WYKŁADY Z FIZYKI Stałe Uniwersalne I Jednostki

Total Page:16

File Type:pdf, Size:1020Kb

WYKŁADY Z FIZYKI Stałe Uniwersalne I Jednostki Wyk³adyzFizyki 15 Sta³e Uniweralne iJednostki ZbigniewOsiak ORCID Linki do moich publikacji naukowych i popularnonaukowych, e-booków oraz audycji telewizyjnych i radiowych są dostępne w bazie ORCID pod adresem internetowym: http://orcid.org/0000-0002-5007-306X OZACZEIA B – notka biograficzna C – ciekawostka D – propozycja wykonania doświadczenia H – informacja dotycząca historii fizyki I – adres strony internetowej K – komentarz P – przykład U – uwaga (Tekst) Zbigniew Osiak WYKŁADY Z FIZYKI Stałe Uniwersalne i Jednostki (Ilustracje) Małgorzata Osiak © Copyright 2013 by Zbigniew Osiak (text) and Małgorzata Osiak (illustrations) Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora tekstu i autorki ilustracji. Portret autora zamieszczony na okładkach przedniej i tylnej Rafał Pudło Wydawnictwo: Self Publishing ISBN: 978-83-272-3970-9 e-mail: [email protected] Wstęp 05 “Wykłady z Fizyki – Stałe Uniwersalne i Jednostki ” są ostatnim z piętnastu tomów pomocniczych materiałów do jednorocznego kursu fizyki prowadzonego przeze mnie na różnych kierunkach inżynierskich. W ostatnim tomie zostały zebrane stałe uniwersalne i jednostki, które pojawiały się w prezentowanym kursie fizyki. Uzupełnieniem piętnastego (ostatniego) tomu są eBooki: Z. Osiak: Encyklopedia Fizyki . Self Publishing (2012). Z. Osiak: Zadania Problemowe z Fizyki . Self Publishing (2011). Z. Osiak: Angielsko-polski i polsko-angielski słownik terminów fizycznych. Self Publishing (2011). Zapis wszystkich trzydziestu wykładów zgrupowanych w piętnastu tomach zostanie zamieszczony w internecie w postaci eBooków. Wstęp 06 Z. Osiak: Wykłady z Fizyki – Mechanika. Z. Osiak: Wykłady z Fizyki – Akustyka. Z. Osiak: Wykłady z Fizyki – Hydromechanika. Z. Osiak: Wykłady z Fizyki – Grawitacja. Z. Osiak: Wykłady z Fizyki – Termodynamika. Z. Osiak: Wykłady z Fizyki – Elektryczność. Z. Osiak: Wykłady z Fizyki – Magnetyzm. Z. Osiak: Wykłady z Fizyki – Elektromagnetyzm. Z. Osiak: Wykłady z Fizyki – Optyka. Z. Osiak: Wykłady z Fizyki – Kwanty. Z. Osiak: Wykłady z Fizyki – Ciało Stałe. Z. Osiak: Wykłady z Fizyki – Jądra. Z. Osiak: Wykłady z Fizyki – Cząstki Elementarne. Z. Osiak: Wykłady z Fizyki – Teoria Względności. Z. Osiak: Wykłady z Fizyki – Stałe Uniwersalne i Jednostki. Wykład 30 Stałe uniwersalne i jednostki dr Zbigniew Osiak Plan wykładu 08 •Stałe uniwersalne 09 •Jednostki 34 Stałe uniwersalne 09 •Elementarny ładunek elektryczny 11 •Komptonowska długość fali 12 •Liczba Avogadra 13 •Liczba Loschmidta 14 •Magneton Bohra 15 •Masa elektronu 16 •Masa neutronu 17 •Masa protonu 18 •Przenikalność elektryczna próżni 19 •Przenikalność magnetyczna próżni 20 •Stała Boltzmanna 21 •Stała Coulomba 22 •Stała Faradaya 23 •Stała gazowa 24 •Stała grawitacyjna 25 •Stała Plancka 26 Stałe uniwersalne 10 •Stała Richardsona 27 •Stała Rydberga 28 •Stała Stefana-Boltzmanna 29 •Stała struktury subtelnej 30 •Stała Wiena 31 •Stałe uniwersalne 32 •Wartość prędkości światła w próżni 33 Elementarny ładunek elektryczny 11 •Elementarny ładunek elektryczny (e) ⇔ bezwzględna wartość ładunku elektronu. Elementarny ładunek elektryczny jest fundamentalną stałą uniwersalną. e =1,60217653⋅10−19 C Komptonowska długość fali 12 •Komptonowska długość fali (λ C) ⇔ współczynnik proporcjonalności, we wzorze opisującym przyrost długości światła rozproszonego w wyniku zjawiska Comptona, będący kombinacją masy elektronu (m e), stałej Plancka (h) oraz wartości prędkości światła w próżni w układzie inercjalnym (c). h −12 λC = = 2,426310238⋅10 m mec B Arthur Holly Compton (1892-1962), amerykański fizyk, laureat Nagrody Nobla w 1927. Liczba Avogadra 13 •Liczba Avogadra (N A) ⇔ liczba cząsteczek znajdujących się w jednym molu substancji. Liczba Avogadra jest fundamentalną stałą uniwersalną. 1 N = 6,0221415⋅1023 A mol B Lorenzo Romano Amedeo Carlo Avogadro di Quaregna (1776- 1856), włoski fizyk i chemik. Liczba Loschmidta 14 •Liczba Loschmidta (N L) ⇔ liczba cząsteczek gazu doskonałego znajdujących się w jednym metrze sześciennym w warunkach normalnych (273,15 K; 101,325 kPa). 25 −3 NL = 2,6867773⋅10 m B Johann Josef Loschmidt (1821-1895), austriacki chemik. Magneton Bohra 15 •Magneton Bohra (µB) ⇔ stała, mająca wymiar momentu magnetycznego, wyrażona przez elementarny ładunek elektryczny (e), stałą Plancka (h) oraz masę elektronu (m e). h eh e −24 2 µ B = = = 9,27400949 ⋅10 A ⋅m 4πme 2me P Rzut spinowego momentu magnetycznego elektronu na kierunek wektora ( B) pola magnetycznego, w którym znajduje się elektron, może przyjmować tylko wartość (+µ B) lub (–µ B). B Niels Henrik David Bohr (1885-1962), duński fizyk, laureat Nagrody Nobla z fizyki w 1922. Masa elektronu 16 •Masa elektronu (m e) −31 me = 9,1093826 ⋅10 kg •Masa elektronu jest fundamentalną stałą uniwersalną. Masa neutronu 17 •Masa neutronu (mn) −27 mn =1,67492728⋅10 kg Masa protonu 18 •Masa protonu (mp) −27 mp =1,67262171⋅10 kg Przenikalność elektryczna próżni 19 •Przenikalność elektryczna próżni (ε 0) ⇔ fundamentalna stała uniwersalna pojawiająca się w równaniach elektrodynamiki, zwana też stałą elektryczną. F F ε = 8,854187817⋅10−12 ≈ 8,85⋅10−12 0 m m Przenikalność magnetyczna próżni 20 •Przenikalność magnetyczna próżni (µ 0) ⇔ stała uniwersalna pojawiająca się w równaniach elektrodynamiki, zwana też stałą magnetyczną. 1 −7 N µ0 = 2 = 4 ⋅π 10 2 ε0c A Stała Boltzmanna 21 •Stała Boltzmanna (k, k B) ⇔ fundamentalna stała uniwersalna pojawiająca się w równaniach termodynamiki. R J k = =1,3806505⋅10−23 NA K •R – stała gazowa •NA – liczba Avogadra B Ludwig Eduard Boltzmann (1844-1906), austriacki fizyk teoretyk. Stała Coulomba 22 •Stała Coulomba (k) ⇔ współczynnik proporcjonalności w prawie Coulomba. Stała Coulomba pojawia się również w innych równaniach elektrodynamiki. 2 2 1 9 N ⋅m 9 N ⋅m k = = 8,9875529⋅10 2 ≈ 9⋅10 2 4πε0 C C B Charles Augustin de Coulomb (1736-1806), francuski fizyk. Stała Faradaya 23 •Stała Faradaya (F) ⇔ stała pojawiająca się między innymi w drugim prawie elektrolizy Faradaya oraz w definicji potencjału elektrochemicznego. C F = N e = 9,64853383⋅107 A kmol •e – elementarny ładunek elektryczny •NA – liczba Avogadra B Michael Faraday (1791-1867), brytyjski fizyk i chemik. Stała gazowa 24 •Stała gazowa (R) ⇔ stała w równaniu stanu gazu doskonałego oraz w wielu innych równaniach termodynamiki. J R = kN = 8,314472 A mol ⋅K •k – stała Boltzmanna •NA – liczba Avogadra Stała grawitacyjna 25 •Stała grawitacyjna (G) ⇔ współczynnik proporcjonalności w prawie powszechnego ciążenia oraz w wielu innych równaniach związanych z oddziaływaniami grawitacyjnymi. Stała grawitacyjna jest fundamentalną stałą uniwersalną. m3 G = 6,6742⋅10−11 kg ⋅s2 Stała Plancka 26 •Stała Plancka (h) ⇔ fundamentalna stała uniwersalna, występująca w równaniach fizyki kwantowej. h = 6,6260693⋅10−34 J ⋅s = 4,13566743 ⋅10−15 eV⋅s h h = =1,05457168⋅10−34 J ⋅s = 6,58211915 ⋅10−16 eV ⋅s 2π •Stała (ħ) nazywana jest zredukowaną stałą Plancka lub “h kreślone”, a jej symbol wprowadził Dirac. B Max Karl Ernst Ludwig Planck (1858-1947), niemiecki fizyk teoretyk, laureat Nagrody Nobla z fizyki w 1918. B Paul Adrien Maurice Dirac (1902-1984), angielski fizyk teoretyk, laureat Nagrody Nobla z fizyki w 1933. Stała Richardsona 27 •Stała Richardsona (C) ⇔ współczynnik proporcjonalności w prawie Richardsona. 4πm k 2 A C = e =1,20173⋅106 h3 m2 ⋅K 2 •me – masa elektronu •k – stała Boltzmanna •h – stała Plancka B Sir Owen Willans Richardson (1879-1959), angielski fizyk, laureat Nagrody Nobla z fizyki w 1928. Stała Rydberga 28 •Stała Rydberga (R ∞) ⇔ współczynnik proporcjonalności we wzorze opisującym serie widmowe atomu wodoru, będący kombinacją masy elektronu (m e), elementarnego ładunku elektrycznego (e), przenikalności elektrycznej próżni (ε 0), stałej Plancka (h) oraz wartości prędkości światła w próżni (c). 4 mee 1 R ∞ = 2 3 =10 973 731,568525 ε 8 ε 0h c m B Johannes Robert Rydberg (1854-1919), szwedzki fizyk. Stała Stefana-Boltzmanna 29 •Stała Stefana-Boltzmanna (σ) ⇔ współczynnik proporcjonalności w prawie Stefana-Boltzmanna, będący kombinacją stałej Plancka (h), wartości prędkości światła w próżni (c) oraz stałej Boltzmanna (k). 2 π5k 4 W σ = = 5,670400⋅10−8 15 h3c2 m2 ⋅K 4 B Josef Stefan (1835-1893), austriacki fizyk. B Ludwig Eduard Boltzmann (1844-1906), austriacki fizyk teoretyk. Stała struktury subtelnej 30 •Stała struktury subtelnej (α) ⇔ bezwymiarowa stała fizyczna wprowadzona przez Sommerfelda, będąca kombinacją elementarnego ładunku elektrycznego (e), stałej Plancka (h), wartości prędkości światła w próżni (c) oraz przenikalności elektrycznej próżni (ε 0) lub przenikalności magnetycznej próżni (µ 0). e2 e2cµ 1 α = = 0 = 7,297352568⋅10−3 ≈ 2ε0hc 2h 137 B Arnold Johannes Wilhelm Sommerfeld (1868-1951), niemiecki fizyk. Stała Wiena 31 •Stała Wiena (b) ⇔ stała występująca w prawie przesunięć Wiena. hc 1 b = ⋅ = 2,8977685⋅10−3 m⋅K k 4,965114231 •h – stała Plancka •k – stała Boltzmanna •c – wartość prędkości światła w próżni B Wilhelm Carl Werner Otto Fritz Franz Wien (1864-1928), niemiecki fizyk, laureat Nagrody Nobla z fizyki w 1911. Stałe uniwersalne 32 •Stałe uniwersalne ⇔ wielkości skalarne, których wartości są stałe w całym wszechświecie. Fundamentalnymi stałymi uniwersalnymi są: stała Plancka, stała grawitacyjna, wartość prędkości światła w próżni, przenikalność elektryczna próżni, elementarny ładunek elektryczny, masa elektronu, stała Boltzmanna oraz liczba Avogadra. Inne znane stałe uniwersalne, jak na przykład komptonowska długość fali, magneton Bohra, przenikalność magnetyczna próżni, stała Coulomba, stała Faradaya, stała
Recommended publications
  • Sándor Nagy INTRODUCTION to NUCLEAR SCIENCE (For the Non-Physicist)
    Seconds > 10+15 10-01 10+10 10-02 10+07 10-03 10+05 10-04 10+04 10-05 10+03 10-06 10+02 10-07 10+01 10-15 10+00 < 10-15 Stable EC+β+ β- α p n SF Sándor Nagy INTRODUCTION TO NUCLEAR SCIENCE (for the non-physicist) THE LATEST VERSION OF THIS TEXT CAN BE DOWNLOADED FROM: http://nagysandor.eu/lne/ The charts of nuclides that the author used for the decoration of the cover are taken from this site under general permission: http://www.nndc.bnl.gov/nudat2/ To the best of my knowledge, the internet links in this text are harmless. However any site can be hacked. Use them at your own risk! For Évika COMPLETE LIST OF TEXTS BY THE AUTHOR ON THE DOWNLOAD PAGE: Bevezetés a nukleáris tudományba (the Hungarian version of this text) Introduction to Nuclear Science (this text) Kinetics of Radioactive Deacay and Growth (in English only) Nukleáris mérések és berendezések sztochasztikája (the Hungarian version of the next one) Stochastics and Nuclear Measurements RELATED MATERIAL ON THE INTERNET BY THE AUTHOR: Nukleáris Glosszárium (http://nagysandor.eu/nuklearis/glosszarium.html) Nuclear dictionary (http://nagysandor.eu/nuklearis/kisszotar/) Asimov Téka (http://nagysandor.eu/AsimovTeka/) (simulations) LIBRARY OF NAGY’S E-BOOKS ELTE, KI, Budapest, 2010 © Nagy Sándor Bantu_e_121215 ln e = 1 Sándor Nagy: Introduction to Nuclear Science ln e Contents INTRODUCTORY STUFF ................................................................................................................................... 4 ACKNOWLEDGEMENTS ................................................................................................................................... 5 1. RADIOCHEMISTRY AND NUCLEAR CHEMISTRY (RC&NC) .......................................................... 6 1.1. RC&NC AS AN INTERDISCIPLINARY FIELD OF SCIENCE ............................................................................. 6 1.2. THE BEGINNINGS OF RC&NC AND THE TIMELINE OF NUCLEAR SCIENCE ...............................................
    [Show full text]
  • A New Look at Loschmidt's Representations of Benzene
    Bull. Hist. Chem., VOLUME 38, Number 1 (2013) 29 150 YEARS AFTER THEIR EMERGENCE: A NEW LOOK AT LOSCHMIDT’S REPRESENTATIONS OF BENZENE Heinz D. Roth, Department of Chemistry and Chemical Biology, Wright-Rieman Laboratories, Rutgers University, New Brunswick, NJ 08854-8087, [email protected] Abstract to Kekulé’s theories, because, in the summary of Alan Rocke, they were “at once too empirical and too specula- A new examination of structures that Loschmidt tive” (10); von Meyer criticized Kekulé for not giving considered for benzene derivatives, notably naphthalene credit to Frankland for the concept of valence or to Kolbe and “rings” doubly bonded to O or triply bonded to N, or for his many contributions (11). show conclusively that Loschmidt did not view benzene More recent criticism has its roots in the work as a planar ring of six carbon atoms. of Kekulé’s biographer and successor on the Chair in Bonn, Richard Anschütz. While compiling material for Introduction his two-volume Kekulé biography (12), Anschütz found references to Couper (13), who had developed the idea August Kekulé has long been credited with several of linking carbon atoms independent of Kekulé; he also major contributions to structural organic chemistry: rec- noticed a footnote in Kekulé’s 1865 paper concerning ognizing the tetravalence of carbon (1857) (1,2); recog- structural formulae by Loschmidt. This 1861 article (14) nizing that carbon atoms combine with one another to had been published outside of the established chemical form chains (1858) (3); and recognizing the structure of literature and was not readily available. Anschütz noted benzene (1865) (4), in the view of Japp, the “crowning that Loschmidt’s booklet was hard to read (15); therefore, achievement of the doctrine of the linking of atoms” (5).
    [Show full text]
  • Avogadro's Constant
    Avogadro's Constant Nancy Eisenmenger Question Artem, 8th grade How \Avogadro constant" was invented and how scientists calculated it for the first time? Answer What is Avogadro's Constant? • Avogadros constant, NA: the number of particles in a mole • mole: The number of Carbon-12 atoms in 0.012 kg of Carbon-12 23 −1 • NA = 6:02214129(27) × 10 mol How was Avogadro's Constant Invented? Avogadro's constant was invented because scientists were learning about measuring matter and wanted a way to relate the microscopic to the macroscopic (e.g. how many particles (atoms, molecules, etc.) were in a sample of matter). The first scientists to see a need for Avogadro's constant were studying gases and how they behave under different temperatures and pressures. Amedeo Avogadro did not invent the constant, but he did state that all gases with the same volume, pressure, and temperature contained the same number of gas particles, which turned out to be very important to the development of our understanding of the principles of chemistry and physics. The constant was first calculated by Johann Josef Loschmidt, a German scientist, in 1865. He actually calculated the Loschmidt number, a constant that measures the same thing as Avogadro's number, but in different units (ideal gas particles per cubic meter at 0◦C and 1 atm). When converted to the same units, his number was off by about a factor of 10 from Avogadro's number. That may sound like a lot, but given the tools he had to work with for both theory and experiment and the magnitude of the number (∼ 1023), that is an impressively close estimate.
    [Show full text]
  • Physiker-Entdeckungen Und Erdzeiten Hans Ulrich Stalder 31.1.2019
    Physiker-Entdeckungen und Erdzeiten Hans Ulrich Stalder 31.1.2019 Haftungsausschluss / Disclaimer / Hyperlinks Für fehlerhafte Angaben und deren Folgen kann weder eine juristische Verantwortung noch irgendeine Haftung übernommen werden. Änderungen vorbehalten. Ich distanziere mich hiermit ausdrücklich von allen Inhalten aller verlinkten Seiten und mache mir diese Inhalte nicht zu eigen. Erdzeiten Erdzeit beginnt vor x-Millionen Jahren Quartär 2,588 Neogen 23,03 (erste Menschen vor zirka 4 Millionen Jahren) Paläogen 66 Kreide 145 (Dinosaurier) Jura 201,3 Trias 252,2 Perm 298,9 Karbon 358,9 Devon 419,2 Silur 443,4 Ordovizium 485,4 Kambrium 541 Ediacarium 635 Cryogenium 850 Tonium 1000 Stenium 1200 Ectasium 1400 Calymmium 1600 Statherium 1800 Orosirium 2050 Rhyacium 2300 Siderium 2500 Physiker Entdeckungen Jahr 0800 v. Chr.: Den Babyloniern sind Sonnenfinsterniszyklen mit der Sarosperiode (rund 18 Jahre) bekannt. Jahr 0580 v. Chr.: Die Erde wird nach einer Theorie von Anaximander als Kugel beschrieben. Jahr 0550 v. Chr.: Die Entdeckung von ganzzahligen Frequenzverhältnissen bei konsonanten Klängen (Pythagoras in der Schmiede) führt zur ersten überlieferten und zutreffenden quantitativen Beschreibung eines physikalischen Sachverhalts. © Hans Ulrich Stalder, Switzerland Jahr 0500 v. Chr.: Demokrit postuliert, dass die Natur aus Atomen zusammengesetzt sei. Jahr 0450 v. Chr.: Vier-Elemente-Lehre von Empedokles. Jahr 0300 v. Chr.: Euklid begründet anhand der Reflexion die geometrische Optik. Jahr 0265 v. Chr.: Zum ersten Mal wird die Theorie des Heliozentrischen Weltbildes mit geometrischen Berechnungen von Aristarchos von Samos belegt. Jahr 0250 v. Chr.: Archimedes entdeckt das Hebelgesetz und die statische Auftriebskraft in Flüssigkeiten, Archimedisches Prinzip. Jahr 0240 v. Chr.: Eratosthenes bestimmt den Erdumfang mit einer Gradmessung zwischen Alexandria und Syene.
    [Show full text]
  • 34. Nagy László Fizikaverseny 2019
    Szalézi Szent Ferenc Gimnázium, Kazincbarcika 34. NAGY LÁSZLÓ FIZIKAVERSENY 2019. február 21 − 22. TESZTKÉRDÉSEK 10. osztály Karikázza be a helyes válaszok betűjelét! 1. 335 évvel ezelőtt halt meg az a francia fizikus, növényfiziológus, aki felfedezte azt a törvényt, amely kimondja, hogy a gázok térfogata a nyomásukkal fordított arányban változik, ha a hőmérsékletük és anyagmennyiségük állandó. Római katolikus pap, a Saint-Martin-sous-Beaune perjele volt, 1666-ban Párizsban egyike a Tudományos Akadémia alapítóinak. Discours de la nature de l'air (Értekezés a levegő természetéről; 1676) című művében, amelyben egyebek mellett a barométer szót is megalkotta, kimondta a fent említett törvényt. Tanulmányozta a növényi nedvek nyomását, és azt az állatok vérnyomásához hasonlította. Az Histoire et mémoires de l'Académie (Az Akadémia története és jegyzőkönyvei; 1733) első kötete a folyadékok mozgásával, a szín természetével és a trombita hangjával foglalkozó dolgozatait tartalmazza. (Dijon, Franciaország, 1620 körül – Párizs, Franciaország, 1684. május 12.) A) Jaques CHARLES B) Edme MARIOTTE C) François ARAGO 2. 185 évvel ezelőtt született az az orosz vegyész, aki a szentpétervári egyetemen tanult, majd itt is tanított. 1859-ben ösztöndíjjal két évre Heidelbergbe küldték, ahol Bunsen mellett dolgozott. Hazatérése után a kémiai tanszék vezetője lett. 1869-ben jelent meg leghíresebb műve, a "Kémia alapelvei". Ebben vázolta fel azt a híres rendszert, melyben a kémiai elemeket foglalta törvényszerűségeik alapján egységes táblázatba. Egy hasonló rendszert vele körülbelül azonos időben a német Lothar Meyer is kidolgozott, Ő azonban néhány hónappal korábban publikálta eredményeit. Táblázata alapján megjósolta egyes, még nem ismert elemek létezését és tulajdonságait. A rendszer helyessége 1875-ben, a gallium felfedezésével igazolódott. Még számos fontos felfedezése volt, többek között a kőolaj- és a kőszénbányászattal kapcsolatban.
    [Show full text]
  • Rolf Maximilian Sievert (1896-1966)
    V. simpozij HDZZ, Stubičke Toplice, 2 HR0300030 ROLF MAXIMILIAN SIEVERT (1896-1966) Ivan Tomljenović Prirodnomatematički fakultet Banja Luka, M Stojanovića 2, Banja Luka, Bosna i Hercegovina e-mail: [email protected] UVOD CGPM (Conference General de Poids et Mesures), odnosno Generalna konferencija za utege i mjere, na svom XVI-tom zasjedanju 1979. god. donijela je odluku da se jedinica za ekvivalentnu dozu nazove sivert, oznaka Sv, u čast švedskog fizičara Rolf Maximilian Siverta. Ta jedinica je dio SI jedinica. Ideja članka je da se metrolozi i dozimetristi upoznaju sa životom i radom ovog zaslužnog naučnog radnika u oblasti radiološke zaštite. DEFINICA JEDINICE Prema ICRU (International Commission on Radiation Units and Measurements) i ICRP (International Commission on Radiological Protection) ekvivalentna doza (H) je produkt apsorbirane doze (D) i faktora modifikacije (Q, DF, N). N = Q'N'D = Q'D (1) gdje je: Q (quality factor) faktor kvaliteta, čija je vrijednost određena za svaku pojedinu vrstu zračenja, DF (distribution factor) faktor distribucije, N geometrijski faktor koji se uzima da je jednak jedinici. Pošto su faktori modifikacije bezdimenzioni, onda se i ekvivalentna doza izražava u jedinicama kao i apsorbirana doza, J/kg. Jedinici je dato ime sivert, Sv. l Sv = l J/kg (T) Jedinica pripada međunarodnom sustavu jedinica (SI). Ranije se koristila jedinica rem, roentgen equivalent man, (rentgen ekvivalentan čovjeku). Veza stare i nove jedinice je: l Sv = 100 rem (3) Ovom jedinicom se mjere također i kolektivna ekvivalentna doza SK, uslovna doza Hc, vezana ekvivalentna doza HSO i efektivna doza E. 49 V. simpozij HDZZ, Stubičke Toplice, 2003 STRUČNI ŽIVOTOPIS Švedski naučnik, zdravstveni fizičar Rolf Maximilian Sievert rođen je 6.
    [Show full text]
  • Radioaktivität (Ionisierende Strahlung)
    Eidgenössische Technische Hochschule Zürich Institut für Verhaltenswissenschaft und Departement Physik Radioaktivität (Ionisierende Strahlung) Ein Leitprogramm Verfasst von: Rainer Ender, Michael Fix, Roger Iten, Marcel Pilloud, Caroline Rusch, Anna Stampanoni-Panariello, Daniel Zurmühle Betreuung: Martin Zgraggen Herausgegeben durch Hans Peter Dreyer © Die Rechte für die Nutzung dieses Leitprogramms liegen bei der ETH Eidgenössische Technische Hochschule in Zürich Lehrerinnen und Lehrer in der Schweiz können dieses Lernmaterial für den Gebrauch in ihrer Klasse kopieren. Anderweitige Nutzungsrechte, auch auszugsweise, sind auf schriftliche Anfrage erhältlich durch: Prof. Dr. K. Frey, ETH Institut für Verhaltenswissenschaft, Turnerstr. 1, ETH-Zentrum, CH-8092 Zürich Einführung Bei einer oberflächlichen Betrachtung scheint jede Materie verschieden zu sein, was Farbe, Form, Geschmack, Festigkeit und Aggregatzustand betrifft. Eis, Dampf und Regen sind zum Beispiel drei mögliche Erscheinungen des Wassers. Der griechische Philosoph Demokrit (ca. 460-370 v. Chr.) erklärte diese Tatsache mit folgendem Modell. Obwohl die Materie uns als Kontinuum erscheint, besteht sie aus winzigen Teilchen. Die verschiedenen Eigenschaften der Körper hängen von der gegenseitigen Anordnung dieser Teilchen im Körper ab und von den Bindungen, die sie zueinander haben. Demokrit war der Vorläufer des modernen Atomwissenschaftlers. Er dachte also, dass alle Körper aus winzigen, endlichen Teilchen aufgebaut sind. Diese Teilchen seien, wie er sagte, unteilbar, auf Griechisch ατοµος (átomos). So entstand die Bezeichnung Atom. Heute wissen wir, dass Atome selbst teilbar sind. Sie bestehen aus noch kleineren Bausteinen. Einige Atomkerne sind instabil und zerfallen in andere Atomkerne. Bei diesen Zerfällen werden oft Teilchen und in vielen Fällen elektromagnetische Strahlung emittiert. Dieser Effekt ist bekannt als Radioaktivität. Die Untersuchung der Radioaktivität und ihre Anwendung in der Forschung und in anderen Gebieten (z.
    [Show full text]
  • 'How?' Arxiv:2107.02558V1 [Physics.Hist-Ph] 6 Jul 2021
    Understanding Physics: ‘What?’, ‘Why?’, and ‘How?’ Mario Hubert California Institute of Technology Division of the Humanities and Social Sciences —— Forthcoming in the European Journal for Philosophy of Science July 7, 2021 I want to combine two hitherto largely independent research projects, scientific un- derstanding and mechanistic explanations. Understanding is not only achieved by answering why-questions, that is, by providing scientific explanations, but also by answering what-questions, that is, by providing what I call scientific descriptions. Based on this distinction, I develop three forms of understanding: understanding-what, understanding-why, and understanding-how. I argue that understanding-how is a par- ticularly deep form of understanding, because it is based on mechanistic explanations, which answer why something happens in virtue of what it is made of. I apply the three forms of understanding to two case studies: first, to the historical development of ther- modynamics and, second, to the differences between the Clausius and the Boltzmann entropy in explaining thermodynamic processes. arXiv:2107.02558v1 [physics.hist-ph] 6 Jul 2021 i Contents 1 Introduction 1 2 Scientific Inquiry as Asking ‘Why?’ and ‘What?’ 3 2.1 The Origin and Epistemic Goals of Scientific Inquiry . 3 2.2 Scientific Descriptions and Aristotle’s Four Causes . 6 3 Scientific Descriptions and Mechanisms 10 4 A Critique of Current Theories of Understanding 11 4.1 Grimm’s Account . 12 4.2 De Regt’s Contextual Theory of Understanding . 14 5 Thermodynamics and Statistical Mechanics 17 5.1 Understanding in the Historical Development . 18 5.2 Entropy: Clausius and Boltzmann . 24 5.2.1 Clausius Entropy .
    [Show full text]
  • In Praise of Clausius Entropy 01/26/2021
    In Praise of Clausius Entropy 01/26/2021 In Praise of Clausius Entropy: Reassessing the Foundations of Boltzmannian Statistical Mechanics Forthcoming in Foundations of Physics Christopher Gregory Weaver* Assistant Professor of Philosophy, Department of Philosophya Affiliate Assistant Professor of Physics, Department of Physicsb Core Faculty in the Illinois Center for Advanced Studies of the Universeb University of Illinois at Urbana-Champaign Visiting Fellow, Center for Philosophy of ScienceC University of Pittsburgh *wgceave9@illinois [dot] edu (or) CGW18@pitt [dot] edu aDepartment of Philosophy 200 Gregory Hall 810 South Wright ST MC-468 Urbana, IL 61801 bDepartment of Physics 1110 West Green ST Urbana, IL 61801 CCenter for Philosophy of Science University of Pittsburgh 1117 Cathedral of Learning 4200 Fifth Ave. Pittsburgh, PA 15260 1 In Praise of Clausius Entropy 01/26/2021 Acknowledgments: I thank Olivier Darrigol and Matthew Stanley for their comments on an earlier draft of this paper. I thank Jochen Bojanowski for a little translation help. I presented a version of the paper at the NY/NJ (Metro Area) Philosophy of Science group meeting at NYU in November of 2019. I’d like to especially thank Barry Loewer, Tim Maudlin, and David Albert for their criticisms at that event. Let me extend special thanks to Tim Maudlin for some helpful correspondence on various issues addressed in this paper. While Professor Maudlin and I still disagree, that correspondence was helpful. I also presented an earlier draft of this work to the Department of Physics at the University of Illinois at Urbana-Champaign in January 2020. I thank many of the physics faculty and graduate students for their questions and objections.
    [Show full text]
  • University-Industry Partnership in the Vanguard of Knowledge-Driven Economy Others As Dialectic/Logic, Grammar, Rhetoric Belonged to Trivium (Three Programs)
    Journal of Modern Education Review, ISSN 2155-7993, USA July 2014, Volume 4, No. 7, pp. 480–509 Doi: 10.15341/jmer(2155-7993)/07.04.2014/002 Academic Star Publishing Company, 2014 http://www.academicstar.us University-industry Partnership in the Vanguard of Knowledge-Driven Economy László Szentirmai, László Radács (Department of Electrical and Electronic Engineering, University of Miskolc, Hungary) Abstract: The words volt, ampere and watt are named after emblematic figures of university and industry and are in common parlance among people. And what is more, the current International System of Units gave many great names to derived measuring units. The 5–10 year-long strategic partnership is top priority for elite universities. This most creative and promising collaboration ensures big and common strategic goals, and shared research vision. New knowledge generated by alliance modernizes university role and industry long-term strategy. Diverse engineering culture serves as brake but could be overcome by both parties when criterion is excellence. Trend is twofold: either richer benefits are given to fewer universities and/or universities in emerging economies are also to flourish. Operational partnerships — the second type — are based on joint research projects utilizing both the core academic strengths of universities and the core research competence of industry. Research projects on professors’ own initiatives and students’ individual research projects all pave the way for achieving strategic partnership. Transactional partnership — the third type — puts significant impact on teaching and learning. Key criteria include multidisciplinary institute on campus with industry contribution, even culture and curriculum and multidisciplinary approach to research. These criteria together with industrial practice for academics and students lead also this link to strategic collaboration.
    [Show full text]
  • Physics Book
    MESSAGE FROM PHYSICS Physics has a great influence on the society in all fields. It reveals our nature and inherent characteristics. It conveys messages for us to follow, so that we can become a good human to work in harmony with nature. Personalities are to be carved Physics education is incomplete without solving the problems related to various physical situations. This problem solving character plays a major indirect role in carving one’s personality. It helps to induce rational thinking and youth enthusiasm. The training that physics gives is so important for developing a good personality to lead a happy life. Tension is essential for creativity In physics tension is required for producing vibration in strings and other medium. There is a limit to bear the tension that varies from system to system. If one breaks the limit, breakdown occurs. Thus physics gives us a message that learn about your potential and bear the tension that can induce creativity, but at the same time it cautions not to be over stressed as it is dangerous and may lead to breakdown. Conflicts are inevitable but can be resolved The differences that are apparent in lower dimensional world disappear in the higher dimensional world. Think of a simple pendulum, it executes simple harmonic motion; it oscillates between two extreme opposite to each other. This simple harmonic motion is the motion in one-dimensional world. If the same motion is expressed in two- dimensional world, then it becomes a circular motion. Mathematical form remains the same but the apparent differences disappear. Our apparent differences and oppositeness too indicate that we actually live in lower dimensional emotional world.
    [Show full text]
  • How Can We Assess the Impacts of Radiation Exposures?
    raced to limit the scope of the disaster, 167 work- ers received a radiation dose of more than 100 mil- lisieverts, reported the United Nations Scientific Committee on the Effects of Atomic Radiation Health Risks (UNSCEAR). One hundred millisieverts is the lev- el above which experts have demonstrated measur- able increases in cancer risks. There is still debate How Can We Assess the about risks for people exposed to lower doses, be- cause these risks are lower and harder to detect. For an additional 20,000 Tokyo Electric Power Impacts of Radiation Exposures? Co. workers, and for the roughly 150,000 Japanese citizens living in the fallout zone, exposures were By David Pacchioli lower. According to the World Health Organiza- tion, most of those residents received doses between 2 and 10 millisieverts. In Namie town and Iitate he ability to gauge radiation at vanishingly low concentrations gives village, two nearby communities where evacua- scientists a powerful tool for understanding ocean processes. “We tion was delayed, residents received 10 to 50 mil- Tcan measure down to less than 1 becquerel”—one radioactive decay lisieverts. In one troubling exception, several news event per second, said Ken Buesseler, a marine chemist at Woods Hole reports cited Japanese officials saying that 1-year- Oceanographic Institution. “But just because we can measure it doesn’t olds in Namie town may have been exposed to 100 mean it’s necessarily harmful to human health.” to 200 millisieverts of radioactive iodine-131. At what point, then, is radiation exposure harmful to humans? And what This radioisotope, with a short-lived half-life of are the likely health effects of the exposures incurred from Fukushima? about eight days, may pose the most serious health Buesseler and colleagues saw plenty of debris from the tsunami float- threat from Fukushima radiation.
    [Show full text]