Page ‹#› Lynn Margulis the Ideas of the Endosymbiont Theory (Fig 25.9)

Total Page:16

File Type:pdf, Size:1020Kb

Page ‹#› Lynn Margulis the Ideas of the Endosymbiont Theory (Fig 25.9) In what ways are protists important? Base of many “food chains” - especially in aquatic settings The Protists Clarify water by filtering out small particles Some are parasites that cause A diverse assemblage of eukaryotes diseases in other organisms that ARENʼT Some have economic uses for humans fungi, plants, or animals Some are involved in important symbiotic relationships… Why can termites eat wood? And… they are a spectacular group Because of of organisms symbiotic hypermastigotes (a group of parabasilids) living in the termite gut working together with Archaean methanogens Fig 28.26 (SEM) Where Did Eukaryotic Cells come from? Origin of Organelles First found in fossil record about 2.1 Idea is that the ancestors of billion years ago eukaryotic cells were symbiotic consortiums of prokaryotic cells (Prokaryote fossils to 3.5 BYA) Two major features to explain: Has come to be called the “endosymbiont theory” - membrane-bounded organelles (mitochondria and plastids) - internal membrane systems Page ‹#› Lynn Margulis The Ideas of the Endosymbiont Theory (Fig 25.9) Mitochondria are the descendents of aerobic heterotrophic bacteria Chloroplasts are the descendants of photosynthetic bacteria - very likely cyanobacteria Person who led the development of the endosymbiont theory Evidence that Supports the Endosymbiont Theory Origin of Eukaryotes Endosymbiotic relationships exist in Fig.25.9 the modern world, e.g., some species of dinoflagellates are endosymbiotic in corals Plastids and mitochondria about the same size as typical prokaryotic cells Evidence (cont.) What organisms have eukaryotic cells? Similar membrane proteins (inner membrane) Animals (mitochondria) Reproduce by a process similar to Plants (mitochondria and plastids) binary fission Fungi (mitochondria) Contain circular DNA molecules Ribosomal RNA sequences in Protists (mitochondria, some have organelles more similar to plastids) prokaryotes Page ‹#› The Protists Flagella and Cilia (Fig 6.23) Incredible diversity of organisms - Structurally Human sperm your text recognizes 21 clades at distinct from probably the Phylum or Kingdom the flagella of level prokaryotes Typically found in aquatic or damp Eukaryotic flagella and Ciliate environments, or in body fluids, cilia have a tissues, or cells of host organisms similar Most have flagella or cilia at some structure stage in their life cycle involving microtubules Protist Size Cilia and Flagella in Action Most are single-celled, but their cell structure can be very complex Cilia and Flagella Ciliates (e.g., Paramecium, Vorticella) are among the most complex of all cells Some are multicellular and individuals can be as large as 60 meters in length - the “kelps” (brown algae) Kelp (Brown Algae) Protist Nutrition Nutritionally diverse - photoautotrophs - chemoheterotrophs Also are “mixotrophs” e.g., Euglena Definitely donʼt need a microscope to see this protist! Page ‹#› Nutrition Protistan Phylogeny “Kingdom Protista” was a diverse group of Three major means of obtaining organisms that were, in many cases, not nutrition amongst protists: closely related - Ingestive (“animal-like”), sometimes Phylogeny is currently in a “state of flux” called “protozoa” DNA sequence data have been, and will - Absorptive (“fungus-like”) continue to be, very helpful - Photosynthetic (“plant-like”), Splitting of “Kingdom Protista” into 21 clades (Phyla? Kingdoms?) has been sometimes called “algae” proposed Distinct nutritional mechanisms may be These clades have been placed into 5 found within one Clade “supergroups” in your text Fig 28.3 Protistan Diversity A quick look at 9 of the 21 protist clades described in Campbell et al. Supergroup Excavata Why not look at ALL 21 clades? Getting a Ph.D. - Thatʼs where you learn more and more about less and less until you know everything about nothing Evidence: Intro Bio Course - Thatʼs where you learn less and less about more and more until - Excavated feeding groove you know nothing about everything - DNA sequence similarities I want you to know something about Evidence supporting this “supergroup” is something... rather weak and investigation is on- going Page ‹#› The Parabasalids Trichomonas vaginalis (Fig. 28.4) Have modified mitochondria called “hydrogenosomes” Most familiar member Trichomonas vaginalis - cause of a common sexually transmitted disease Trichomonas Fact Sheet at the CDC Each cell possesses 4 flagella The Kinetoplastids The Euglenozoans One large mitochondrian per cell Organized mass of DNA inside the Two major groups: mitochondrian - called the “kinetoplast” the kinetoplastids Genus Trypanosoma the euglenids cause of “African sleeping sickness” Disease is vectored by the “Tsetse fly” (Glossina spp.) Invariably fatal if left untreated Tsetse Fly Fig. 28.6 Red blood cell Trypanosome Page ‹#› Supergroup Chromalveolata The Alveolates Characterized by the presence of small membrane-bounded cavities under their cell membrane Three major groups: Evidence: Dinoflagellates - DNA sequence similarities Apiocomplexans - Chloroplast structure similarities Ciliates Highly controversial “supergroup” The Dinoflagellates Dinoflagellates Both marine and freshwater Most species unicellular Important component of “plankton” About 50% of known species are photosynthetic Most species have elaborate cell Ceratium (light Peridinium walls microscope) (SEM) “Red Tide” Red Tide Dinoflagellate population explosions Water stained brownish-red (xanthophylls) Toxins produced by the dinoflagellates can kill fish, invertebrates, seabirds Some types of toxins can Boat accumulate in shellfish - causing Dead Fish poisoning in humans Page ‹#› Karenia brevis Karenia brevis (SEM) One species of dinoflagellate that causes red tides Produces a toxin that kills fish and invertebrates Human exposure to the toxin may cause a variety of symptoms, including death - Called “neurotoxic shellfish poisoning” Location of Karenia blooms Unit 1 Exam (data from December 2004) Available Monday 15 September through Tuesday 23 September READ: “COLL Testing Facility Policies and Procedures” in the Course Introduction Learning Module Go to Center for On-Line Learning, room 60 Carver Hall to take the exam The Cilates Ciliates Many beautiful freshwater species Use cilia to move and feed Have very complex cells, e.g., each cell has one micronucleus and one macronucleus Micronuclei participate in sexual reproduction; macronuclei in controlling cell functions Stentor spp. Paramecium spp. Page ‹#› The Stramenopiles Some species are photoautotrophic, Paramecium feeding some are heterotrophic Characterized by the presence hair- like projections on one of their (typically) two flagella Stramenopile Flagella (Fig 28.12) Four major groups: Diatoms Brown algae (includes “kelp”) Golden algae Oomycetes (water molds) Diatoms The Diatoms glass-like cell walls - made of hydrated silica Diatom Art important photosynthetic organisms in “plankton” fresh water and marine large number of species (estimated Diatom Diversity to be ~ 100,000) (Fig 28.3) Page ‹#› Diatomaceous Earth Supergroup Archaeplastida Huge amounts of ancient diatom cell walls Various uses: filtering medium metal polishes Evidence: reflective paint - DNA sequence similarity pesticide - Chloroplast structure similarities nanotechnology This “supergroup” is well supported SEM of Diatom by the available evidence The Red Algae Red Algae (Fig 28.19) No flagella present at any stage of the life cycle Most abundant in tropical oceans Most are multicellular ~ 6,000 described species Some species are heterotrophic Red Algae Human Uses Accessory Cell wall extracts: pigments allow carageenan - commonly photosynthesis eaten by people… at great depths - as deep as 260 agar - microbiological meters culturing media Effective at absorbing blue light Page ‹#› How do you feel about sushi? The Green Algae Most species (~7,000) found in fresh water Cell walls with a relatively high Fig. 28.19 percent of cellulose Can be unicellular, colonial/filamentous, or multicellular Can be motile (flagella) or non-motile Single-celled Green Alga - Chlamydomonas Eremosphaera viridis Chloroplasts Unicellular and motile green alga Nucleus Important model genetic system - much research is done with this organism Colonial Green Alga - Volvox (Fig. 28.3) Volvox Page ‹#› Filamentous Green Alga - Ulothrix spp. Multicellular Green Alga - Ulva spp. (Fig. 28.21) Green Algal Life Cycles An example of a green algal life cycle Can be quite complex with both sexual and asexual reproduction Oedogonium is a genus of Most gametes have two flagella filamentous green algae Gametes may be isogamous or anisogamous Some multicellular species exhibit alternation of generations (as do all plants) - may be heteromorphic or isomorphic Oedogonium Life Cycle Oedogonium life cycle Anisogamous Meiosis leads to production of “zoospores” (not gametes) Gametes are produced by mitosis Asexual “macrozoospores” are also produced by mitosis Page ‹#› Supergroup Unikonta The Amoebozoans Four major groups: Plasmodial slime molds Cellular slime molds Gymnamoebas (free-living) Evidence: - DNA sequence similarities Entamoebas (parasitic) This “supergroup” is well supported by the available evidence Plasmodial Slime Molds The plasmodium is a “coenocytic mass” Feeding stage is an called a Multinucleate “plasmodium” (Fig. 28.24) cytoplasm undivided by walls or membranes Live in moist habitats, e.g., rotting logs The plasmodium engulfs food by “phagocytosis” as do ameobas Cool Slime Mold Slime mold in “action” Planet Earth - Jungles 23:20 Page ‹#› Slime Mold Reproduction Response to the Environment
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • 28-Protistsf20r.Ppt [Compatibility Mode]
    9/3/20 Ch 28: The Protists (a.k.a. Protoctists) (meet these in more detail in your book and lab) 1 Protists invent: eukaryotic cells size complexity Remember: 1°(primary) endosymbiosis? -> mitochondrion -> chloroplast genome unicellular -> multicellular 2 1 9/3/20 For chloroplasts 2° (secondary) happened (more complicated) {3°(tertiary) happened too} 3 4 Eukaryotic “supergroups” (SG; between K and P) 4 2 9/3/20 Protists invent sex: meiosis and fertilization -> 3 Life Cycles/Histories (Fig 13.6) Spores and some protists (Humans do this one) 5 “Algae” Group PS Pigments Euglenoids chl a & b (& carotenoids) Dinoflagellates chl a & c (usually) (& carotenoids) Diatoms chl a & c (& carotenoids) Xanthophytes chl a & c (& carotenoids) Chrysophytes chl a & c (& carotenoids) Coccolithophorids chl a & c (& carotenoids) Browns chl a & c (& carotenoids) Reds chl a, phycobilins (& carotenoids) Greens chl a & b (& carotenoids) (more groups exist) 6 3 9/3/20 Name word roots (indicate nutrition) “algae” (-phyt-) protozoa (no consistent word ending) “fungal-like” (-myc-) Ecological terms plankton phytoplankton zooplankton 7 SG: Excavata/Excavates “excavated” feeding groove some have reduced mitochondria (e.g.: mitosomes, hydrogenosomes) 8 4 9/3/20 SG: Excavata O: Diplomonads: †Giardia Cl: Parabasalids: Trichonympha (bk only) †Trichomonas P: Euglenophyta/zoa C: Kinetoplastids = trypanosomes/hemoflagellates: †Trypanosoma C: Euglenids: Euglena 9 SG: “SAR” clade: Clade Alveolates cell membrane 10 5 9/3/20 SG: “SAR” clade: Clade Alveolates P: Dinoflagellata/Pyrrophyta:
    [Show full text]
  • The Macronuclear Genome of Stentor Coeruleus Reveals Tiny Introns in a Giant Cell
    University of Pennsylvania ScholarlyCommons Departmental Papers (Biology) Department of Biology 2-20-2017 The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Mark M. Slabodnick University of California, San Francisco J. G. Ruby University of California, San Francisco Sarah B. Reiff University of California, San Francisco Estienne C. Swart University of Bern Sager J. Gosai University of Pennsylvania See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/biology_papers Recommended Citation Slabodnick, M. M., Ruby, J. G., Reiff, S. B., Swart, E. C., Gosai, S. J., Prabakaran, S., Witkowska, E., Larue, G. E., Gregory, B. D., Nowacki, M., Derisi, J., Roy, S. W., Marshall, W. F., & Sood, P. (2017). The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Current Biology, 27 (4), 569-575. http://dx.doi.org/10.1016/j.cub.2016.12.057 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/biology_papers/49 For more information, please contact [email protected]. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Abstract The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3].
    [Show full text]
  • There Is Not a Latin Root Word Clear Your Desk Protist Quiz Grade Quiz
    There is not a Latin Root Word Clear your desk Protist Quiz Grade Quiz Malaria Fever Wars Classification Kingdom Protista contains THREE main groups of organisms: 1. Protozoa: “animal-like protists” 2. Algae: “plant-like protists” 3. Slime & Water Molds: “fungus-like protists” Basics of Protozoa Unicellular Eukaryotic unlike bacteria 65, 000 different species Heterotrophic Free-living (move in aquatic environments) or Parasitic Habitats include oceans, rivers, ponds, soil, and other organisms. Protozoa Reproduction ALL protozoa can use asexual reproduction through binary fission or multiple fission FEW protozoa reproduce sexually through conjugation. Adaptation Special Protozoa Adaptations Eyespot: detects changes in the quantity/ quality of light, and physical/chemical changes in their environment Cyst: hardened external covering that protects protozoa in extreme environments. Basics of Algae: “Plant-like” protists. MOST unicellular; SOME multicellular. Make food by photosynthesis (“autotrophic prostists”). Were classified as plants, BUT… – Lack tissue differentiation- NO roots, stems, leaves, etc. – Reproduce differently Most algal cells have pyrenoids (organelles that make and store starch) Can use asexual or sexual reproduction. Algae Structure: Thallus: body portion; usually haploid Body Structure: 1) unicellular: single-celled; aquatic (Ex.phytoplankton, Chlamydomonas) 2) colonial: groups of coordinated cells; “division of labor” (Ex. Volvox) 3) filamentous: rod-shaped thallus; some anchor to ocean bottom (Ex. Spyrogyra) 4) multicellular: large, complex, leaflike thallus (Ex. Macrocystis- giant kelp) Basics of Fungus-like Protists: Slime Molds: Water Molds: Once classified as fungi Fungus-like; composed of Found in damp soil, branching filaments rotting logs, and other Commonly freshwater; decaying matter. some in soil; some Some white, most yellow parasites.
    [Show full text]
  • Eukaryotes Microbes
    rator abo y M L ic ve ro IV Eukaryote Microbes 1–7 ti b c i a o r l o e t g y n I 1 Algae, 2 Lichens, 3 Fungi, I I I I I I I I I I I B 4 Fleshy Fungi, 5 Protozoa, s a e s c ic n , A ie 6 Slime Molds, 7 Water Molds p Sc pl h ied & Healt Eukaryotes 1 Algae top of page ● Objectives/Key Words ✟ 9 motility & structure videos ● Algal Thallus ✟ Carpenter’s diatom motility ● Algal Wet Mount (Biosafety Level 1)✲✱✓ ✟ Chlamydomonas motility ● Algal Wet Mount (Biosafety Level 2)✲✱✓ ✟ Diatom gliding movement ● Algal Wet Mount (disposable loop) ✲✱✱✓ ✟ Euglena motility ● Microscopic Algae✓ ✟ Gyrosigma motility ✟ ❍ Green Algae (Chlorophyta) ✟ Noctiluca scintillans motility ✟ ❍ Chlamydomonas ✟ Peridinium dinoflagellate motility ✟ ❍ Euglenoids (Euglenophyta) ✟ Synura cells & colony ❍ Diatoms (Chrysophyta) ✟ Volvox flagellate cells ✟✟ ❍ 1 frustules & motility ◆ ❍ 2 cell division ❖14 scenic microbiology, 60 images, 9 videos ❍ 3 sexual reproduction ❖ Biofouling 1, 2 ❍ 4 striae ❖ Coral Bleaching: Hawaii ✟◆ ◆ Volvox ❍ Dinoflagellates (Pyrrophyta) ❖ Coral Reefs: Pacific Ocean ❍ Red Tide 1–2 ❖ Coral Reefs 2: Andaman Sea, Indian Ocean◆ ❖ “Doing the Laundry”, India◆◆ ● Eukaryotes Quick Quiz 1A: Algae ❖ Green Lake, Lanzarote◆ ● Eukaryotes Quick Quiz 1B: Best Practice ❖ Garden Pond, British Columbia Canada, 1◆, 2 ● Eukaryotes Question Bank1.1✓–1.16◆◆◆◆◆◆◆◆✟✟✟ ❖ Marine Luminescence, Sucia Island, WA, US◆ ❖ Red Tide, Vancouver & Comox, Canada ● 35 interactive pdf pages ❖ Sea Turtle Tracks, Galápagos Islands◆ ● 112 illustrations, 80 images of algae ❖ Sea Turtles & Sea
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Parasitic and Fungal Identification in Bamboo Lobster Panulirus Versicolour and Ornate Lobster P
    Parasitic and Fungal Identification in Bamboo Lobster Panulirus versicolour and Ornate Lobster P. ornatus Cultures Indriyani Nur1)* and Yusnaini2) 1) Department of Aquaculture, Faculty of Fisheries and Marine Science, University of Halu Oleo, Kendari 93232, Indonesia Corresponding author: [email protected] (Indriyani Nur) Abstract—Lobster cultures have failed because of mortalities transmissible [5] including Vibrio, Aeromonas, Pseudomonas, associated with parasitic and fungal infections. Monitoring of spawned Cytophaga and Pseudoalteromonas [6,7]. Futher examination eggs and larva of bamboo lobsters, Panulirus versicolour, and ornate of these lobsters revealed four parasite species: Porospora lobsters, P. ornatus, in a hatchery was conducted in order to gigantea (Apicomplexa: Sporozoea), Polymorphus botulus characterize fungal and parasitic diseases of eggs and larva. One (Acanthocephala: Palaeacanthocephala), Hysterothylacium sp. species of protozoan parasite (Vorticella sp.) was identified from eggs while two species of fungi (Lagenidium sp. and Haliphthoros sp.) were (Nematoda: Secernentea), and Stichocotyle nephropis found on the lobster larvae. Furthermore, adult lobsters cultured in (Platyhelminthes: Trematoda) [8]. Therefore, the aim of this floating net cages had burning-like diseases on their pleopod, uropod, study was to examine and to characterize the infestation of and telson. Histopathological samples were collected for parasite parasites and fungus of potentially cultured lobsters (larval identification and tissue changes. There were two parasites found to stages and adult stages of the spiny lobsters), and also to look infect spiny lobsters on their external body and gill, they are Octolasmis sp. and Oodinium sp..Histopathology showed tissue at the histopathological changes of their tissues. This is changes, necrosis on the kidneys/liver/pancreas, necrosis in the gills regarded as a major cause of low production in aquaculture and around the uropods and telson.
    [Show full text]
  • The Florida Red Tide Dinoflagellate Karenia Brevis
    G Model HARALG-488; No of Pages 11 Harmful Algae xxx (2009) xxx–xxx Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review The Florida red tide dinoflagellate Karenia brevis: New insights into cellular and molecular processes underlying bloom dynamics Frances M. Van Dolah a,*, Kristy B. Lidie a, Emily A. Monroe a, Debashish Bhattacharya b, Lisa Campbell c, Gregory J. Doucette a, Daniel Kamykowski d a Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Resarch, Charleston, SC, United States b Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA, United States c Department of Oceanography, Texas A&M University, College Station, TX, United States d Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States ARTICLE INFO ABSTRACT Article history: The dinoflagellate Karenia brevis is responsible for nearly annual red tides in the Gulf of Mexico that Available online xxx cause extensive marine mortalities and human illness due to the production of brevetoxins. Although the mechanisms regulating its bloom dynamics and toxicity have received considerable attention, Keywords: investigation into these processes at the cellular and molecular level has only begun in earnest during Bacterial–algal interactions the past decade. This review provides an overview of the recent advances in our understanding of the Cell cycle cellular and molecular biology on K. brevis. Several molecular resources developed for K. brevis, including Dinoflagellate cDNA and genomic DNA libraries, DNA microarrays, metagenomic libraries, and probes for population Florida red tide genetics, have revolutionized our ability to investigate fundamental questions about K.
    [Show full text]
  • Observations on the Ecology of Protozoa Associated
    OBSERVATIONS ON THE ECOLOGY OF PROTOZOA ASSOCIATED WITH SPHAGNUM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Peter Chacharonis, B. A., M. A The Ohio State University 1954 Approved by Advise TABLE OK CONTENTS INTRODUCTION...................................................... 1 HISTORICAL REVIEW................................................. 2 NATURE OK THE ENVIRONMENT......................................... iO Location and History of the Bog.............................. 10 Description of the Hog....................................... 11 Ecological Characteristics of the Bog....................... 12 Structure and Growth of Sphagnum............................. IB MATERIALS AND METHODS............................................. 21 General...................................................... ill Collections.................................................. 21 pH Determinations............................................ 23 Temperature Determinations................................... 24 Methods of Examination....................................... 25 Staining Methods............................................. 2b Quantitative Determinations.................................. iO OBSERVATIONS.................................................. 32 General..................... 32 Distribution and Relative Frequency of Protozoa............. 32 The Position of the Organisms on and in the Sphagnum plant... 4J Seasonal Observations.......................................
    [Show full text]
  • Biotic and Abiotic Factors Affecting the Population Dynamics of Ceratium
    diversity Article Biotic and Abiotic Factors Affecting the Population Dynamics of Ceratium hirundinella, Peridinium cinctum, and Peridiniopsis elpatiewskyi Behrouz Zarei Darki 1,* and Alexandr F. Krakhmalnyi 2 1 Department of Marine Biology, Faculty of Marine Sciences, Tarbiat Modares University, Noor 46417-76489, Mazandaran Province, Iran 2 Institute for Evolutionary Ecology, NAS of Ukraine, 37, Lebedeva St., 03143 Kiev, Ukraine * Correspondence: [email protected] Received: 23 July 2019; Accepted: 2 August 2019; Published: 15 August 2019 Abstract: The present research was conducted to assess the impact of abiotic and biotic factors on the growth of freshwater dinoflagellates such as Ceratium hirundinella, Peridinium cinctum, and Peridiniopsis elpatiewskyi, which reduce the quality of drinking water in the Zayandeh Rud Reservoir. To this end, 152 algal and zoological samples were collected from the reservoir located in the Central part of Iran in January, April, July, and October 2011. Abiotic factors such as pH, temperature, conductivity, transparency, dissolved oxygen, and nutrient concentration of the water were measured in all study stations. The results showed that the population dynamics of dinoflagellates in the Zayandeh Rud Reservoir was different depending on season, station, and depth. The findings proved that C. hirundinella was one of the dominant autumn planktons in the highest biovolume in the Zayandeh Rud Reservoir. While P. elpatiewskyi was present in the reservoir throughout a year with biovolume peak in summer. Accompanying bloom of P. elpatiewskyi and C. hirundinella, P. cinctum also grew in well-heated summer and autumn waters. It was further found that Ceratium density was positively correlated with sulfate ion concentrations, while the growth of P.
    [Show full text]