768 RESEARCH AND SCIENCE

Thomas von Arx1 Scott Lozanoff2 Extraoral anatomy in CBCT - Michael M. Bornstein3,4 a literature review 1 Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland Part 4: Pharyngocervical region 2 Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medi- cine, University of Hawaii, Honolulu, USA 3 Oral and Maxillofacial Radiol- KEYWORDS ogy, Applied Oral Sciences Anatomy and Community Dental Care, CBCT Faculty of Dentistry, The Uni- versity of Hong Kong, Prince Cervical spine Philip Dental Hospital, Hong Hyoid bone Kong SAR, China Styloid process 4 Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland

CORRESPONDENCE SUMMARY Prof. Dr. Thomas von Arx This review about extraoral anatomy depicted in , and of the bifurcation of the common Klinik für Oralchirurgie und cone beam computed tomography describes the carotid , respectively. The pharynx, which Stomatologie pharyngocervical region. Large (≥ 8 × 8 cm) field of is functionally involved in respiration, deglutition, Zahnmedizinische Kliniken views of the maxilla and/or mandible will inevita- and vocalization, extends from the lower aspect der Universität Bern Freiburgstrasse 7 bly depict the pharyngocervical region that com- of the skull base to the esophagus. Anatomically, CH-3010 Bern prises the posterior upper airway, the pharyngeal the pharynx is divided into three segments, i.e. Tel. +41 31 632 25 66 part of the digestive tract, as well as the cervical the nasopharynx, the oropharynx, and the laryn- Fax +41 31 632 25 03 segment of the spine. The latter consists of seven gopharynx. All communicate anteriorly with cor- E-mail: [email protected] cervical vertebrae (C1-C7) with corresponding responding cavities, i.e. the nasal cavities, the distinctive features, i.e., the atlas (C1) and the axis oral cavity, and the . Although not directly SWISS DENTAL JOURNAL SSO 130: (C2). In addition, cervical vertebrae serve as ref- located within the pharyngocervical region, the 768–784 (2020) erences for the vertical position of anatomical hyoid bone and the styloid process are also dis- Accepted for publication: structures. For instance, C4 is a typical landmark cussed in this review, since both structures are 26 March 2020 since it generally denotes the level of the chin, commonly visible on CBCT images of this region. of the body of the hyoid bone, of the base of the

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 768 30.09.20 15:44 RESEARCH AND SCIENCE 769

Introduction the level of the hard to the tip of the uvula (White et al. This last of four literature reviews about extraoral anatomy in 2015), and as such representing the lower portion of the naso- cone beam computed tomography (CBCT) refers to the pharyn- pharynx. In a CT study of 25 healthy Japanese subjects, the av- gocervical region. This region contains the posterior upper air- erage length of the (distance from the posterior nasal way, the pharynx, and the cervical segment of the spine. When spine to the tip of the uvula) was 38.6 ± 6.6 mm and the height taking a CBCT scan of the posterior maxilla and/or mandible, of the velopharynx was 32.1 ± 7.5 mm (Shigeta et al. 2010). Males the pharynx or even the cervical spine become partly or fully had significantly greater soft palate length (p= 0.002) and velo- visible on the imaged radiographic volume (White et al. 2015). pharynx height (p = 0.006) compared to females. However, the extent of the anatomical presentation is depen- dent on the chosen field of view (FOV). The pharynx, being part of the digestive as well as the respi- ratory system, is embedded in the complex spatial anatomy of the neck and, due to its function and location, represents a very intricate region (Lomoschitz et al. 2000). While the structures of the pharynx mainly include soft tissues (mucosal layers, mus- cles, vessels, ), those of the cervical region also include bony features, such as the hyoid bone and the cervical verte- brae. Pharynx The pharynx extends from the lower aspect of the skull base to the opening of the esophagus, i.e., the pharyngo-esophageal sphincter that is located at the level of the sixth cervical verte- bra (C6) (Fig. 1–7). It connects the nasal and oral cavities with the and the esophagus, respectively. Functionally, the pharynx is involved in respiration, deglutition, and vocaliza- tion. The anatomy of the upper airway helps to accommodate these functions (Lun et al. 2016). The pharynx has a half-cylin- drical shape and is approximately 13 cm long (Nemec et al. 2009). The maximum width of the pharynx is found in the laryngo- pharynx with mean distances in CT of 4.1 ± 0.4 cm (males) and 3.6 ± 0.4 cm (females) (Inamoto et al. 2015). From an anatomical perspective, the pharynx is located be- hind the choanae, the , and the larynx. Consequently, the pharynx is divided into three segments, i.e., the nasopharynx, the oropharynx, and the laryngopharynx (https://sketchfab. com/3d-models/midsagittal-view-of-the-pharynx- 6251df4773 23492d99b0a03e9750822e). Each of these segments has an ante- rior opening. From a structural perspective, the pharynx is a musculofascial tube encompassing the three pharyngeal con- strictor muscles (superior, middle, and inferior) and their re- spective fasciae. The prevertebral fascia overlying the longus colli and longus capitus muscles also contributes to the posterior pha- ryngeal wall (Becker & Hwang 2013). Lun et al. (2016) investigated the upper airway anatomy with ultrasound in healthy volunteers at three levels (velo-, oro-, and hypopharyngeal levels). They demonstrated that during deep inspiration, the anteroposterior dimensions of the three airway levels presented larger values than after expiration (p < 0.001). In contrast, lateral diameters of the pharynx at these three anatomic levels were greater at the end of deep expiration than those at the end of deep inspiration (p < 0.001).

Nasopharynx (epipharynx, rhinopharynx, pars nasalis pharyngis) The nasopharynx is the uppermost portion of the pharynx. An- Fig. 1 Schematic illustration of the pharynx (posterior view). teriorly, it communicates via the choanae with the bilateral na- 1 = occipital bone; 2 = roof of nasopharynx with adenoids (pharyngeal ton- sal cavities. Superiorly, the nasopharynx extends to the skull sils); 3 = left inferior nasal concha; 4 = nasal septum (vomer); 5 = left choana; base (sphenoid and occipital bones). Posteriorly, it is bordered 6 = left pharyngeal recess (fossa of Rosenmuller); 7 = torus of left pharyn- by the superoposterior wall of the pharynx. Inferiorly, the naso- gotympanic tube; 8 = opening of left pharyngotympanic tube; 9 = soft palate; 10 = uvula; 11 = left palatal tonsil; 12 = dorsum of tongue; 13 = base of tongue; pharynx extends to the soft palate and the uvula. Some authors 14 = lateral pharyngeal wall; 15 = epiglottis; 16 = laryngeal inlet; 17 = aryepi- differentiate a so-called velopharynx extending caudally from glottic fold; 18 = corniculate tubercle; 19 = piriform recess.

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 769 30.09.20 11:22 770 RESEARCH AND SCIENCE

2 3

4

Fig. 2 Schematic illustration of the orolaryngopharynx (superior view). 1 = dorsum of tongue; 2 = sulcus terminalis; 3 = base of tongue; 4 = palatal tonsil; 5 = ; 6 = palatopharyngeus muscle; 7 = plica glossoepiglottica mediana; 8 = plica glossoepiglottica lateralis; 9 = vallecula epiglottica; 10 = superior border of epiglottis; 11 = laryngeal inlet; 12 = poste- rior wall of larynx; 13 = piriform recess. Fig. 3 Cadaveric specimen showing the orolaryngopharynx (posterior view). 1 = soft palate; 2 = uvula; 3 = palatoglossus muscle; 4 = dorsum of tongue; 5 = plica glossoepiglottica lateralis; 6 = epiglottis; 7 = aryepiglottic fold; 8 = corniculate tubercle; 9 = piriform recess; 10 = lateral pharyngeal wall; 11 = laryngeal inlet; 12 = trachea. Fig. 4 Cadaveric view of the pharynx and contiguous structures (lateral view). 1 = left maxillary sinus; 2 = greater palatine ; 3 = left pharyngeal recess (fossa of Rosenmuller); 4 = torus of left pharyngotympanic tube; 5 = opening of left pharyngotympanic tube; 6 = ; 7 = greater palatine foramen; 8 = soft palate; 9 = uvula; 10 = salpingopharyngeal muscle; 11 = palatopha- ryngeus muscle; 12 = palatoglossus muscle; 13 = base of tongue; 14 = dorsum of tongue; 15 = hyoid bone; 16 = epiglottis; 17 = laryngeal inlet.

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 770 30.09.20 11:22 RESEARCH AND SCIENCE 771

Fig. 5 Midsagittal cadaveric dissection with medial view of the right naso- Fig. 6 Midsagittal CBCT image of a 21-year-old male highlighting the naso- pharynx. pharynx (yellow), the oropharynx (green), and the laryngopharynx (blue). 1 = sphenoid sinus; 2 = vomer; 3 = clivus; 4 = right pharyngeal recess (fossa The hatched area represents the so-called velopharynx. Inverted mesiodens of Rosenmuller); 5 = torus of right pharyngotympanic tube; 6 = opening of as incidental finding (*). right pharyngotympanic tube; 7 = hard palate; 8 = soft palate; 9 = uvula; 1 = clivus (occipital bone); 2 = vomer; 3 = hard palate; 4 = soft palate; 10 = anterior arch of C1 (atlas); 11 = odontoid process of C2 (axis); 12 = body 5 = uvula; 6 = dorsum of tongue; 7 = body of tongue; 8 = base of tongue; of C2; 13 = dorsum of tongue; 14 = base of tongue. 9 = anterior arch of C1 (atlas); 10 = odontoid process of C2 (axis); 11 = body of C2; 12 = body of C3; 13 = body of C4; 14 = epiglottis; 15 = hyoid bone (median body).

The velopharynx is a complex anatomical structure made of the pharyngotympanic tube (connecting to the middle ) is up of five paired muscles (, tensor veli palatini, found in the lateral wall of the nasopharynx. This ostium tubae is palatoglossus, palatopharyngeus, and superior pharyngeal constric- usually located 1–1.5 cm posterior to the dorsal end of the infe- tor) and one single muscle (musculus uvulae). It is responsible rior nasal turbinate (Nemec et al. 2009). A semicircular elevation for separation of the oral and nasal cavities during speech and superoposterior to this orifice corresponds with the most medi- . Incompetence of this mechanism can lead to hy- al part of the cartilaginous pharyngotympanic tube (also known pernasality, snoring and/or nasopharyngeal regurgitation (Raol as salpinx, trumpet, or Eustachian tube). The deep recess of & Hartnick 2015). The velopharynx is also considered the most the nasopharynx located posterior to the Eustachian ostium is collapsible part of the pharynx (Shigeta et al. 2010). known as the pharyngeal recess or fossa of Rosenmuller (Nemec The adenoids (pharyngeal tonsils) are lymphatic tissue locat- et al. 2009; Becker & Hwang 2013) while the rim of cartilage pro- ed on the superoposterior wall of the nasopharynx. The opening truding into the nasopharynx is termed the .

Fig. 7 Midsagittal CBCT image of a 68-year-old female (purple lines represent the different levels of axial CBCT images shown in cropped Fig. 7A–7H): – through roof of nasopharynx (Fig. 7A) – at the level of the openings of the pharyngotympanic tubes (Fig. 7B) – at the level of the hard palate (Fig. 7C) – at the midlevel of the soft palate (Fig. 7D) – at the level of the body of C2 (Fig. 7E) – at the level of the tip of the epiglottis and C3 (Fig. 7F) – at the level of the hyoid bone (Fig. 7G) – at the level of the inferior portion of C4 (Fig. 7H) 1 = clivus (occipital bone); 2 = vomer; 3 = hard palate; 4 = soft palate; 5 = dorsum of tongue; 6 = body of tongue; 7 = base of tongue; 8 = anterior arch of C1 (atlas); 9 = odon- toid process of C2 (axis); 10 = body of C2; 11 = body of C3; 12 = body of C4; 13 = epiglottis; 14 = hyoid bone (median body)

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 771 30.09.20 11:22 772 RESEARCH AND SCIENCE

A B

C D

Fig. 7A–H Axial CBCT images of a 68-year-old female: 1 = clivus (occipital bone); 2 = vomer; 3 = hard palate; 4 = soft palate; – through roof of nasopharynx (Fig. 7A) 5 = dorsum of tongue; 6 = body of tongue; 7 = base of tongue; 8 = anterior – at the level of the openings of the pharyngotympanic tubes (Fig. 7B) arch of C1 (atlas); 9 = odontoid process of C2 (axis); 10 = body of C2; 11 = body – at the level of the hard palate (Fig. 7C) of C3; 12 = body of C4; 13 = epiglottis; 14 = hyoid bone (median body); 15 = in- – at the midlevel of the soft palate (Fig. 7D) ferior concha; 16 = choana; 17 = roof of nasopharynx (mucosa); 18 = ptery- – at the level of the body of C2 (Fig. 7E) goid fossa; 19 = pterygopalatine fossa; 20 = maxillary sinus; 21 = opening of – at the level of the tip of the epiglottis and C3 (Fig. 7F) pharyngotympanic tube; 22 = pharyngeal recess (fossa of Rosenmuller); – at the level of the hyoid bone (Fig. 7G) 23 = retropharyngeal wall; 24 = greater palatine canal; 25 = foramen mag- – at the level of the inferior portion of C4 (Fig. 7H) num; 26 = oral cavity; 27 = transverse foramen; 28 = vertebral foramen;

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 772 30.09.20 11:22 RESEARCH AND SCIENCE 773

E F

G H

29 = palatopharyngeal pillar; 30 = palatal tonsil; 31 = floor of mouth; 32 = greater horn (cornu major) of hyoid bone; 33 = vallecula epiglottica; 34 = laryngeal inlet; 35 = aryepiglottic fold; 36 = piriform recess; N = naso- pharynx; O = oropharynx; L = laryngopharynx.

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 773 30.09.20 11:22 774 RESEARCH AND SCIENCE

The salpingopharyngeal fold extends inferolaterally from the Laryngopharynx (hypopharynx, pars laryngea tube and blends into the lateral wall of the nasopharynx. It con- pharyngis) tains the salpingopharyngeal muscle, a small portion of the pal- The laryngopharynx is the most inferior section of the pharynx atopharyngeus muscle. and lies behind the larynx. It communicates anteriorly with In approximately 20% of the population, a bulge along the the laryngeal inlet. The posterior wall of the laryngopharynx posterior pharyngeal wall due to contraction of the superior is formed by the inferior pharyngeal constrictor muscle. This pharyngeal constrictor may be seen. First described in 1863 by muscle comprises two subcomponents including thyropha- Passavant and therefore termed Passavant’s ridge, it is believed ryngeal and cricopharyngeal portions. The cricopharyngeal by some to aid in velopharyngeal closure, although this remains portion combines with fibers from the upper esophagus to controversial (Raol & Hartnick 2015). form a sphincter that prevents air from entering the esophagus prior to receiving the food bolus. This pharyngeal mucosa be- Oropharynx (mesopharynx, pars oralis pharyngis) tween the thyropharyngeal and cricopharyngeal portions of When a patient is asked to open wide this mouth, the orophar- the inferior constrictor muscle (Killian’s dehiscence) can her- ynx can be seen in the far depth. The oropharynx extends from niate forming a hypopharyngeal diverticulum (Zenker’s diver- the soft palate/uvula down to the epiglottis (medially) and the ticulum) potentially causing dysphagia, frequent regurgitation aryepiglottic folds (laterally). Hence, it is located posterior to and aspiration pneumonia. the oral cavity and the tongue. The communication between The laryngopharynx extends from the floor of the valleculae the oral cavity and the oropharynx is also known as the isthmus (level C3/C4) to the portion of the pharynx funneling into the faucium. In clinical oncology, the oropharynx is generally divid- esophagus, located roughly at the lower border of the cricoid ed into four distinct components: (i) the base of the tongue; cartilage (level C5/C6) (Nemec et al. 2009). Hence, the epiglottis, (ii) the soft palate; (iii) the palatine tonsillar fossae; and (iv) the a fibroelastic cartilage, is the natural border between the oro- pharyngeal walls (Fossum et al. 2017). and the laryngopharynx. Upon deglutition, the epiglottis closes With regard to the cervical spine, the oropharynx is roughly the opening of the larynx to prevent the food bolus from enter- located at the level of the axis down to the interspace of the ing the trachea. second and third vertebrae (C2/C3). The oropharynx also en- Between the lateral glossoepiglottic fold (also known as the compasses the lateral and posterior oropharyngeal walls that pharyngoepiglottic fold) and the lateral pharyngeal wall, a ver- are formed by the superior and middle pharyngeal constrictors tical depression (piriform recess or sinus) extends caudally on (Nemec et al. 2009). The lateral pharyngeal walls contain the an- either side of the laryngopharynx. The piriform sinuses (shape terior and posterior tonsillar pillars that are formed by the pala- of an inverted pear) end inferiorly at the cricopharyngeus muscle toglossus and palatopharyngeus muscles, respectively. Palatine that is the most inferior structure of the pharynx and serves as tonsils are located in the tonsillar fossae bounded by these pil- the valve at the top of the esophagus. The average height of the lars (Gun & Ozer 2015). pyriform sinus assessed with CT was 20.1 ± 4.4 mm in males and The anterior wall of the oropharynx is formed by the base of 16.6 ± 4.0 mm in females (Inamoto et al. 2015). the tongue that projects posteriorly. The base of the tongue – also known as pharyngeal part of tongue – begins behind the Cervical spine sulcus terminalis circumvallate papillae. (lymphoid The cervical spine consists of seven vertebrae (C1 to C7) tissue), which are contiguous with the palatine tonsils, are found (Fig. 8–11). The two uppermost cervical vertebrae (atlas and axis) on the lateral aspects of the tongue base (Gun & Ozer 2015). present a special morphology while the lower five cervical verte- Inamoto et al. (2015) assessed the volume of the oropharynx brae show similar characteristics to the thoracic vertebrae. The in 54 healthy subjects using multidetector CT. The volume cervical vertebrae, as a group, produce a lordotic curve, and they amounted to 19.2 ± 4.9 cm3 in males and to 13.5 ± 4.3 cm3 in fe- have the greatest intervertebral disc height, hereby increasing males. The difference was statistically significant. In a CBCT the range of motion (Waxenbaum & Futterman 2019). As a whole, study of the oropharynx of 10 healthy subjects, Ogawa et al. the cervical spine is responsible for supporting the weight of the (2007) reported minimum anteroposterior and lateral dimen- cranium and allowing motion of the head and neck (Kaiser & sions of 7.8 ± 3.3 mm and 16.2 ± 6.8 mm, respectively. The area Lugo-Pico 2019). From a functional perspective, the cervical at the smallest cross section of the oropharynx amounted to spine has been divided into three zones: the suboccipital zone 147 ± 112 mm2. centered on the C1 vertebra; a transitional zone formed by the C2 The upper (lingual) surface of the epiglottis as well as the vertebra; and the typical zone, encompassing the C3-C7 verte- glossoepiglottic folds, one median (plica glossoepiglottica medi- brae (Bogduk & Mercer 2000). The cervical skeleton is also a bony ana) and two lateral folds (plicae glossoepiglotticae laterales) framework for the vertebral in their course from the aor- sweeping to the posterior base of the tongue, are commonly tic arch to the cranial fossa (Wysocki et al. 2003). considered parts of the oropharynx. These three glossoepiglottic Cervical vertebrae may be used as references for the vertical folds line two mucosal pouches, also known as the valleculae position of pharyngeal structures (Mirjalili et al. 2012). The epiglotticae. The valleculae are characterized as depressions be- authors evaluated 52 CT scans of the neck from supine adults tween the posterior root of the tongue and the upper surface of with a standardized head position. The hard palate was consis- the epiglottis. tently found at the vertebral level of C1 (anterior arch of atlas). The oropharynx contains a circular area of mucosal-associat- The center of the body of the hyoid bone was most frequently ed lymphoid tissue (MALT) known as Waldeyer’s tonsillar ring. located (54%) at C4. The superior limit of the laminae of the Included in Waldeyer’s ring are the palatine and lingual tonsils was mainly observed at C4 in woman (60%) of the oropharynx, but also the pharyngeal and tubal tonsils of but at C5 in men (52%) (Mirjalili et al. 2012). the nasopharynx. Waldeyer’s ring is considered to be the guard- Liu et al. (2017) assessed cervical landmarks both in flexion ian of the oropharynx (Fossum et al. 2017). and extension lateral radiographs of the cervical spine. The

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 774 30.09.20 11:22 RESEARCH AND SCIENCE 775

in 30 fresh cadavers. The bifurcation of the common carotid artery was mostly found at the level of C4 (78%). Also, the su- perior ganglion of the cervical sympathetic chain was located at the C4 vertebra. Drainage of the facial vein into the internal jugular vein was mostly seen at the level of C3-C4.

C1 (atlas) Cervical vertebra C1, also known as atlas, is the uppermost part of the vertebral column and supports the head atlas (https://sketchfab.com/3d-models/c1-0f356f60803d41a690d4 75e0ca1240d0). The atlas connects to the skull via the atlan- to-occipital joint. The latter includes the bilateral superior con- cave articulating facets of C1 and the convex condyles of the occipital bone. The atlas differs in structure from all other cer- vical vertebrae and is also the most variable vertebra in man (Wysocki et al. 2003). In contrast to the other vertebrae, the at- las has no body and no spinous process. It consists of an anterior and posterior arch and has a ring-like shape. The lateral bony masses have a transverse foramen for the vertebral artery and vein. According to Bogduk & Mercer (2000), the atlas resembles in structure the occipital bone, as can be seen in axial scans. In function, it more closely operates with the head rather than with the rest of the cervical spine.

C2 (axis) Cervical vertebra C2, also known as axis (Latin axis = axle), is also unique compared to the other cervical vertebrae (https:// sketchfab.com/3d-models/c2-a9238d092f5e4371828acb81fc3ff 7fe). It has a prominent superior bony projection, the dens axis/ epistropheus or odontoid process. The latter articulates with the inner facet surface of the anterior arch of the atlas (median at- lantoaxial joint). This joint is the pivot upon which the atlas ro- tates (Bogduk & Mercer 2000), thus enabling side-to-side move- Fig. 8 Schematic illustration of the cervical spine (lateral view of right side). ments of the head. The axis has no transverse foramen in the Note the prominent spinous process of C7. JB = central joints between bodies of cervical vertebrae; JAF = bilateral joints lateral parts but displays posteriorly a bifid spinous process. between articulating facets of cervical vertebrae. Although a small degree of flexion and extension is possible be- tween the axis and the atlas, the cardinal movement between these two vertebrae is axial rotation. mandibular angle was the most consistent landmark with respect to the cervical spine and projected most frequently to C3-C6 level C2 (flexion and extension films), whereas the hyoid bone The vertebrae C3 to C6 exhibit the typical features of vertebrae was at the interspace C3-C4 (flexion films) and C3 (extension in general, i.e., a strong anterior body, lateral masses with su- films), respectively. Civalek et al. (2007) evaluated landmarks perior and inferior articular facets (that contribute to the zyga-

A B C

Fig. 9 Schematic illustrations (superior views) of atlas (A), axis (B) and typical C3–C6 vertebra (C). 1 = anterior arch; 2 = posterior arch; 3 = facet for dens of axis; 4 = vertebral foramen; 5 = transverse foramen, 6 = facet of atlanto-occipital joint; 7 = dens axis; 8 = superior articular facet; 9 = spinous process; 10 = body of vertebra; 11 = transverse process with anterior and posterior tubercles.

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 775 30.09.20 11:22 776 RESEARCH AND SCIENCE

10A 10B

10C

Fig. 10 CBCT sections through upper cervical vertebral columns in a Fig. 11 Midsagittal CBCT image of a 13-year-old male (purple lines represent 20-year- old male: (A) coronal section through bodies of vertebrae, different levels of axial CBCT images shown in Fig.11A–11D): (B) coronal section through vertebral canal. Fig. C shows the relative – at midlevel of nasopharynx (Fig. 11A) position of the coronal images relative to the midsagittal image. – through body of C3 (Fig. 11B) 1 = occipital bone; 2 = atlas; 3 = dens axis; 4 = facet articulations between – through upper part of body of C4 (Fig. 11C) atlas and axis; 5 = body of axis; 6 = body of C3; 7 = body of C4; 8 = atlanto- – through lower part of body of C4 (Fig. 11D) occipital joint; + = central joints between bodies of cervical vertebrae; 1 = hard palate; 2 = soft palate; 3 = anterior arch of atlas; 4 = odontoid pro- * = bilateral joints between articulating facets of cervical vertebrae. cess of C2 (axis); 5 = body of C2; 6 = dorsum of tongue; 7 = base of tongue; 8 = epiglottis; 9 = body of C3; 9a = posterior arch of C3; 9b = spinous process of C3; 10 = body of C4; 10a = spinous process of C4; 11 = hyoid bone (median body); 11a = greater horns; 12 = laryngeal inlet; 13 = ascending ramus of mandible; 14 = styloid process; 15 = vertebral foramen; 16 = occipital bone; 17 = prominence of chin; 18 = transverse foramen; 19 = inferior border of chin; 20 = aryepiglottic fold; 21 = piriform recess; * = atlanto-occipital joint; + = bilateral joints between articulating facets of cervical vertebrae; N = na- sopharynx; L = laryngopharynx.

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 776 30.09.20 11:22 RESEARCH AND SCIENCE 777

11

11A 11B

11C 11D

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 777 30.09.20 11:22 778 RESEARCH AND SCIENCE

Fig. 12 Variations of hyoid bones (image courtesy of Dr. Bob Mann, Depart- 12 ment of Anatomy, University of Hawaii John A. Burns School of Medicine, Honolulu, USA). 1 = median body; 2 = greater horn; 3 = lesser horn. Fig. 13 Hyoid bone of a 47-year-old female: (A) 3D rendering image showing position of hyoid bone (dotted circle); (B) axial CBCT image at the level of the chin-C3 axis; (C) reformatted CBCT image along the left body of the hyoid bone. L = laryngopharynx. 1 = chin; 2 = median body of hyoid bone; 3 = greater horn of hyoid bone; 4 = epiglottis; 5 = vallecula epiglottica; 6 = body of C3; 7 = lesser horn of hyoid bone; 8 = soft palate; 9 = dorsum of tongue; 10 = base of tongue.

13A 13B

13C

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 778 30.09.20 11:22 RESEARCH AND SCIENCE 779

pophysial joints), and a posterior arch. In addition, and in con- trast to thoracic and lumbar vertebrae, C3-C6 are characterized by a split posterior process – i.e., bifid spinous process – and the presence of a transverse foramen on each side lateral to the vertebra body. Zibis et al. (2016) reported unexpectedly high rates of hypoplastic, double or triple transverse foramina in cervical vertebrae. The zygapophysial joints are formed by the inferior articular process of the vertebra above and the superior articular process of the vertebra below. Fibroadipose menis- coids intervene between the articular cartilages of these joints. The zygapophysial joints are planar, and at typical cervical levels are oriented at about 40° to the coronal and transverse planes, so that they face backwards and upwards (Bogduk & Mercer 2000).

C7 This vertebra is the lowest but strongest of the seven cervical vertebrae (vertebra prominens). It has the largest body and also presents a marked, single and non-bifid posterior spinous pro- cess that can be easily palpated through the skin. Although C7 is closest to the thoracic vertebrae in terms of anatomical posi- tion and configuration, it also contains a bilateral transverse Fig. 14 Skull presenting bilateral elongated styloid processes (image cour- foramen, which is absent in the thoracic vertebrae. However, tesy of Dr. Bob Mann, Department of Anatomy, University of Hawaii John unlike the rest of the cervical vertebrae, the vertebral artery A. Burns School of Medicine, Honolulu, USA). does not traverse this transverse foramen (Waxenbaum & Fut- terman 2018). Muscles attaching to the hyoid bone are divided into supra- Hyoid bone and infrahyoid muscles. Suprahyoid muscles include the genio- The hyoid bone is commonly seen in CBCT images of the lower hyoid, mylohyoid, stylohyoid, and digastric. The face or mandible/neck region (Fig. 12 and 13). The hyoid bone is tendon between the anterior and posterior bellies of the digas- the only bone of the head neck region that does not articulate tric muscle passes through a fascial sling that is connected to with other bones. It is connected to the pharynx, mandible, the greater horn of the hyoid bone. Infrahyoid muscles com- and skull by muscles and ligaments. Tension generated in these prise the omohyoid, sternohyoid and thyrohyoid. structures due to movement of the head and body and result- Frequently, a bony projection (also termed lingula) is found ing from oral and tongue function will change its position (da in the center of the upper surface of the hyoid body. The site of Costa et al. 2017). The gross anatomy of the hyoid bone consists incidence is the same where the thyrolingual duct reaches the of a median body, two ventrally located minor horns, and two hyoid bone, and this process is considered a residue of the thy- dorsally located major horns (Soerdjbalie-Maikoe & van Rijn rolingual duct (Ito et al. 2012). 2008). The hyoid bone is located above the larynx at the height of Styloid process the third (C3) or fourth cervical vertebra (C4) (Ito et al. 2012; Although not a direct component of the pharyngocervical re- Mirjalili et al. 2012; Liu et al. 2017). The hyoid bone supports gion, the styloid process is regularly visible on CBCT images de- the base of the tongue and is involved in breathing, chewing, picting that region. The bilateral styloid process impresses as a and swallowing as well as in the muscle movements associated needle-like bony projection originating from the bottom of the with articulation. Accordingly, it plays an important role for petrous temporal bone just anteromedial to the stylomastoid humans (Ito et al. 2012). foramen and lateral to the jugular foramen, respectively (von The shape of the hyoid bone is characterized by a horseshoe Arx & Lozanoff 2017) (Fig. 14). Occasionally, the styloid process or U-shape (Ito et al. 2012) composed of a rectangular body an- is partially (proximal part) or totally absent (Basekim et al. 2005; teriorly from which bilateral small (lesser horns, cornua minoria) Onbas et al. 2005). The styloid process serves as attachment of and large bone projections (greater horns, cornua majoria) ex- the stylohyoid as well as of the stylomandibular ligament and of tend posteriorly. The hyoid bone is connected to the nearby three muscles, i.e., stylohyoid, , and stylopharyn- structures by ligaments and muscles, without any synovial geus. These structures affect and facilitate movements of the joints, thus seemingly floating in the neck region (Radunovic tongue, pharynx, hyoid bone, and mandible (Abuhaimed & et al. 2018). Menezes 2019). Morphometrics of the hyoid bone were assessed in 88 intact On axial slices, the styloid process might be confused with hyoid bones taken from cadavers and in 92 hyoid bones with CT calcifications in the upper lateral neck area or with the hyoid scan images (Fakhry et al. 2013). Dimensions were significantly bone. However, observing the symmetrical appearance, the greater in men than in women; i.e., length 3.9 vs. 3.3 cm, and distance between left and right styloid processes is usually width 4.2 vs. 3.9 cm. In contrast, the angle between the greater 6–8 cm, whereas the side-to-side space of the hyoid bone is horns was larger in females (44.1°) compared to males (38.8°). in the range of 3 to 4 cm. The length of the hyoid bone was positively correlated with the Multiple anatomical and radiographic studies have evaluat- height and weight of subjects. ed the morphology and dimensions of the styloid processes

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 779 30.09.20 11:22 780 RESEARCH AND SCIENCE

Tab. I Summary of studies evaluating the dimensions of the styloid process (StP)

Authors/year Material Method Mean length of StP Mean angle of StP (°) Comments (mm)

Basekim et 138 patients with CT Measurements were 28.3 ± 7.6 69.5 ± 4.3 StP were absent unilaterally al. 2005 taken on 3D recon- (15.8–54.8) (60.6–84.1) in three cases and bilaterally structed images; Males: 29.1 ± 7.9 Males: 70.5 ± 4.2 in one case angle assessed in Females: 26.8 ± 6.6 Females: 68.7 ± 4.2 Lengths and angles did not coronal plane differ significantly with re- gard to gender

Onbas et al. 283 patients with Measurements were 26.8 ± 10.0 Angle in coronal In 7 individuals, the StP 2005 multidetector CT taken on 3D recon- (0–62) plane: 72.7 ± 6.6 was entirely absent on one structed images; (55–90.5) side; in 9 individuals, the StP angles assessed in Angle in sagittal was duplicated (4 uni- and coronal and sagittal plane: 93.5 ± 6.9 5 bilateral) planes (76–110)

Balcioglu et Bilateral StP in Digital caliper for 22.5 ± 4.24 - StP was considered al. 2009 22 formalin-fixed length measurement elongated (> 30 mm) in cadavers; and dry 3.3% skulls with 41 mea- surable StP

Krmpotic 88 macerated skulls NA Right side: - Statistically significant Nemanic et 11-20y: 2.3 ± NA positive association between al. 2009 21-60y: 14.2 ± 10.5 StP length and age 62-85y: 16.3 ± 10.0 Left side: 11-20y: 2.5 ± NA 21-60y: 13.9 ± 10.5 62-85y: 17.3 ± 11.3

Cullu et al. 160 patients with NA Overall: 28.4 ± 5.5 - Individual length varied 2013 multidetector CT Males: 29.2 ± 5.6 from 18 to 57 mm; gender Females: 27.2 ± 5.2 difference was statistically significant

Ekici et al. 805 patients with Measurements were All: 31.2 ± 11.9 Angle in coronal StP was considered 2013 multidetector CT taken on 3D recon- (0–74) plane: 70.5 ± 4.2 elongated (> 30 mm) in structed images; Males: 33.2 ± 13.2 (57–82.5) 56%; in 10 cases (1.3 %), angles assessed in Females: 29.6 ± 10.5 Angle in sagittal a bony StP was entirely coronal and sagittal plane: 87.6 ± 6.5 absent (7 unilateral and planes (68–115) 3 bilateral); gender differ- ence was statistically sig- nificant

Öztunc et al. 208 patients with Radiological mea- Males: 29.0 ± 9.5 Elongated cases: StP was considered 2014 CBCT surements of length Females: 30.0 ± 10.9 68 ± 3.76 elongated (> 30 mm) in and angle (in coronal Non-elongated 54%; gender difference plane between base cases: was not statistically signifi- of both StP and axis 70 ± 4.12 cant of StP)

Patil et al. 114 dry skulls Digital Vernier cali- 25.8 ± 7.8 Angle in sagittal Distance bases: 2014 per for measure- plane: 62.5 ± 8.5 68.0 ± 5.6 mm ment of length and Angle in axial plane: Distance tips: distances between 74.2 ± 6.5 46.5 ± 7.4 mm bases and tips of StP; angles were de- termined on digital images

Vadgaonkar 110 dry skulls Digital Vernier cali- Right side: 17.8 ± 9.3 - Distance bases: et al. 2015 per for measure- Left side: 18.2 ± 5.6 68.9 ± 4.3 mm ment of length and Distance tips: distances between 60.7 ± 2.4 mm bases and tips of StP In 4.5%, StP was considered elongated (> 30 mm); Longest StP was 50.0 mm

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 780 30.09.20 11:22 RESEARCH AND SCIENCE 781

Tab. I Summary of studies evaluating the dimensions of the styloid process (StP) continued

Authors/year Material Method Mean length of StP Mean angle of StP (°) Comments (mm)

Yilmaz et al. 100 patients with Measurements were Right side: 23.0 ± 8.6 Angle in coronal Distance bases: 2015 multidetector CT taken on 3D vol- Left side: 23.1 ± 7.8 plane 81.4 ± 5.7 mm ume-rendered Right side: 71.7 ± 6.2 images Left side: 71.2 ± 6.9

Buyuk et al. 1000 patients with Length and angles Males: 36.4 ± 10.0 Angle in coronal All gender differences were 2018 CBCT were measured on Females: 32.8 ± 8.8 plane statistically significant multiplanar recon- Males: 72.2 ± 6.4 structions using Females: 70.3 ± 6.6 software tools Angle in sagittal plane Males: 74.0 ± 8.0 Females: 70.4 ± 8.1

Zokaris et 805 digital pan- Computer software Males: 28.4 ± 8.5 - All patients were al. 2019 oramic radiographs for measuring length Females: 26.0 ± 7.7 17– to 21-years-old; StP was considered elongated (> 30 mm) in 30.6%; gender difference was not statisti- cally significant

(Balcioglu et al. 2009; Krmpotic Nemanic et al. 2009; Cullu et is accurate and reliable (Guijarro & Swennen 2011). However, al. 2013; Öztunc et al. 2014; Patil et al. 2014; Vadgaonkar et it was found that the anatomical definitions of the airway sub- al. 2015; Yilmaz et al. 2015; Zokaris et al. 2019) (Tab. I). Most regions from the nasal and oral cavities to the larynx were vari- authors consider a styloid process longer than 30 mm as an able among different authors. Discrepancies mostly arise when elongated process whereas Eagle, after whom the Eagle’s syn- the pharyngeal subregions are either differentiated by natural drome is named, used a threshold value of 25 mm (Eagle 1948; anatomical borders versus easily identifiable radiographic Cullu et al. 2013). In contrast, the stylohyoid syndrome usually landmarks (Guijarro & Swennen 2013). For example, some describes the partial or complete ossification of the stylohyoid authors define the lower border of the nasopharynx as the ligament. Others have coined the term stylohyoid complex plane through the posterior nasal spine parallel to the Frank- (SHC), including the styloid process, the ossified stylohyoid lig- fort plane, whereas others denote the soft palate or the tip of ament, as well as the lesser horn of the hyoid bone (Ledesma- the uvula as the lower nasopharyngeal boundary. Montes et al. 2018). As such, the SHC is an anatomic structure Another critical issue is patient positioning during CT and rich in variations including various lengths of the styloid pro- CBCT acquisition since this has an effect on the location of an- cess (absence, duplicated or elongated), various degrees of ossi- atomical structures like the hyoid bone and may significantly fication of the stylohyoid ligament, and various fusions of the change the dimensions of the posterior airway space (Ayoub et SHC portions (Ekici et al. 2013; Bornstein et al. 2019). al. 2019). Similarly, if the patient were to swallow during the scan acquisition, the soft palate would appear higher and jux- Discussion taposed against the posterior pharyngeal wall, thereby reduc- CBCT imaging has become a frequent method for diagnosis, ing the velopharyngeal airspace. Thus, interpretation of the treatment planning, and follow-up assessment in dentistry. airway dimensions must consider such modifying factors This radiographic method inevitably exhibits anatomical struc- (White et al. 2015). Furthermore, the patient’s position in tures outside the region of interest – i.e., extraoral anatomy in which the CT/CBCT scan is acquired – i.e., supine versus CBCT. This last part of a 4-part literature review addresses the standing/sitting – may also impact the airway morphology. pharyngocervical region. The gravitationalforces on the tongue as well as on the soft The pharynx includes the upper portions of the digestive and palate are expected to be different in a supine position com- respiratory tracts. Dentists must be familiar with the normal pared to a standing position. Consequently, airway morphol- anatomy of the airway so that any incidental abnormalities can ogy imaged with the patient in the supine position is more be recognized. A systematic evaluation of the various compart- relevant of the airway morphology during sleep (White et al. ments of the upper airway is important to recognize anatomic 2015). and pathologic alterations (White et al. 2015). Indeed, incidental Changes in the positioning of the mandible (physiological, airway abnormalities are detected on CBCT scans in 21–52% of surgical, or due to orthodontic treatment) are also accompa- patients, underscoring the need for a careful analysis of the air- nied by changes in the positioning of the hyoid bone. This way on these imaging exams (White et al. 2015). mechanism of compensation of hyoid position may result in Automatic edge detection of the pharynx based on CBCT im- changes in the dimension of the pharyngeal airway and may aging has facilitated advances in quantification of airway size therefore have clinical implications (da Costa et al. 2017). In the and shape (Celenk et al. 2010). A recent systematic review context of obstructive sleep apnea syndrome (OSAS), numer- demonstrated that 3D analysis of the upper airway using CBCT ous reports address the pharyngeal airway space. Risk factors

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 781 30.09.20 11:22 782 RESEARCH AND SCIENCE

for the disease are conditions that reduce the size of the resting aryepiglotticae) und den lateralen Wänden des Laryngopharynx pharynx or increase airway collapsibility (Veasey & Rosen 2019). findet sich beidseits eine tiefe Einziehung, der sogenannte The reader is directed to the pertinent literature. Recessus oder Sinus piriformis. Die Halswirbelsäule umfasst die sieben Halswirbel C1 bis C7. Acknowledgement Die zwei obersten Halswirbel, Atlas (C1) und Axis (C2), haben The authors thank Bernadette Rawyler, medical illustrator, and eine spezielle Morphologie, während die restlichen Halswirbel Ines Badertscher, media designer, School of Dental Medicine, eine ähnliche Form wie die Brustwirbel aufweisen. Der unterste University of Bern, Bern, Switzerland, for the illustrations and Halswirbel (C7) hat den grössten Wirbelkörper und einen pro- preparation of figures. The authors acknowledge the generous minenten Fortsatz nach posterior (Processus spinosus), der gut donation of the anatomical materials by anonymous individuals durch die Haut tastbar ist. Die Halswirbel werden oft als Refe- in the Willed Body Program, the University of Hawaii John renzen für die Lagebestimmung von Rachenstrukturen verwen- A. Burns School of Medicine, Honolulu, USA. We also thank the det. Dabei ist zu beachten, dass die Körperlage (liegend versus following people from the Department of Anatomy, University sitzend) bzw. die Kopfposition (Flexion versus Extension) diese of Hawaii John A. Burns School of Medicine, Honolulu, USA: Referenzhöhen beeinflussen können. Jesse Thompson and Beth Lozanoff for the 3D models (see web Das Zungenbein (Os hyoideum) kommt regelmässig zur Dar- links), and Bob Mann and Beth Lozanoff for providing Figures 12 stellung auf DVT-Bildern des Unterkiefers bzw. des Halsbereichs. and 14. Über mehrere Muskeln und Ligamente ist das Hyoid mit Unter- The authors also acknowledge Dr.Odette Engel Brügger, Oral kiefer, Pharynx und Schädel verbunden. Das Zungenbein be- Surgeon in Nidau, Switzerland, for the French translation of the steht aus einem zentralen Körper sowie jeweils zwei kleinen und summary. zwei grossen Fortsätzen und liegt etwa auf Höhe C3/C4. In der Form gleicht das Zungenbein einem Hufeisen und weist durch- Conflict of interest schnittlich eine Länge und Breite von 4 cm auf. The authors declare that there are no conflicts of interest related Der Processus styloideus ist ein länglicher, nadelförmiger Kno- to this review. chenfortsatz, der von der Unterfläche des Os temporale in ante- roinferiorer Richtung zum Halsbereich zieht. Diese Struktur Zusammenfassung wird regelmässig auf DVT-Bildern der pharyngozervikalen In dieser vierten und letzten Arbeit über die extraorale Anato- Region dargestellt. Auf den axialen Schnittbildern kann es zu mie in der Digitalen Volumentomographie (DVT) wird die pha- Verwechslungen mit Kalzifikationen im oberen lateralen Hals- ryngozervikale Region diskutiert. Dieses anatomische Gebiet bereich kommen. Der Processus styloideus dient als Ansatz für umfasst die oberen Atemwege, den Pharynx sowie die Halswir- diverse Muskeln und Ligamente. Letztere können teilweise oder belsäule. Bei grösseren Volumina können diese Strukturen auf vollständig verknöchern (Stylohyoid-Syndrom), oder der Pro- DVT-Bildern der Kieferregionen abgebildet werden. cessus styloideus weist eine überdurchschnittliche Länge auf Der Pharynx (Rachen, Schlund) reicht von der Schädelbasis (Eagle-Syndrom). bis zum Eingang der Speiseröhre. Die Länge beträgt ca. 13 cm und die Breite 4 cm. Strukturell ist der Pharynx eine muskulo- Résumé fasziale Röhre, hauptsächlich bestehend aus den drei Konstrik- Ce quatrième et dernier travail au sujet de l’anatomie extraorale torenmuskeln und deren Faszien (Musculus constrictor pharyngis au CBCT présente la zone pharyngo-cervicale. Cette région in- superior, medius et inferior). Anatomisch wird der Rachen in drei clut les voies respiratoires supérieures, le pharynx et la colonne Abschnitte eingeteilt: Nasopharynx, Oropharynx und Laryngo- cervicale – ces structures pouvant être représentées dans les pharynx. grands volumes de CBCT de la région maxillaire. Der Nasopharynx kommuniziert als oberster Teil des Rachens Le pharynx (gorge) s’étend de la base du crâne à l’entrée de über die Choanen mit den beiden Nasenhöhlen. Die Spitze der l’œsophage. Sa longueur est d’environ 13 cm et sa largeur de Uvula entspricht der untersten Begrenzung des Nasopharynx. 4 cm. Le pharynx est un conduit musculo-membraneux et Die Rachenmandeln (Adenoid, Tonsilla pharyngea) liegen ganz se compose des trois muscles constricteurs et de leurs fascias oben in der hinteren Wand des Nasopharynx. In den Seiten- (Musculus constrictor pharyngis superior, medius, et inferior). Ana- wänden finden sich bilateral die Öffnungen der Tuba auditiva tomiquement, le pharynx est subdivisé en trois parties : le naso- (Eustachische Röhre) als Verbindung zum Mittelohr. Der freie pharynx, l’oropharynx, et le laryngopharynx. Rand des Tubenknorpels imponiert als halbkreisförmige Erhe- Le nasopharynx, la partie supérieure du pharynx, commu- bung. Posterior davon findet sich eine Einziehung, Recessus nique vers l’avant avec les deux fosses nasales via les choanes. pharyngeus, auch als Rosenmüller-Grube bezeichnet. La pointe de l’uvule représente sa limite inférieure. Les amyg- Der Oropharynx entspricht dem mittleren Abschnitt des dales pharyngiennes (adénoïdes, Tonsilla pharyngea) se trouvent Rachens und kommuniziert über den Isthmus faucium mit der dans la partie supérieure de la paroi postérieure du pharynx. Les Mundhöhle. Unten reicht der Oropharynx bis zum Kehldeckel orifices de la trompe d’Eustache (Tuba auditiva) – communica- (Epiglottis). Der Zungengrund sowie die Gaumenmandeln (Ton- tion avec l’oreille moyenne – sont situés de chaque côté sur les sillae palatinae), die zwischen dem Musculus palatoglossus und parois latérales du nasopharynx. Le bord libre du cartilage de la dem Musculus palatopharyngeus liegen, gehören ebenfalls zum trompe forme une élévation semi-circulaire sur cette paroi. En Oropharynx. arrière de celle-ci se trouve le récessus pharyngien, la fossette Der Laryngopharynx ist der unterste Teil des Rachens und de Rosenmüller. liegt hinter dem Kehlkopf (Larynx). Die Epiglottis bildet die L’oropharynx correspond à la partie moyenne du pharynx obere Begrenzung (Höhe ca. C3/C4) und der Oesophagus-Ein- et communique avec la bouche par l’Isthmus faucium. Il s’étend gang die untere Begrenzung (Höhe ca. C5/C6) des Laryngo- vers le bas jusqu’à l’épiglotte. La base de la langue et les amyg- pharynx. Zwischen den unteren Epiglottisseitenrändern (Plicae dales palatines, qui se trouvent entre les Musculus palatoglossus

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 782 30.09.20 11:22 RESEARCH AND SCIENCE 783

et Musculus palatopharyngeus, appartiennent aussi à l’oropha- L’os hyoïde est régulièrement visible sur les images cone rynx. beam de la mandibule et du cou. Plusieurs muscles et ligaments Le laryngopharynx est la partie inférieure de la gorge et se relient l’os hyoïde à la mandibule, au pharynx et au crâne. L’os trouve à l’arrière du larynx. Il s’étend de l’épiglotte (environ à hyoïde se compose d’un corps central et de deux grandes et hauteur C3/C4) jusqu’à l’orifice de l’œsophage (environ à hau- deux petites cornes. Il est situé au niveau de C3 ou C4, présente teur C5/C6). On trouve un fort récessus entre les bords infé- la forme d’un fer à cheval et a une longueur et largeur d’environ rieurs latéraux de l’épiglotte et les parois latérales du laryngo- 4 cm. pharynx, le Sinus piriformis. L’apophyse styloïde est une protubérance osseuse allongée et La colonne cervicale se compose des sept vertèbres cervicales pointue sur la face inférieure de l’os temporal. Elle se prolonge (C1–C7). Les deux premières vertèbres cervicales, l’atlas (C1) en direction antéro-inférieure vers le cou. Cette structure ana- et l’axis (C2), ont une morphologie particulière, tandis que les tomique est régulièrement visible sur les images cone beam autres vertèbres cervicales ont une forme similaire aux vertèbres de la zone pharyngo-cervicale. On peut la confondre avec des thoraciques. La vertèbre cervicale inférieure (C7) est caractéri- calcifications dans les parties supérieures et latérales du cou sée par un corps vertébral plus grand et un processus épineux dans les coupes horizontales. Le rôle principal de l’apophyse très long (Processus spinosus), qui est aisément palpable sous styloïde est l’insertion de plusieurs muscles et ligaments. Ces la peau. Les vertèbres cervicales sont souvent utilisées comme derniers peuvent présenter une ossification partielle ou com- point de référence pour l’orientation des structures pharyn- plète (syndrome du processus styloïde). L’apophyse styloïde giennes. Veuillez noter que la position du corps (couchée ou peut aussi avoir une longueur supérieure à la moyenne (syn- assise) et la position de la tête (flexion ou extension) peuvent drome d’Eagle). influencer ces points de référence.

References

Abuhaimed A K, Menezes R G: Anatomy, Head and da Costa E D, Roque-Torres G D, Brasil D M, Bo- Ito K, Ando S, Akiba N, Watanabe Y, Okuyama Y, Neck, Styloid Process. StatPearls Publishing, scolo F N, de Almeida S M, Ambrosano G M: Cor- Moriguchi H, Yoshikawa K, Takahashi T, Shima- Treasure Island (FL) (2019) relation between the position of hyoid bone and da M: Morphological study of the human hyoid subregions of the pharyngeal airway space in bone with three-dimensional CT images – Gen- Ayoub N, Eble P, Kniha K, Peters F, Möhlenrich S C, lateral cephalometry and cone beam computed der difference and age-related changes. Oka- Goloborodko E, Hölzle F, Modabber A: Three- tomography. Angle Orthod 87: 688–695 (2017) jimas Folia Anat Jpn 89: 83–92 (2012) dimensional evaluation of the posterior airway space: differences in computed tomography and Eagle W W: Elongated styloid process; further ob- Kaiser J T, Lugo-Pico J G: Anatomy, Head and cone beam computed tomography. Clin Oral In- servations and a new syndrome. Arch Otolaryn- Neck, Cervical vertebrae. StatPearls Publishing, vest 23: 603–609 (2019) gol 47: 630–640 (1948) Treasure Island (FL) (2019) Balcioglu H A, Kilic C, Akyol M, Ozan H, Kokten G: Ekici F, Tekbas G, Hamidi C, Onder H, Goya C, Cetin- Krmpotic Nemanic J, Vinter I, Ehrenfreund T, Length of the styloid process and anatomical cakmak M G, Gumus H, Uyar A, Bilici A: The distri- Marusic A: Postnatal changes in the styloid pro- implications for Eagle’s syndrome. Folia Mor- bution of stylohyoid chain anatomic variations cess, vagina processus styloidei, and stylomas- phol (Warsz) 68: 265–270 (2009) by age groups and gender: an analysis using toid foramen in relation to the function of mus- MDCT. Eur Arch Otorhinolaryngol 270: cles originating from the styloid process. Surg Basekim C C, Mutlu H, Güngör A, Silit E, Pekkafa- 1715–1720 (2013) Radiol Anat 31: 343–348 (2009) li Z, Kutlay M, Colak A, Oztürk E, Kizilkaya E: Evaluation of styloid process by three-dimen- Fakhry N, Puymerail L, Michel J, Santini L, Lebre- Ledesma-Montes C, Hernandez-Guerrero J C, sional computed tomography. Eur Radiol 15: ton- Chakour C, Robert D, Giovanni A, Adalian P, Jimenez-Farfan M D: Length of the ossified stylo- 134–139 (2005) Dessi P: Analysis of hyoid bone using 3D geo- hyoid complex and Eagle syndrome. Eur Arch metric morphometrics: An anatomical study Otorhinolaryngol 275: 2095–2100 (2018) Becker A M, Hwang P H: Endoscopic endonasal and discussion of potential clinical implications. anatomy of the nasopharynx in a cadaver model. Liu J M, Du L X, Xiong X, Chen X Y, Zhou Y, Long X H, Dysphagia 28: 435–445 (2013) Int Forum Allergy Rhinol 3: 319–324 (2013) Huang S H, Liu Z L: Radiographic evaluation of Fossum C C, Chintakuntlawar A V, Price D L, Gar- the reliability of neck anatomic structures as an- Bogduk N: Functional anatomy of the spine. cia J J: Characterization of the oropharynx: terior cervical surgical landmarks. World Neuro- Handb Clin Neurol 136: 675–688 (2016) Anatomy, histology, immunology, squamous surg 103: 133–137 (2017) Bogduk N, Mercer S R: Biomechanics of the cervi- cell carcinoma and surgical resection. Histopa- Lomoschitz F, Schima W, Schober E, Pokieser P, cal spine. I: Normal kinematics. Clin Biomech thology 70: 1021–1029 (2017) Youssefzadeh S, Kainberger F, Czerny C, Imhof H: 15: 633–648 (2000) Guijarro-Martinez R, Swennen G R: Cone-beam The Pharynx. The imaging of its normal anatomy Bornstein M M, Yeung Awk, Tanaka R, Curtin J P: computerized tomography imaging and analysis (article in German). Radiologe 40: 601–609 Calcified stylohyoid-complex – clinical and ra- of the upper airway: A systematic review of (2000) diographic findings (in German). Swiss Dent J the literature. Int J Oral Maxillofac Surg 40: Lun H M, Zhu S Y, Liu R C, Gong J G, Liu Y L: Investi- 129: 726–727 (2019) 1227–1237 (2011) gation of the upper airway anatomy with ultra- Buyuk C, Gunduz K, Avsever H: Morphological as- Guijarro-Martinez R, Swennen G R: Three-dimen- sound. Ultrasound Q 32: 86–92 (2016) sessment of the stylohyoid complex variations sional cone beam computed tomography defini- Mirjalili S A, McFadden S L, Buckenham T, String- with CBCT in a Turkish population. Folia Mor- tion of the anatomical subregions of the upper er M D: Vertebral levels of key landmarks in the phol (Warsz) 77: 79–89 (2018) airway: A validation study. Int J Oral Maxillofac neck. Clin Anat 25: 851–857 (2012) Surg 42: 1140–1149 (2013) Celenk M, Farrell M L, Eren H, Kumar K, Singh G D, Nemec S F, Krestan C R, Noebauer-Huhmann I M, Lozanoff S: Upper airway detection and visual- Gun R, Ozer E: Surgical anatomy of oropharynx Formanek M, Frühwald J, Peloschek P, Kainber- ization from cone beam image slices. J Xray Sci and supraglottic larynx for transoral robotic sur- ger F, Czerny C: Radiological normal anatomy of Technol 18: 121–135 (2010) gery. J Surg Oncol 112: 690–696 (2015) the larynx and pharynx and imaging techniques Civelek E, Kiris T, Hepgul K, Canbolat A, Ersoy G, Inamoto Y, Saitoh E, Okada S, Kagaya H, Shibata S, (article in German). Radiologe 49: 8–16 (2009) Cansever T: Anterolateral approach to the cervi- Baba M, Onogi K, Hashimoto S, Katada K, Wat- Ogawa T, Enciso R, Shintaku W H, Clark G T: Evalua- cal spine: major anatomical structures and land- tanapan P, Palmer J B: Anatomy of the larynx and tion of cross-section airway configuration of ob- marks. Technical note. J Neurosurg Spine 7: pharynx: Effects of age, gender and height re- structive sleep apnea. Oral Surg Oral Med Oral 669–678 (2007) vealed by multidetector computed tomography. Pathol Oral Radiol Endod 103: 102–108 (2007) J Oral Rehabil 42: 670–677 (2015) Cullu N, Deveer M, Sahan M, Tetiker H, Yilmaz M: Radiological evaluation of the styloid process length in the normal population. Folia Morphol (Warsz) 72: 318–321 (2013)

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 783 30.09.20 11:22 784 RESEARCH AND SCIENCE

Onbas O, Kantarci M, Murat Karasen R, Durur I, Soerdjbalie-Maikoe V, van Rijn R R: Embryology, Wysocki J, Bubrowski M, Reymond J, Kwiatkowski J: Cinar Basekim C, Alper F, Okur A: Angulation, normal anatomy, and imaging techniques of the Anatomical variants of the cervical vertebrae length, and morphology of the styloid process of hyoid and larynx with respect to forensic pur- and the first thoracic vertebra in man. Folia the temporal bone analyzed by multidetector poses: A review article. Forensic Sci Med Pathol Morphol (Warsz) 62: 357–363 (2003) computed tomography. Acta Radiol 46: 881–886 4: 132–139 (2008) Yilmaz M T, Akin D, Cicekcibasi A E, Kabakci A D, (2005) Vadgaonkar R, Murlimanju B V, Prabhu L V, Rai R, Seker M, Sakarya M E: Morphometric analysis of Öztunc H, Evlice B, Tatli U, Evlice A: Cone-beam Pai M M, Tonse M, Jiji P J: Morphological study styloid process using multidetector computed computed tomographic evaluation of styloid of styloid process of the temporal bone and its tomography. J Craniofac Surg 26: e438–443 process: a retrospective study of 208 patients clinical implications. Anat Cell Biol 48: 195–200 (2015) with orofacial pain. Head Face Med 10: 5 (2014) (2015) Zibis A H, Mitrousias V, Baxevanidou K, Hantes M, Patil S, Ghosh S, Vasudeva N: Morphometric study Veasey S C, Rosen I M: Obstructive sleep apnea Karachalios T, Arvanitis D: Anatomical variations of the styloid process of temporal bone. J Clin syndrome in adults. N Engl J Med 380: of the foramen transversarium in cervical verte- Diagn Res 8: AC04–6 (2014) 1442–1449 (2019) brae: Findings, review of the literature, and clinical significance during cervical spine sur- Radunovic M, Vukcevic B, Radojevic N: Asymmetry von Arx T, Lozanoff S: Clinical Oral Anatomy – A gery. Eur Spine J 25: 4132–4139 (2016) of the greater cornua of the hyoid bone and the Comprehensive Review for Dental Practitioners superior thyroid cornua: A case report. Surg Ra- and Researchers. 1st edition, Springer Interna- Zokaris N, Siska I, Natsis K, Piagkou M, Lazaridis N, diol Anat 40: 959–961 (2018) tional, Switzerland (2017) Skolka A, Piehslinger E: Investigation of the sty- loid process length in a Greek population. Folia Raol N, Hartnick C J: Anatomy and physiology of Waxenbaum J A, Futterman B: Anatomy, Back, Cer- Morphol (Warsz) 78: 378–388 (2019) velopharyngeal closure and insufficiency. Adv vical Vertebrae. StatPearls Publishing, Treasure Otorhinolaryngol 76: 1–6 (2015) Island (FL) (2019) Shigeta Y, Ogawa T, Tomoko I, Clark G T, Enciso R: White S M, Huang C J, Huang S C, Sun Z, Eldredge J D, Soft palate length and upper airway relationship Mallya S M: Evaluation of the upper airway mor- in OSA and non-OSA subjects. Sleep Breath 14: phology: The role of cone beamcomputed to- 353–358 (2010) mography. J Calif Dent Assoc 43: 531–539 (2015)

SWISS DENTAL JOURNAL SSO VOL 130 10 P 2020

768-784_T1-1_vonarx_EDF.indd 784 30.09.20 11:22