Abécédaire Étymologique Des Unités Physiques Éponymiques Utilisées En Oto-Rhino-Laryngologie H I S T O I R E  O

Total Page:16

File Type:pdf, Size:1020Kb

Abécédaire Étymologique Des Unités Physiques Éponymiques Utilisées En Oto-Rhino-Laryngologie H I S T O I R E  O H i s t o i r e Abécédaire étymologique des unités physiques éponymiques utilisées en oto-rhino-laryngologie H i s t o i r e O. Laccourreye, P. Bonfi ls, A. Werner* lors qu’il existe de nombreux éponymes pour dénommer général de l’Université et entre à l’Académie des sciences en 1814 les diverses unités physiques utilisées dans les travaux dans la section de géométrie tout en enseignant la philosophie A de recherche en oto-rhino-laryngologie, aucun travail à la faculté des lettres. Usé par le travail, il décède en 1836 au historique dans notre spécialité n’a été consacré à leurs auteurs. cours d’une inspection universitaire, à Marseille, et est inhumé Cet article souhaite combler cette lacune et présente, sous la dans l’indiff érence générale. En 1869, au décès de son fi ls qui forme d’un abécédaire, un résumé des faits marquants de la vie fut membre de l’Académie française, ses amis fi rent transfèrer de ces grands noms de la science. son cercueil au cimetière Montparnasse afi n qu’ils reposent côte à côte pour l’éternité. L’AMPÈRE L’ANGSTRÖM Cette unité d’intensité du courant électrique, qui corres- pond à un coulomb par seconde, est dénommée telle en Cette unité de longueur égale à 10-10 mètres tire son nom l’honneur d’André-Marie Ampère, né à Lyon en 1775 du physicien suédois Anders Jonas Ångström (1814- d’un père négociant. Fervent disciple de Rousseau, celui- 1874) né à Lögdö et fi ls d’un aumônier. Diplômé de ci décide de ne pas envoyer son fi ls à l’école mais de lui l’université d’Uppsala, il y enseigne la physique jusqu’à sa faire apprendre le latin, le grec et le sanscrit et lire tous mort. Modeste et réservé, secrétaire de la Société suédoise A öm les articles de L’Encyclopédie. Cet enseignement porte ses ngstr royale des sciences en 1867, il étudie l’astrophysique, le fruits et le jeune Ampère écrit spontanément, à l’âge de treize magnétisme terrestre, les transferts thermiques ainsi que les ans, un traité de mathématiques sur les sections coniques. Son aurores boréales, mais il est surtout un pionnier dans l’étude père, cependant, est guillotiné pour l’exemple en 1793 après le des spectres. Il découvre ainsi en 1862 la présence d’hydrogène siège de la ville de Lyon, accusée de fédéralisme par les troupes dans l’atmosphère du soleil, puis crée une carte spectrale de cet de la Convention nationale alors dominée par le parti de la astre qui servira de référence pendant vingt ans. Ses recherches Montagne. Quelques mois avant ce drame, le père d’Ampère, lui valent en 1872, deux ans avant son décès, l’attribution de la attaché au parti girondin et élu juge de paix, avait fait arrêter médaille Rumford. Cette distinction, créée en 1796 à l’instigation et exécuter le sieur Challier alors représentant du parti de la de Benjamin Th omson, comte de Rumford, est décernée par la Montagne à Lyon ! Royal Society, tous les deux ans, uniquement à des scientifi ques Après avoir commencé à gagner sa vie en donnant des leçons travaillant en Europe dans les domaines de la thermique ou de de mathématiques, de physique et de chimie, Ampère obtient l’optique. un poste de professeur à l’École centrale de Bourg-en-Bresse. Il publie Considérations sur la théorie mathématique du jeu, livre dans lequel il écrit : “… la passion du jeu conduit ceux qui s’y LE CELSIUS, LE KELVIN ET LE FAHRENHEIT livrent à une ruine inévitable ...” Ce travail est remarqué et on lui off re un poste de professeur au tout nouveau lycée de Lyon. Ces graduations thermométriques qui portent le nom de degré Au décès de sa femme, atteinte de tuberculose, il monte à Paris (terme qui se rattache lui-même à l’ancien français “gré” qui et devient répétiteur, puis professeur à l’École Polytechnique. avait alors le sens propre de marche d’escalier, lui-même tiré Soi-disant connu pour être un grand distrait, il fonde les bases du latin gradus) sont couramment utilisées de par le monde et de l’électromagnétisme, invente, avec Arago, l’électroaimant tirent leur nom de trois grands savants. et imagine le galvanomètre, le premier télégraphe électrique Anders Celsius, issu d’une famille de scientifi ques célèbres, est ainsi que les termes de courant et de tension électrique. Il s’in- un astronome et physicien suédois né en 1701 à Uppsala. Il fi t téresse aussi à la chimie et est l’un des premiers à distinguer les partie en 1737 de l’expédition de Maupertuis en Laponie, chargée atomes des molécules tout en prédisant l’existence du fl uor qu’il de mesurer un degré du méridien dans les régions polaires et dénomme “phtore”. À trente-trois ans, il est nommé inspecteur proposa en 1742 le système de graduation thermométrique centésimale qui porte encore son nom. À l’origine, à l’inverse de * Université Descartes-Paris V, et service d’oto-rhino-laryngologie et de chirurgie cervico- nos habitudes, le zéro correspondait à l’ébullition ! Atteint de la faciale, hôpital européen Georges-Pompidou, Paris. tuberculose, A. Celsius mourut prématurément, en avril 1744. 28 La Lettre d’ORL et de chirurgie cervico-faciale - n° 312 - janvier-mars 2008 H i s t o i r e Le degré Fahrenheit, proposé en 1724, doit son nom LE GAUSS, LE TESLA à Daniel Gabriel Fahrenheit, physicien allemand, né à Dantzig (1686-1736). Aîné de cinq enfants, il devint Unité d’induction magnétique correspondant à vite orphelin lorsque ses parents s’intoxiquèrent en 10-4 tesla, le gauss tire son nom d’un des plus célèbres absorbant des champignons ! Adulte, il étudia plus enfants prodiges de son temps surnommé “le prince des H i s t o i r e particulièrement les conditions de solidifi cation de l’eau. Gauss mathématiques”. Considéré comme un mathématicien de la Fahrenheit décida de fi xer le zéro de sa graduation à la plus stature d’Aristote ou de Newton, Carl Friedrich Gauss (1777- basse température qu’il ait mesurée dans sa ville natale lors du 1855) apprend à lire seul à l’âge de trois ans et, à l’âge de dix très rude hiver de 1708. Dans cette échelle, l’eau se solidifi e à ans, alors que pour le punir son professeur lui avait demandé 32 degrés celsius et le point d’ébullition est à 212 degrés. de calculer le résultat de la somme de l’addition des nombres Le degré Kelvin qui équivaut au degré Celsius, mais dont le de 1 à 100, il répond presque immédiatement 5 050 ; il avait zéro est la limite inférieure des températures atteignables, soit remarqué que ces nombres pouvaient être couplés comme suit – 273,15 °C, tire son nom du titre donné au physicien écossais (100 + 1), (99 + 2), (98 + 3), jusqu’à (51 + 50) et que le problème William Th omson (1824-1907). Né en Irlande, ce physicien, se réduisait donc à la simple multiplication de 101 par 50. ingénieur en télégraphie et inventeur fut anobli sous le titre de Né dans une famille sans ressources, Gauss peut se consacrer lord Kelvin et écrivit : “I often say that when you can measure aux mathématiques grâce à une bourse du duc de Brunswick. Il what you are speaking about, and express it in numbers, you prouve, avant ses 15 ans, le théorème fondamental de l’algèbre know something about it; but when you cannot measure it, when (soit que chaque polynôme a au moins une solution qui est un you cannot express it in numbers, your knowledge is of a meagre nombre complexe) puis le théorème fondamental de l’arithmé- and unsatisfactory kind”. Il mourut en Écosse, où la rivière tique (soit que chaque nombre entier naturel peut être représenté Kelvin traverse Glasgow, ville dans laquelle il fut très longtemps sous une forme unique du produit de nombres premiers). professeur d’université. En 1806, il publie un traité majeur sur la mécanique céleste Th eoria Motus et est nommé directeur de l’Observatoire de Göttingen en 1807, fonction qu’il exercera jusqu’à sa mort, à LE COULOMB l’âge de 78 ans. Son œuvre, dont une très faible partie a été publiée de son vivant, couvre la quasi-totalité des domaines Le coulomb est une unité d’électricité qui permet de produire des mathématiques pures (arithmétique, algèbre, géométrie, un ampère par seconde. Cette unité, qui correspond à la quan- analyse, probabilités, statistiques) et des mathématiques tité d’électricité nécessaire pour précipiter 0,001118 gramme appliquées à la physique de l’époque (géodésie, astro- d’argent, a reçu cette dénomination en l’honneur de Charles nomie, magnétisme). Son nom sera aussi attribué au Augustin de Coulomb (1736-1806). Né à Angoulême, fi ls d’un 1 001e astéroïde découvert. inspecteur des domaines royaux, très doué en mathématiques, Nikola Tesla, né en 1856 en Croatie et mort à New Coulomb refusa de devenir médecin, entrant ainsi en confl it York en 1943, a laissé son nom à l’unité de champ avec sa mère qui allait lui refuser toute aide fi nancière. Jeune magnétique qui correspond à un weber par mètre étudiant, il dut alors quitter Paris pour Montpellier. Il y devient carré. Ce citoyen américain d’origine serbe, spécia- ingénieur militaire et occupa sa fonction aux Antilles puis en liste des conversions énergétiques d’origine élec- France. Entre 1785 et 1791, inventeur de la balance de torsion, il trique, est un scientifi que qui est resté très controversé Tesla met en évidence les lois fondamentales d’attraction qui portent en raison, en particulier, de déclarations qui ont servi de son nom et écrivit sa célèbre série de sept mémoires.
Recommended publications
  • Sándor Nagy INTRODUCTION to NUCLEAR SCIENCE (For the Non-Physicist)
    Seconds > 10+15 10-01 10+10 10-02 10+07 10-03 10+05 10-04 10+04 10-05 10+03 10-06 10+02 10-07 10+01 10-15 10+00 < 10-15 Stable EC+β+ β- α p n SF Sándor Nagy INTRODUCTION TO NUCLEAR SCIENCE (for the non-physicist) THE LATEST VERSION OF THIS TEXT CAN BE DOWNLOADED FROM: http://nagysandor.eu/lne/ The charts of nuclides that the author used for the decoration of the cover are taken from this site under general permission: http://www.nndc.bnl.gov/nudat2/ To the best of my knowledge, the internet links in this text are harmless. However any site can be hacked. Use them at your own risk! For Évika COMPLETE LIST OF TEXTS BY THE AUTHOR ON THE DOWNLOAD PAGE: Bevezetés a nukleáris tudományba (the Hungarian version of this text) Introduction to Nuclear Science (this text) Kinetics of Radioactive Deacay and Growth (in English only) Nukleáris mérések és berendezések sztochasztikája (the Hungarian version of the next one) Stochastics and Nuclear Measurements RELATED MATERIAL ON THE INTERNET BY THE AUTHOR: Nukleáris Glosszárium (http://nagysandor.eu/nuklearis/glosszarium.html) Nuclear dictionary (http://nagysandor.eu/nuklearis/kisszotar/) Asimov Téka (http://nagysandor.eu/AsimovTeka/) (simulations) LIBRARY OF NAGY’S E-BOOKS ELTE, KI, Budapest, 2010 © Nagy Sándor Bantu_e_121215 ln e = 1 Sándor Nagy: Introduction to Nuclear Science ln e Contents INTRODUCTORY STUFF ................................................................................................................................... 4 ACKNOWLEDGEMENTS ................................................................................................................................... 5 1. RADIOCHEMISTRY AND NUCLEAR CHEMISTRY (RC&NC) .......................................................... 6 1.1. RC&NC AS AN INTERDISCIPLINARY FIELD OF SCIENCE ............................................................................. 6 1.2. THE BEGINNINGS OF RC&NC AND THE TIMELINE OF NUCLEAR SCIENCE ...............................................
    [Show full text]
  • 34. Nagy László Fizikaverseny 2019
    Szalézi Szent Ferenc Gimnázium, Kazincbarcika 34. NAGY LÁSZLÓ FIZIKAVERSENY 2019. február 21 − 22. TESZTKÉRDÉSEK 10. osztály Karikázza be a helyes válaszok betűjelét! 1. 335 évvel ezelőtt halt meg az a francia fizikus, növényfiziológus, aki felfedezte azt a törvényt, amely kimondja, hogy a gázok térfogata a nyomásukkal fordított arányban változik, ha a hőmérsékletük és anyagmennyiségük állandó. Római katolikus pap, a Saint-Martin-sous-Beaune perjele volt, 1666-ban Párizsban egyike a Tudományos Akadémia alapítóinak. Discours de la nature de l'air (Értekezés a levegő természetéről; 1676) című művében, amelyben egyebek mellett a barométer szót is megalkotta, kimondta a fent említett törvényt. Tanulmányozta a növényi nedvek nyomását, és azt az állatok vérnyomásához hasonlította. Az Histoire et mémoires de l'Académie (Az Akadémia története és jegyzőkönyvei; 1733) első kötete a folyadékok mozgásával, a szín természetével és a trombita hangjával foglalkozó dolgozatait tartalmazza. (Dijon, Franciaország, 1620 körül – Párizs, Franciaország, 1684. május 12.) A) Jaques CHARLES B) Edme MARIOTTE C) François ARAGO 2. 185 évvel ezelőtt született az az orosz vegyész, aki a szentpétervári egyetemen tanult, majd itt is tanított. 1859-ben ösztöndíjjal két évre Heidelbergbe küldték, ahol Bunsen mellett dolgozott. Hazatérése után a kémiai tanszék vezetője lett. 1869-ben jelent meg leghíresebb műve, a "Kémia alapelvei". Ebben vázolta fel azt a híres rendszert, melyben a kémiai elemeket foglalta törvényszerűségeik alapján egységes táblázatba. Egy hasonló rendszert vele körülbelül azonos időben a német Lothar Meyer is kidolgozott, Ő azonban néhány hónappal korábban publikálta eredményeit. Táblázata alapján megjósolta egyes, még nem ismert elemek létezését és tulajdonságait. A rendszer helyessége 1875-ben, a gallium felfedezésével igazolódott. Még számos fontos felfedezése volt, többek között a kőolaj- és a kőszénbányászattal kapcsolatban.
    [Show full text]
  • Rolf Maximilian Sievert (1896-1966)
    V. simpozij HDZZ, Stubičke Toplice, 2 HR0300030 ROLF MAXIMILIAN SIEVERT (1896-1966) Ivan Tomljenović Prirodnomatematički fakultet Banja Luka, M Stojanovića 2, Banja Luka, Bosna i Hercegovina e-mail: [email protected] UVOD CGPM (Conference General de Poids et Mesures), odnosno Generalna konferencija za utege i mjere, na svom XVI-tom zasjedanju 1979. god. donijela je odluku da se jedinica za ekvivalentnu dozu nazove sivert, oznaka Sv, u čast švedskog fizičara Rolf Maximilian Siverta. Ta jedinica je dio SI jedinica. Ideja članka je da se metrolozi i dozimetristi upoznaju sa životom i radom ovog zaslužnog naučnog radnika u oblasti radiološke zaštite. DEFINICA JEDINICE Prema ICRU (International Commission on Radiation Units and Measurements) i ICRP (International Commission on Radiological Protection) ekvivalentna doza (H) je produkt apsorbirane doze (D) i faktora modifikacije (Q, DF, N). N = Q'N'D = Q'D (1) gdje je: Q (quality factor) faktor kvaliteta, čija je vrijednost određena za svaku pojedinu vrstu zračenja, DF (distribution factor) faktor distribucije, N geometrijski faktor koji se uzima da je jednak jedinici. Pošto su faktori modifikacije bezdimenzioni, onda se i ekvivalentna doza izražava u jedinicama kao i apsorbirana doza, J/kg. Jedinici je dato ime sivert, Sv. l Sv = l J/kg (T) Jedinica pripada međunarodnom sustavu jedinica (SI). Ranije se koristila jedinica rem, roentgen equivalent man, (rentgen ekvivalentan čovjeku). Veza stare i nove jedinice je: l Sv = 100 rem (3) Ovom jedinicom se mjere također i kolektivna ekvivalentna doza SK, uslovna doza Hc, vezana ekvivalentna doza HSO i efektivna doza E. 49 V. simpozij HDZZ, Stubičke Toplice, 2003 STRUČNI ŽIVOTOPIS Švedski naučnik, zdravstveni fizičar Rolf Maximilian Sievert rođen je 6.
    [Show full text]
  • Radioaktivität (Ionisierende Strahlung)
    Eidgenössische Technische Hochschule Zürich Institut für Verhaltenswissenschaft und Departement Physik Radioaktivität (Ionisierende Strahlung) Ein Leitprogramm Verfasst von: Rainer Ender, Michael Fix, Roger Iten, Marcel Pilloud, Caroline Rusch, Anna Stampanoni-Panariello, Daniel Zurmühle Betreuung: Martin Zgraggen Herausgegeben durch Hans Peter Dreyer © Die Rechte für die Nutzung dieses Leitprogramms liegen bei der ETH Eidgenössische Technische Hochschule in Zürich Lehrerinnen und Lehrer in der Schweiz können dieses Lernmaterial für den Gebrauch in ihrer Klasse kopieren. Anderweitige Nutzungsrechte, auch auszugsweise, sind auf schriftliche Anfrage erhältlich durch: Prof. Dr. K. Frey, ETH Institut für Verhaltenswissenschaft, Turnerstr. 1, ETH-Zentrum, CH-8092 Zürich Einführung Bei einer oberflächlichen Betrachtung scheint jede Materie verschieden zu sein, was Farbe, Form, Geschmack, Festigkeit und Aggregatzustand betrifft. Eis, Dampf und Regen sind zum Beispiel drei mögliche Erscheinungen des Wassers. Der griechische Philosoph Demokrit (ca. 460-370 v. Chr.) erklärte diese Tatsache mit folgendem Modell. Obwohl die Materie uns als Kontinuum erscheint, besteht sie aus winzigen Teilchen. Die verschiedenen Eigenschaften der Körper hängen von der gegenseitigen Anordnung dieser Teilchen im Körper ab und von den Bindungen, die sie zueinander haben. Demokrit war der Vorläufer des modernen Atomwissenschaftlers. Er dachte also, dass alle Körper aus winzigen, endlichen Teilchen aufgebaut sind. Diese Teilchen seien, wie er sagte, unteilbar, auf Griechisch ατοµος (átomos). So entstand die Bezeichnung Atom. Heute wissen wir, dass Atome selbst teilbar sind. Sie bestehen aus noch kleineren Bausteinen. Einige Atomkerne sind instabil und zerfallen in andere Atomkerne. Bei diesen Zerfällen werden oft Teilchen und in vielen Fällen elektromagnetische Strahlung emittiert. Dieser Effekt ist bekannt als Radioaktivität. Die Untersuchung der Radioaktivität und ihre Anwendung in der Forschung und in anderen Gebieten (z.
    [Show full text]
  • University-Industry Partnership in the Vanguard of Knowledge-Driven Economy Others As Dialectic/Logic, Grammar, Rhetoric Belonged to Trivium (Three Programs)
    Journal of Modern Education Review, ISSN 2155-7993, USA July 2014, Volume 4, No. 7, pp. 480–509 Doi: 10.15341/jmer(2155-7993)/07.04.2014/002 Academic Star Publishing Company, 2014 http://www.academicstar.us University-industry Partnership in the Vanguard of Knowledge-Driven Economy László Szentirmai, László Radács (Department of Electrical and Electronic Engineering, University of Miskolc, Hungary) Abstract: The words volt, ampere and watt are named after emblematic figures of university and industry and are in common parlance among people. And what is more, the current International System of Units gave many great names to derived measuring units. The 5–10 year-long strategic partnership is top priority for elite universities. This most creative and promising collaboration ensures big and common strategic goals, and shared research vision. New knowledge generated by alliance modernizes university role and industry long-term strategy. Diverse engineering culture serves as brake but could be overcome by both parties when criterion is excellence. Trend is twofold: either richer benefits are given to fewer universities and/or universities in emerging economies are also to flourish. Operational partnerships — the second type — are based on joint research projects utilizing both the core academic strengths of universities and the core research competence of industry. Research projects on professors’ own initiatives and students’ individual research projects all pave the way for achieving strategic partnership. Transactional partnership — the third type — puts significant impact on teaching and learning. Key criteria include multidisciplinary institute on campus with industry contribution, even culture and curriculum and multidisciplinary approach to research. These criteria together with industrial practice for academics and students lead also this link to strategic collaboration.
    [Show full text]
  • Physics Book
    MESSAGE FROM PHYSICS Physics has a great influence on the society in all fields. It reveals our nature and inherent characteristics. It conveys messages for us to follow, so that we can become a good human to work in harmony with nature. Personalities are to be carved Physics education is incomplete without solving the problems related to various physical situations. This problem solving character plays a major indirect role in carving one’s personality. It helps to induce rational thinking and youth enthusiasm. The training that physics gives is so important for developing a good personality to lead a happy life. Tension is essential for creativity In physics tension is required for producing vibration in strings and other medium. There is a limit to bear the tension that varies from system to system. If one breaks the limit, breakdown occurs. Thus physics gives us a message that learn about your potential and bear the tension that can induce creativity, but at the same time it cautions not to be over stressed as it is dangerous and may lead to breakdown. Conflicts are inevitable but can be resolved The differences that are apparent in lower dimensional world disappear in the higher dimensional world. Think of a simple pendulum, it executes simple harmonic motion; it oscillates between two extreme opposite to each other. This simple harmonic motion is the motion in one-dimensional world. If the same motion is expressed in two- dimensional world, then it becomes a circular motion. Mathematical form remains the same but the apparent differences disappear. Our apparent differences and oppositeness too indicate that we actually live in lower dimensional emotional world.
    [Show full text]
  • How Can We Assess the Impacts of Radiation Exposures?
    raced to limit the scope of the disaster, 167 work- ers received a radiation dose of more than 100 mil- lisieverts, reported the United Nations Scientific Committee on the Effects of Atomic Radiation Health Risks (UNSCEAR). One hundred millisieverts is the lev- el above which experts have demonstrated measur- able increases in cancer risks. There is still debate How Can We Assess the about risks for people exposed to lower doses, be- cause these risks are lower and harder to detect. For an additional 20,000 Tokyo Electric Power Impacts of Radiation Exposures? Co. workers, and for the roughly 150,000 Japanese citizens living in the fallout zone, exposures were By David Pacchioli lower. According to the World Health Organiza- tion, most of those residents received doses between 2 and 10 millisieverts. In Namie town and Iitate he ability to gauge radiation at vanishingly low concentrations gives village, two nearby communities where evacua- scientists a powerful tool for understanding ocean processes. “We tion was delayed, residents received 10 to 50 mil- Tcan measure down to less than 1 becquerel”—one radioactive decay lisieverts. In one troubling exception, several news event per second, said Ken Buesseler, a marine chemist at Woods Hole reports cited Japanese officials saying that 1-year- Oceanographic Institution. “But just because we can measure it doesn’t olds in Namie town may have been exposed to 100 mean it’s necessarily harmful to human health.” to 200 millisieverts of radioactive iodine-131. At what point, then, is radiation exposure harmful to humans? And what This radioisotope, with a short-lived half-life of are the likely health effects of the exposures incurred from Fukushima? about eight days, may pose the most serious health Buesseler and colleagues saw plenty of debris from the tsunami float- threat from Fukushima radiation.
    [Show full text]
  • NOT for DISTRIBUTION  Assess CT Scan Parameters That Impact Patient Radiation Dose  Develop and Implement Reduced-Dose CT Protocols for Adult and Pediatric Patients
    CT for Technologists is a training program designed Release Date: May 2012 to meet the needs of radiologic technologists entering Revision Date: October or working in the field of computed tomography (CT). Expiration Date: June 1, 2020 This series is designed to augment classroom instruction and on-site training for radiologic This material will be reviewed for technology students and professionals planning to continued accuracy and relevance. take the review board examinations, as well as Please go to www.icpme.us for provide a review for those looking to refresh their up-to-date information regarding knowledge base in CT imaging. current expiration dates. Note: Terms in bold can be found in the glossary. OVERVIEW The skill of the technologist is the single most important factor in obtaining high quality diagnostic images. A successful CT examination is the culmination of many factors under the direct control of the technologist. CT for Technologists 3 Radiation Safety introduces the learner to the history of x-ray discovery and its consequent adverse effects, how radiation affects human tissue, how to minimize patient radiation exposure through parameter adjustment, and how to protect the patient as well as the staff, including national initiatives to reduce exposure. EDUCATIONAL OBJECTIVES After completing this material, the reader will be able to: Discuss the early challenges of x-ray development Describe the effects of ionizing radiation on the body Explain radiation safety practices in CT NOT FOR DISTRIBUTION Assess CT scan parameters that impact patient radiation dose Develop and implement reduced-dose CT protocols for adult and pediatric patients EDUCATIONAL CREDIT This program has been approved by the American Society of Radiologic Technologists (ASRT) for 2.0 hours of ARRT Category A continuing education credit.
    [Show full text]
  • Revista Ilha Digital – ARTIGO SUBMETIDO PARA AVALIAÇÃO
    Revista Ilha Digital – ARTIGO SUBMETIDO PARA AVALIAÇÃO Artigo disponibilizado on-line Revista Ilha Digital Endereço eletrônico: http://ilhadigital.florianopolis.ifsc.edu.br/ HARDWARE SIMULADOR DE DETECÇÃO A ELEMENTOS RADIOATIVOS PARA USO EM SIMULAÇÃO DE RESPOSTA À EMERGÊNCIA RADIOLÓGICA Clovis Jose Prudencio Filho 1, Fernando Pedro Henriques de Miranda 2. Resumo : Este artigo aborda o desenvolvimento de um equipamento eletrônico capaz de simular a proximidade a uma fonte radioativa para ser usado em treinamentos de simulação de resposta à emergência radiológica. O desenvolvimento do produto visa projetar um equipamento capaz de medir distâncias e convertê-las em níveis equivalentes de radiação. Dentre os requisitos principais o produto deverá emitir alarmes de aproximação e fornecer a leitura visual dos níveis equivalentes de radiação. O equipamento também deverá ser capaz de fornecer a noção da lei do inverso do quadrado da distância. O sensor de distância é o elemento crítico no desenvolvimento, então foram consideradas diferentes opções de solução (ultrassom, óptica e radiofrequência). Foram realizadas também as provas de conceito e as medidas em campo com os diferentes tipos de sensores; os resultados definiram a escolha. O sensoriamento por radiofrequência se mostrou o mais adequado para esta aplicação. A conclusão do trabalho aponta também algumas limitações da tecnologia utilizada e sugere o desenvolvimento de uma tecnologia de radiofrequência proprietária. Palavras-chave : Medidor de Distância. Simulação de Acidente radiológico. Segurança em Treinamento de Radiação. Abstract : This paper discusses the development of electronic equipment capable of simulate the proximity to a radioactive source to be used in radiological emergencies training simulation. The development of the product is design equipment capable of measuring distances and converting them to equivalent levels of radiation.
    [Show full text]
  • Experimental and Computational Assessment of Aircrew Radiation Exposure
    Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/). D I P L O M A R B E I T Experimental and Computational Assessment of Aircrew Radiation Exposure Ausgeführt am Atominstitut der Technischen Universität Wien unter der Anleitung von Univ.Prof. Dipl.-Ing. Dr.techn. Norbert Vana und Univ.Ass. Dipl.-Ing. Dr.techn. Michael Hajek als verantwortlich mitwirkenden Universitätsassistenten durch Georg Eigelsreiter 1020 Wien, Vorgartenstraße 221/1/12 Wien, am 29. April 2011 ……..……..…………………... Abstract Experimental and Computational Assessment of Aircrew Radiation Exposure Aircrew personnel is exposed to radiation levels from cosmic rays that on average are equal to or higher than other occupationally exposed personnel receives from artificial sources in medicine, industry and technology . In a pilot experiment in cooperation with Tyrolean Airways , the radiation exposure on short and midrange operations has been evaluated. Experimental data have been compared with results from CARI 6, a computation system using Monte Carlo calculation codes in order to calculate aircrew radiation exposure. Austrian legislation defines computer-based dose assessment as an appropriate means of radiation protection as long as the calculations agree within 30% with experimental data. For the experimental assessment of the cosmic ray induced dose, thermoluminescence dosimetry has been used. This is a common method in personal dosimetry. Additionally to the overall exposure, the neutron contribution has been determined by the extended pair method using TLD-600/700 dosemeters.
    [Show full text]
  • Gyakorlati Foglalkozás-Egészségügy
    Gyakorlati foglalkozás-egészségügy Bevezetés a foglalkozás-egészségügybe Felszegi Sára, Cseh Károly A munka világa ma az egyik legveszélyesebb környezet. Életünk legnagyobb részét ebben az állandóan változó környezetben töltjük el. Ahhoz hogy a munkavállaló meg tudjon felelni a munkakörnyezeti kihívásoknak egészsége károsodása nélkül, szükséges a munkahelyi kóroki tényezők felismerése és az egészsége védelmét szolgáló intézkedések meghozatala, az egészségkárosító körülmények kiküszöbölésére illetve csökkentésére. A foglalkozás- egészségügy az egészségügy egyetlen olyan területe, amely az aktív lakosság körében a primer és a szekunder prevenció segítségével hatékonyan képes fellépni a munkavállalók egészségének megőrzése és fejlesztése céljából. Öregedő társadalmunkban fontos a lakosság aktív éltének meghosszabbítása, a társadalom számos területe egyensúlyának fenntartásához. A foglalkozás-egészségügyre háruló feladatok egyben népegészségügyi feladatok is. A magyar foglalkozás-egészségügy nagy hagyományokkal rendelkezik. A kezdetek a bányaegészségügyhöz kapcsolódnak. Szent István király által 1030-ban kiadott Ius regale (intézkedés a királyi jogokról, pl. regáléjövedelmekről, királyi haszonvételről, koronajövedelemről, az ásványvagyon királyi tulajdonáról) kitért a bányászok biztonságos foglalkoztatásának szükségességére. Selmecbányán (ma a város és az ércbánya a világörökség része, Szlovákia, Banská Stiavnica) 1240-től bányakórház működött. Anjou Károly (I. Károly, Károly Róbert, 1308-1342) és Nagy Lajos (1342-1362) idején már működtek
    [Show full text]
  • Radioactive Fall-Out from the Chernobyl Nuclear Power Plant Accident in 1986 and Cancer Rates in Sweden, a 25-Year Follow Up
    Radioactive fall-out from the Chernobyl nuclear power plant accident in 1986 and cancer rates in Sweden, a 25-year follow up Hassan Alinaghizadeh Abstract Aim: The current research aimed to study the association between exposure to low-dose radia- tion fallout after the Chernobyl accident in 1986 and the incidence of cancer in Sweden. Methods: A nationwide study population, selecting information from nine counties out of 21 in Sweden for the period from 1980 – 2010. In the first study, an ecological design was defined for two closed cohorts from 1980 and 1986. A possible exposure response pattern between the exposure to 137Cs on the ground and the cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (n=2.2 million). The activity of 137Cs at the county, munici- pality and parish level in 1986 was retrieved from the Swedish Radiation Safety Authority (SSI) and used as a proxy for received dose of ionizing radiation. Information about diagnoses of cancer (ICD-7 code 140-209) from 1958 – 2009 were received from the Swedish Cancer Reg- istry, National Board of Health and Welfare (368,244 cases were reported for the period 1958 to 2009). The incidence rate ratios were calculated by using Poisson Regression for pre-Cher- nobyl (1980 – 1986) and post-Chernobyl (1986 – 2009) using average deposition of 137Cs at three geographical levels: county (n=9), municipality (n=95), and parish level (n=612). Also, a time trend analysis with age standardized cancer incidence in the study population and in the general Swedish population was drawn from 1980 – 2009.
    [Show full text]