., 2019, Vol. 69, No. 4, pp. 379–386 DOI: 10.31883/pjfns/111866 http://journal.pan.olsztyn.pl Original article Section: Nutritional Research Concentrations of Blood Serum and Urinal Ellagitannin Metabolites Depend Largely on the Post-Intake Time and Duration of Strawberry Phenolics Ingestion in Rats Ewa Żary-Sikorska1*, Monika Kosmala2, Joanna Milala2, Bartosz Fotschki3, Katarzyna Ognik4, Jerzy Juśkiewicz3 1Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology University of Science and Technology, Kaliskiego 7, 85–796 Bydgoszcz, Poland 2Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 4/10, 90–924 Łódź, Poland 3Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10–748 Olsztyn, Poland 4Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, Akademicka 13, 20–950 Lublin, Poland Key words: strawberry, ellagitannins, metabolites, urine, serum, rat The different duration of a strawberry phenolic fraction intake and different post-intake time were experimental factors affecting the concentrations of ellagitannin metabolites in the urine and blood serum of rats. For four days, the animals were gavaged once a day as follows: group C (water, days 1–4), group F1–4 (fraction, days 1–4), group F1–3 (fraction, days 1–3; water, day 4), group F1–2 (fraction, days 1, 2; water, days 3, 4), group F3–4 (water, days 1, 2; fraction, days 3, 4), and group F4 (water, days 1–3; and fraction, day 4). The daily dosage of the fraction gavaged to one rat was 20 mg/kg of body weight.
    [Show full text]
  • Universidade Federal Do Rio De Janeiro Kim Ohanna
    UNIVERSIDADE FEDERAL DO RIO DE JANEIRO KIM OHANNA PIMENTA INADA EFFECT OF TECHNOLOGICAL PROCESSES ON PHENOLIC COMPOUNDS CONTENTS OF JABUTICABA (MYRCIARIA JABOTICABA) PEEL AND SEED AND INVESTIGATION OF THEIR ELLAGITANNINS METABOLISM IN HUMANS. RIO DE JANEIRO 2018 Kim Ohanna Pimenta Inada EFFECT OF TECHNOLOGICAL PROCESSES ON PHENOLIC COMPOUNDS CONTENTS OF JABUTICABA (MYRCIARIA JABOTICABA) PEEL AND SEED AND INVESTIGATION OF THEIR ELLAGITANNINS METABOLISM IN HUMANS. Tese de Doutorado apresentada ao Programa de Pós-Graduação em Ciências de Alimentos, Universidade Federal do Rio de Janeiro, como requisito parcial à obtenção do título de Doutor em Ciências de Alimentos Orientadores: Profa. Dra. Mariana Costa Monteiro Prof. Dr. Daniel Perrone Moreira RIO DE JANEIRO 2018 DEDICATION À minha família e às pessoas maravilhosas que apareceram na minha vida. ACKNOWLEDGMENTS Primeiramente, gostaria de agradecer a Deus por ter me dado forças para não desistir e por ter colocado na minha vida “pessoas-anjo”, que me ajudaram e me apoiaram até nos momentos em que eu achava que ia dar tudo errado. Aos meus pais Beth e Miti. Eles não mediram esforços para que eu pudesse receber uma boa educação e para que eu fosse feliz. Logo no início da graduação, a situação financeira ficou bem apertada, mas eles continuaram fazendo de tudo para me ajudar. Foram milhares de favores prestados, marmitas e caronas. Meu pai diz que fez anos de curso de inglês e espanhol, porque passou anos acordando cedo no sábado só para me levar no curso que eu fazia no Fundão. Tinha dia que eu saía do curso morta de fome e quando eu entrava no carro, tinha uma marmita com almoço, com direito até a garrafa de suco.
    [Show full text]
  • Berry Flavonoids and Phenolics: Bioavailability and Evidence of Protective Effects
    Downloaded from British Journal of Nutrition (2010), 104, S67–S90 doi:10.1017/S0007114510003958 q The Authors 2010 https://www.cambridge.org/core Berry flavonoids and phenolics: bioavailability and evidence of protective effects Daniele Del Rio1, Gina Borges2 and Alan Crozier2* . IP address: 1Human Nutrition Unit, Department of Public Health, University of Parma, Via Volturno 39, 43100 Parma, Italy 2Plant Products and Human Nutrition Group, School of Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr 170.106.202.8 Building, University of Glasgow, Glasgow G12 8QQ, UK (Received 25 January 2010 – Accepted 24 February 2010) , on 24 Sep 2021 at 06:36:04 Berries contain vitamin C and are also a rich source of phytochemicals, especially anthocyanins which occur along with other classes of phenolic compounds, including ellagitannins, flavan-3-ols, procyanidins, flavonols and hydroxybenzoate derivatives. This review examines studies with both human subjects and animals on the absorption of these compounds, and their glucuronide, sulphate and methylated metabolites, into the cir- culatory system from the gastrointestinal tract and the evidence for their localisation within the body in organs such as the brain and eyes. The involvement of the colonic microflora in catabolising dietary flavonoids that pass from the small to the large intestine is discussed along with the potential fate and role of the resultant phenolic acids that can be produced in substantial quantities. The in vitro and in vivo bioactivities of these , subject to the Cambridge Core terms of use, available at polyphenol metabolites and catabolites are assessed, and the current evidence for their involvement in the protective effects of dietary polyphenols, within the gastrointestinal tract and other parts of the body to which they are transported by the circulatory system, is reviewed.
    [Show full text]
  • One Step Purification of Corilagin and Ellagic Acid from Phyllanthus
    PHYTOCHEMICAL ANALYSIS Phytochem. Anal. 13, 1–3 (2002) DOI: 10.1002/pca.608 One Step Purification of Corilagin and Ellagic Acid from Phyllanthus urinaria using High-Speed Countercurrent Chromatography Liu Jikai,1* Huang Yue,1 Thomas Henkel2 and Karlheinz Weber2 1Department of Phytochemistry, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, People s Republic of China 2Bayer AG, Pharma Research, D-42096 Wuppertal, Germany High-speed countercurrent chromatography (HSCCC) has been successfully applied to the preparative separation of corilagin and ellagic acid in one step from the Chinese medicinal plant Phyllanthus urinaria L. by use of direct and successive injections of a crude methanolic extract. Some aspects concerning the practical use of this technique in the described application are considered. Copyright # 2001 John Wiley & Sons, Ltd. Keywords: High-speed countercurrent chromatography (HSCCC); one step purification; corilagin; ellagic acid; Phyllanthus urinaria. INTRODUCTION al., 1993; Cheng et al., 1995) and infectious disease (anti- viral, Yoon et al., 2000). The present report deals with the one-step isolation of compounds 1 and 2 from the Most separations in the natural product field are methanolic extract of aerial parts of P. urinaria, and performed through chromatography on solid supports, demonstrates the rapid and efficient access of the but all-liquid techniques are currently attracting con- constituents using HSCCC. siderable interest. High-speed countercurrent chroma- tography (HSCCC) is an all-liquid technique that employs no solid support and functions using a multi- layer coil rotating at high speed in a device that creates a fluctuating acceleration field which produces successive bands of mixing and settling along a continuous tube (Conway, 1995).
    [Show full text]