Alcohols, Ethers, and Epoxides

Total Page:16

File Type:pdf, Size:1020Kb

Alcohols, Ethers, and Epoxides 9 Alcohols, Ethers, and Epoxides 9.1 Introduction 9.2 Structure and bonding 9.3 Nomenclature 9.4 Physical properties 9.5 Interesting alcohols, ethers, and epoxides 9.6 Preparation of alcohols, ethers, and epoxides 9.7 General features— Reactions of alcohols, ethers, and epoxides 9.8 Dehydration of alcohols to alkenes 9.9 Carbocation rearrangements 9.10 Dehydration using POCl3 and pyridine 9.11 Conversion of alcohols to alkyl halides with HX 9.12 Conversion of alcohols to alkyl halides with SOCl2 and PBr3 9.13 Tosylate—Another good leaving group 9.14 Reaction of ethers with strong acid 9.15 Reactions of epoxides 9.16 Application: Epoxides, leukotrienes, and asthma 9.17 Application: Benzo[a]pyrene, epoxides, and cancer Palytoxin (C129H223N3O54), fi rst isolated from marine soft corals of the genus Palythoa, is a potent poison that contains several hydroxy (OH) groups. Historically used by ancient Hawai- ians to poison their spears, palytoxin was isolated in 1971 at the University of Hawai‘i at Ma–noa, and its structure determined simultaneously by two different research groups in 1981. Its many functional groups and stereogenic centers made it a formidable synthetic target, but in 1994, Harvard chemists synthesized palytoxin in the laboratory. In Chapter 9 we learn about the properties of alcohols like palytoxin, as well as related oxygen-containing functional groups. 312 smi75625_312-357ch09.indd 312 10/27/09 3:03:44 PM 9.1 Introduction 313 In Chapter 9, we take the principles learned in Chapters 7 and 8 about leaving groups, nucleo- philes, and bases, and apply them to alcohols, ethers, and epoxides, three new functional groups that contain polar C – O bonds. In the process, you will discover that all of the reactions in Chap- ter 9 follow one of the four mechanisms introduced in Chapters 7 and 8—SN1, SN2, E1, or E2— so there are no new general mechanisms to learn. Although alcohols, ethers, and epoxides share many characteristics, each functional group has its own distinct reactivity, making each unique and different from the alkyl halides studied in Chapters 7 and 8. Appreciate the similarities but pay attention to the differences. 9.1 Introduction Alcohols, ethers, and epoxides are three functional groups that contain carbon–oxygen σ bonds. O ROH ROR alcohol ether epoxide Alcohols contain a hydroxy group (OH group) bonded to an sp3 hybridized carbon atom. Alco- hols are classifi ed as primary (1°), secondary (2°), or tertiary (3°) based on the number of carbon atoms bonded to the carbon with the OH group. Alcohol Classification of alcohols H R R COH hydroxy R C OH R C OH R C OH group H H R ° ° ° sp3 hybridized C 1 2 3 (one R group) (two R groups) (three R groups) Compounds having a hydroxy group on an sp2 hybridized carbon atom—enols and phenols— undergo different reactions than alcohols and are discussed in Chapters 11 and 19, respectively. Enols have an OH group on a carbon of a C – C double bond. Phenols have an OH group on a benzene ring. sp 2 hybridized C OH OH enol phenol Ethers have two alkyl groups bonded to an oxygen atom. An ether is symmetrical if the two alkyl groups are the same, and unsymmetrical if they are different. Both alcohols and ethers are organic derivatives of H2O, formed by replacing one or both of the hydrogens on the oxygen atom by R groups, respectively. Ether CH3CH2 O CH2CH3 CH3 O CH2CH3 symmetrical ether unsymmetrical ether ROR R groups are the same. R groups are different. Epoxides are ethers having the oxygen atom in a three-membered ring. Epoxides are also called oxiranes. O epoxide or oxirane Problem 9.1 Draw all constitutional isomers having molecular formula C4H10O. Classify each compound as a 1°, 2°, or 3° alcohol, or a symmetrical or unsymmetrical ether. smi75625_312-357ch09.indd 313 10/27/09 3:03:46 PM 314 Chapter 9 Alcohols, Ethers, and Epoxides Figure 9.1 δ– δ– δ– Electrostatic potential maps δ+ δ+ δ+ δ+ for a simple alcohol, ether, and epoxide δ+ δ+ O CH OH CH OCH CC 3 3 3 H H H H • Electron-rich regions are shown by the red around the O atoms. Problem 9.2 Classify each OH group in cortisol as 1°, 2°, or 3°. Cortisol is a hormone produced by the adrenal gland that increases blood pressure and blood glucose levels, and acts as an anti-infl ammatory agent. O OH HO OH H H H O cortisol 9.2 Structure and Bonding Alcohols, ethers, and epoxides each contain an oxygen atom surrounded by two atoms and two nonbonded electron pairs, making the O atom tetrahedral and sp3 hybridized. Because only two of the four groups around O are atoms, alcohols and ethers have a bent shape like H2O. sp3 hybridized sp3 hybridized O ==O CH3 H CH3 CH3 109° 111° The bond angle around the O atom in an alcohol or ether is similar to the tetrahedral bond angle of 109.5°. In contrast, the C – O – C bond angle of an epoxide must be 60°, a considerable devia- tion from the tetrahedral bond angle. For this reason, epoxides have angle strain, making them much more reactive than other ethers. 60° O = H H HH a strained, three-membered ring Because oxygen is much more electronegative than carbon or hydrogen, the C – O and O – H bonds are all polar, with the O atom electron rich and the C and H atoms electron poor. The elec- trostatic potential maps in Figure 9.1 show these polar bonds for all three functional groups. 9.3 Nomenclature To name an alcohol, ether, or epoxide using the IUPAC system, we must learn how to name the functional group either as a substituent or by using a suffi x added to the parent name. 9.3A Naming Alcohols In the IUPAC system, alcohols are identifi ed by the suffi x -ol. smi75625_312-357ch09.indd 314 10/27/09 3:03:46 PM 9.3 Nomenclature 315 HOW TO Name an Alcohol Using the IUPAC System Example Give the IUPAC name of the following alcohol: CH3 OH CH3CHCH2CHCH2CH3 Step [1] Find the longest carbon chain containing the carbon bonded to the OH group. CH3 OH CH3CHCH2CHCH2CH3 • Change the -e ending of the parent alkane to the -ol. 6 C's in the longest chain suffi x 6 C's hexane hexanol Step [2] Number the carbon chain to give the OH group the lower number, and apply all other rules of nomenclature. a. Number the chain. b. Name and number the substituents. methyl at C5 CH3 OH CH3CHCH2CHCH2CH3 CH3 OH CH3CHCH2CHCH2CH3 6 54321 • Number the chain to put the 5 3 OH group at C3, not C4. Answer: 5-methyl-3-hexanol 3-hexanol When an OH group is bonded to a ring, the ring is numbered beginning with the OH group. CH3CH2CH2CH2OH is named Because the functional group is always at C1, the “1” is usually omitted from the name. The ring as 1-butanol using the 1979 is then numbered in a clockwise or counterclockwise fashion to give the next substituent the IUPAC recommendations and butan-1-ol using the 1993 lower number. Representative examples are given in Figure 9.2. IUPAC recommendations. The Common names are often used for simple alcohols. To assign a common name: fi rst convention is more widely used, so we follow it in this • Name all the carbon atoms of the molecule as a single alkyl group. text. • Add the word alcohol, separating the words with a space. H CH3 C OH alcohol isopropyl alcohol CH3 a common name isopropyl group Compounds with two hydroxy groups are called diols (using the IUPAC system) or glycols. Com- pounds with three hydroxy groups are called triols, and so forth. To name a diol, for example, the suffi x -diol is added to the name of the parent alkane, and numbers are used in the prefi x to indicate the location of the two OH groups. Figure 9.2 C2 CH3 Examples: Naming CH3 OH OH cyclic alcohols C3 C1 C1 CH3 CH3 3-methylcyclohexanol 2,5,5-trimethylcyclohexanol The OH group is at C1; the second substituent The OH group is at C1; the second substituent (CH3) gets the lower number. (CH3) gets the lower number. smi75625_312-357ch09.indd 315 10/27/09 3:03:47 PM 316 Chapter 9 Alcohols, Ethers, and Epoxides C1 H HO HOCH CH OH HOCH C CH OH C2 2 2 2 2 two OH groups OH ethylene glycol HO (1,2-ethanediol) glycerol trans-1,2-cyclopentanediol (1,2,3-propanetriol) Common names are usually used Numbers are needed to show for these simple compounds. the location of two OH groups. Problem 9.3 Give the IUPAC name for each compound. CH3 a. OH b. c. OH OH Problem 9.4 Give the structure corresponding to each name. a. 7,7-dimethyl-4-octanol c. 2-tert-butyl-3-methylcyclohexanol b. 5-methyl-4-propyl-3-heptanol d. trans-1,2-cyclohexanediol 9.3B Naming Ethers Simple ethers are usually assigned common names. To do so, name both alkyl groups bonded to the oxygen, arrange these names alphabetically, and add the word ether. For symmetrical ethers, name the alkyl group and add the prefi x di-. H CH3 OCCH2CH3 CH3CH2 OCH2CH3 CH methyl 3 ethyl ethyl sec-butyl diethyl ether sec-butyl methyl ether Alphabetize the b of butyl before the m of methyl. More complex ethers are named using the IUPAC system. One alkyl group is named as a hydro- carbon chain, and the other is named as part of a substituent bonded to that chain.
Recommended publications
  • Chapter 21 the Chemistry of Carboxylic Acid Derivatives
    Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 21 The Chemistry of Carboxylic Acid Derivatives Solutions to In-Text Problems 21.1 (b) (d) (e) (h) 21.2 (a) butanenitrile (common: butyronitrile) (c) isopentyl 3-methylbutanoate (common: isoamyl isovalerate) The isoamyl group is the same as an isopentyl or 3-methylbutyl group: (d) N,N-dimethylbenzamide 21.3 The E and Z conformations of N-acetylproline: 21.5 As shown by the data above the problem, a carboxylic acid has a higher boiling point than an ester because it can both donate and accept hydrogen bonds within its liquid state; hydrogen bonding does not occur in the ester. Consequently, pentanoic acid (valeric acid) has a higher boiling point than methyl butanoate. Here are the actual data: INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 21 2 21.7 (a) The carbonyl absorption of the ester occurs at higher frequency, and only the carboxylic acid has the characteristic strong, broad O—H stretching absorption in 2400–3600 cm–1 region. (d) In N-methylpropanamide, the N-methyl group is a doublet at about d 3. N-Ethylacetamide has no doublet resonances. In N-methylpropanamide, the a-protons are a quartet near d 2.5. In N-ethylacetamide, the a- protons are a singlet at d 2. The NMR spectrum of N-methylpropanamide has no singlets. 21.9 (a) The first ester is more basic because its conjugate acid is stabilized not only by resonance interaction with the ester oxygen, but also by resonance interaction with the double bond; that is, the conjugate acid of the first ester has one more important resonance structure than the conjugate acid of the second.
    [Show full text]
  • Absolute and Relative Facial Selectivities in Organocatalytic Asymmetric Chlorocyclization Reactions
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Absolute and relative facial selectivities in organocatalytic asymmetric chlorocyclization Cite this: Chem. Sci.,2018,9, 2898 reactions† Nastaran Salehi Marzijarani,a Roozbeh Yousefi,a Arvind Jaganathan,b Kumar Dilip Ashtekar,a James E. Jackson *a and Babak Borhan *a Though (DHQD)2PHAL-catalyzed chlorocyclizations of 1,1-disubstituted olefins show useful (and in some cases, reversible) asymmetric induction, stereochemically complete descriptions of these alkene additions have remained largely unknown. Herein, based on a combination of NMR, derivative, isotope labeling, and computational studies, we present detailed stereochemical analyses of chlorocyclizations of nucleophile-tethered 1,1-disubstituted styryl systems. The selectivities of the two asymmetric bond- forming processes, namely electrophilic chlorine attack and nucleophilic ring closure, are thus mapped out independently. Under the established optimal conditions, four related chlorocyclizations were + Creative Commons Attribution 3.0 Unported Licence. subjected to this analysis. All showed a strong preference for Cl delivery from the same face of the Received 12th October 2017 alkene. However, depending on reaction conditions and substrate identity (carboxylic acid, amide or Accepted 24th December 2017 carbamate), the internal nucleophiles may close with a strong net preference for either syn or anti DOI: 10.1039/c7sc04430e addition relative to the Cl atom. Studies of both uncatalyzed and (DHQD)2PHAL-catalyzed
    [Show full text]
  • The Reactions of Alkenes
    The Reactions of Alkenes The Stereochemistry of Addition Reactions 1 Diverse Reactions of Alkenes Alkenes react with many electrophiles to give useful products by addition (often through special reagents) 2 Preparation of Alkenes: A Preview of Elimination Reactions • Alkenes are commonly made by – elimination of HX from alkyl halide (dehydrohalogenation) • Uses heat and KOH – elimination of H-OH from an alcohol (dehydration) • requires strong acids (sulfuric acid, 50 ºC) 3 A Regioselective Reaction A reaction in which one structural isomer is favored over another, leading to its predominance in the mixture of products. 4 A Stereoselective Reaction A reaction in which one stereoisomer in a mixture is produced more rapidly than another, resulting in predominance of the favored stereoisomer in the mixture of products. 5 A Stereospecific Reaction A reaction in which a particular stereoisomeric form of reactant gives one specific stereoisomer of product, while a different stereoisomeric form of reactant leads to a different single pure streoisomer of product. Stereospecific reaction is also stereoselective; however, stereoselective reaction is not stereospecific. 6 An Electrophilic Addition Reaction where HX = HF, HCl, HBr, and HI Reactivity of HF << HCl < HBr < HI since HF is less acidic and HI is most acidic. The rate of addition of HI is too fast to measure. 7 The Mechanism of the Reaction 8 Relative Stabilities of Carbocations 9 Hyperconjugation Stabilizes a Carbocation 10 The Difference in Carbocation Stability Determines the Products
    [Show full text]
  • United States Patent 15) 3,669,956 Borck Et Al
    United States Patent 15) 3,669,956 Borck et al. (45) June 13, 1972 54) 4-SUBSTITUTEDAMNO 260/472, 260/516, 260/518 R, 260/518 A, 260/519, PHENYACETIC ACDS AND 260/556 AR, 260/556 B, 260/558 S, 260/558 A, DERVATIVES THEREOF 260/559 T, 260/559 A, 260/.571, 260/574, 260/.575, (72 Inventors: Joachim Borck; Johann Dahin; Volker 424/244, 424/246, 424/248, 424/250, 424/267, Koppe; Josef Kramer; Gustav Shorre; J. 424/270, 424/272, 424/273, 424/274, 424/304, W. Hermann Hovy; Ernst Schorscher, all 424/309, 424/32 i, 424/324, 424/330 of Darmstadt, Germany 51) int. Cl. ........................................................ C07d 41/04 58) Field of Search........ 260/294X,293.4, 293.47, 239 BF, 73) Assignee: E. Merck A. G., Darmstadt, Germany 260/326.3, 294.3 E (22) Filed: July 22, 1968 56) References Cited (21) Appl. No.: 746,326 UNITED STATES PATENTS (30) Foreign Application Priority Data 3,252,970 5/1966 Huebner................................ 260/239 July 22, 1967 Germany.............................. M 74881 3,385,852 5/1968 Casadio................................. 260/246 Jan. 8, 1968 Germany... ....M 76850 OTHER PUBLICATIONS Feb. 23, 1968 Germany...... ...M 77363 March 1, 1968 Germany.............................. M 77429 Norman et al., J. Chen. Soc. 1963, (Nov.), 5431-6. (52) U.S. Cl................... 260/239 BF, 260/239 A, 260/239 E, Primary Examiner-Henry R. Jiles 260/243 B, 260/246, 260/247. 1, 260/247.2 R, Assistant Examiner-G. Thomas Todd 260/247.2 A, 260/247.2 B, 260/247.5 R, 260/247.7 Attorney-Millen, Raptes & White A, 260/247.7 H,
    [Show full text]
  • Functionalized Hybrid Silicones – Catalysis, Synthesis and Application
    Technische Universität München Fakultät für Chemie Fachgebiet Molekulare Katalyse Functionalized Hybrid Silicones – Catalysis, Synthesis and Application Sophie Luise Miriam Putzien Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Schuster Prüfer der Dissertation: 1. Univ.-Prof. Dr. F. E. Kühn 2. Univ.-Prof. Dr. O.Nuyken (i.R.) Die Dissertation wurde am 16.02.2012 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 08.03.2012 angenommen. The following dissertation was prepared between April 2009 and March 2012 at the Chair of Inorganic Chemistry, Department of Molecular Catalysis of the Technische Universität München. I would like to express my deep gratitude to my academic supervisor Prof. Dr. Fritz E. Kühn for his support and confidence and the freedom of scientific research. This work was supported by a research grant from the BASF Construction Chemicals GmbH, Trostberg, Germany. Acknowledgement I would like to express my sincere gratitude to Prof. Dr. Oskar Nuyken and Dr. Eckhart Louis for their ongoing support and their undamped enthusiasm for my research topic. They supported this work with many inspiring discussions, new ideas and critical questions. I thank the BASF Construction Chemicals GmbH, Trostberg, for giving me the opportunity to work on an industrial cooperation project. Especially, I would like to thank Dr. Simone Klapdohr and Dr. Burkhard Walther, who accompanied this project from the industrial perspectice, for their support and the nice time I had in Trostberg during the application technological tests.
    [Show full text]
  • Understanding the Thermochemical Conversion of Biomass to Overcome Biomass Recalcitrance Kwang Ho Kim Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Understanding the thermochemical conversion of biomass to overcome biomass recalcitrance Kwang Ho Kim Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons Recommended Citation Kim, Kwang Ho, "Understanding the thermochemical conversion of biomass to overcome biomass recalcitrance" (2015). Graduate Theses and Dissertations. 14382. https://lib.dr.iastate.edu/etd/14382 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the thermochemical conversion of biomass to overcome biomass recalcitrance by Kwang Ho Kim A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Agricultural and Biosystems Engineering Program of Study Committee: Robert C. Brown, Co-Major Professor Xianglan Bai, Co-Major Professor Kurt Rosentrater Matthew Darr Brent Shanks Young Jin Lee Iowa State University Ames, Iowa 2015 Copyright © Kwang Ho Kim, 2015. All rights reserved. ii DEDICATION Dedicated to my family for their unwavering support
    [Show full text]
  • Development of New Domino Reactions of Alkylidene Meldrum's
    Development of New Domino Reactions of Alkylidene Meldrum’s Acids Involving Friedel-Crafts Chemistry and Catalytic Conjugate Allylation of Alkylidene Meldrum’s Acids by Aaron Michael Dumas A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2009 © Aaron Michael Dumas 2009 I hereby declare that I am the sole author of this thesis. This is a true copy of my thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Alkylidene Meldrum’s acids are very reactive acceptors in conjugate additions, and are known to be significantly more electrophilic than other α,β-unsaturated carbonyl electrophiles. They also offer advantages in terms of ease of preparation, purification and storage. Despite this, they are relatively underused in organic synthesis, and have been treated as something of a curiousity in the literature. The goal of my research was to demonstrate the utility of these molecules in new reactions that are not readily available to other electrophiles. To facilitate this work, new conditions for the Knoevenagel condensation of aldehydes with Meldrum’s acid were developed. This allowed access to a broader range of monosubstituted alkylidenes than was previously possible from any single method. In a reaction that exploits the acylating ability of Meldrum’s acid, a domino addition of phenols to alkylidene Meldrum’s acids was developed. Here, Yb(OTf)3 catalyzed the addition of a phenol to the alkylidene as well as acylation through activation of the electrophile.
    [Show full text]
  • Chapter 18 Ethers and Epoxides; Thiols and Sulfides Ethers
    Chapter 18 Ethers and Epoxides; Thiols and Sulfides Ethers • Ethers (R–O–R’): – Organic derivatives of water, having two organic groups bonded to the same oxygen atom © 2016 Cengage Learning 2 NAMES AND PROPERTIES OF ETHERS 3 Nomenclature: Common Names • Simple ethers are named by identifying two organic substituents and adding the word ether – Name the groups in alphabetical order – Symmetrical: Use dialkyl or just alkyl © 2016 Cengage Learning 4 Nomenclature: IUPAC Names • The more complex alkyl group is the parent name • The group with the oxygen becomes an alkoxy group © 2016 Cengage Learning 5 Nomenclature: Cyclic Ethers (Heterocycles) • Heterocyclic: Oxygen is part of the ring. O • Epoxides (oxiranes) H2C CH2 O • Oxetanes • Furans (Oxolanes) O O • Pyrans (Oxanes) O O O • Dioxanes O © 2013 Pearson Education, Inc. 6 Epoxide Nomenclature • Name the starting alkene and add “oxide” © 2013 Pearson Education, Inc. 7 Epoxide Nomenclature • The oxygen can be treated as a substituent (epoxy) on the compound • Use numbers to specify position • Oxygen is 1, the carbons are 2 and 3 • Substituents are named in alphabetical order © 2013 Pearson Education, Inc. 8 Properties of Ethers • Possess nearly the same geometry as water – Oxygen atom is sp3-hybridized – Bond angles of R–O–R bonds are approximately tetrahedral • Polar C—O bonds © 2013 Pearson Education, Inc. 9 Properties of Ethers: Hydrogen Bond • Hydrogen bond is a attractive interaction between an electronegative atom and a hydrogen atom bonded to another electronegative atom • Ethers cannot hydrogen bond with other ether molecules, so they have a lower boiling point than alcohols • Ether molecules can hydrogen bond with water and alcohol molecules • They are hydrogen bond acceptors © 2013 Pearson Education, Inc.
    [Show full text]
  • Chapter 8: Reactions of Alkanes; Radicals Page
    REACTIONS OF ALKANES: CONTENTS Reactivity Considerations Chlorination and Bromination of Alkanes Reactivity–Selectivity Principle Radical Substitution of Benzylic and Allylic Hydrogens Stereochemistry of Radical Substitution No Radical Reactions in Biological Systems 2 RADICALS Sources include: Hydrogen peroxide . Alkyl peroxides . Light causes homolysis of the weak O-O bond . 3 HETEROLYSIS & HOMOLYSIS Heterolytic bond cleavage or heterolysis H Br H+ + Br Homolytic bond cleavage or homolysis H Br H + Br Homolysis produces radicals, which are very reactive species 4 RADICAL CHAIN REACTIONS Initiation turns stable species into radicals by breaking a bond. 5 RADICAL CHAIN REACTIONS Propagation causes products to form without resulting in net consumption of radicals. (production = consumption) 6 RADICAL CHAIN REACTIONS Termination results in net radical destruction. Generally occurs when reactants are used up. 7 CHLORINATION AND BROMINATION OF ALKANES C H A P T E R 12 8 PRODUCT DISTRIBUTION 9 CHLORINATION RATES 10 CHLORINATION PRODUCT DISTRIBUTION 11 BROMINATION RATES 12 REACTIVITY–SELECTIVITY PRINCIPLE The very reactive chlorine atom will have lower selectivity and attack pretty much any hydrogen available on an alkane The less reactive bromine atom will be more selective and tends to react preferentially with the easy targets, i.e. benzylic/allylic > 3° > 2° > 1° 13 RADICALS Stability of alkyl radicals is similar to stability of carbocations 14 CRUDE RADICAL STABILITY INDEX Add 1 for each attached carbon. Add 3 for adjacent double bond or phenyl ring. Radical equally stable on double bond carbon as on single bonded carbon Profile similar to carbocations but resonance contributes more to radical stability, and radical is OK on C=C.
    [Show full text]
  • Pph3-Assisted Esterification of Acyl Fluorides with Ethers Via C
    Article PPh3‐Assisted Esterification of Acyl Fluorides with Ethers via C(sp3)–O Bond Cleavage Accelerated by TBAT Zhenhua Wang 1, Xiu Wang 1 and Yasushi Nishihara 2,* 1 Graduate School of Natural Science and Technology, Okayama University, 3‐1‐1 Tsushimanaka, Kita‐ku, Okayama 700‐8530, Japan; [email protected]‐u.ac.jp (Z.W.); [email protected]‐u.ac.jp (X.W.) 2 Research Institute for Interdisciplinary Science, Okayama University, 3‐1‐1 Tsushimanaka, Kita‐ku, Okayama 700‐8530, Japan * Correspondence: ynishiha@okayama‐u.ac.jp; Tel.: +81‐86‐251‐7855; Fax: +81‐86‐251‐7855 Received: 23 May 2019; Accepted: 26 June 2019; Published: 28 June 2019 Abstract: We describe the (triphenylphosphine (PPh3)‐assisted methoxylation of acyl fluorides with cyclopentyl methyl ether (CPME) accelerated by tetrabutylammonium difluorotriphenysilicate (TBAT) via regiospecific C–OMe bond cleavage. Easily available CPME is utilized not only as the solvent, but a methoxylating agent in this transformation. The present method is featured by C–O and C–F bond cleavage under metal‐free conditions, good functional‐group tolerance, and wide substrate scope. Mechanistic studies revealed that the radical process was not involved. Keywords: Acyl fluorides; cyclopentyl methyl ether (CPME); tetrabutylammonium difluorotriphenysilicate (TBAT); carbon‐oxygen bond cleavage; esterification 1. Introduction The C−O bond cleavage in ethers is one of the most fundamental transformations in organic synthesis and has been widely applied in the manufacturing of fine chemicals as well as the synthesis of polyfunctional molecules [1–5]. Particularly, the preparation and degradation of ethers have often been considered important synthetic strategies for the protection/deprotection of hydroxyl groups.
    [Show full text]
  • Alkyl Halides and Nucleophilic Substitution SN2 Reaction
    Chapter 7: Alkyl Halides and Nucleophilic Substitution SN2 Reaction Mechanism: Notes: • One step reaction • Order of reactivity: Methyl > Primary > Secondary > Tertiary • Stereochemistry: Inversion of configuration at stereogenic center (because of backside attack) • Better leaving group = faster reaction • Favors: Strong nucleophiles • Favors: Not-sterically-hindered alkyl halides • Favors: Polar aprotic solvents (cannot hydrogen bond) SN1 Reaction Mechanism: Notes: • Two step reaction • Order of reactivity: Tertiary > Secondary > Primary > Methyl • Stereochemistry: Racemization (because the carbocation is planar) • Better leaving group = faster reaction • Favors: Weak nucleophiles • Favors: Sterically hindered alkyl halides • Favors: Polar protic solvents (can hydrogen bond) Important Trends Chapter 8: Alkyl Halides and Elimination Reactions E2 Reaction Mechanism: Notes: • One step reaction • Order of reactivity: Tertiary > Secondary > Primary • Stereochemistry: antiperiplanar arrangement of H and X • Better leaving group = faster reaction • Favors: Polar aprotic solvents, strong bases • Products follow Zaitsev rule (more substituted alkene is the major product) E1 Reaction Mechanism: Notes: • Two step reaction • Order of reactivity: Tertiary > Secondary > Primary • Stereochemistry: Trigonal planar carbocation intermediate • Better leaving group = faster reaction • Favors: Polar protic solvents, weak bases • Products follow Zaitsev rule Chapter 9: Alcohols, Ethers, and Epoxides Preparation of Alcohols Mechanism: Notes: • SN2 mechanism
    [Show full text]
  • SYNTHESIS, SPECTROSCOPIC INVESTIGATION and IMMOBILIZATION of COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Except Where Reference
    SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Moses G. Gichinga Certificate of approval: ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Peter Livant Susanne Striegler, Chair Associate Professor Assistant Professor Chemistry and Biochemistry Chemistry and Biochemistry ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ David Stanbury S. Davis Worley Professor Professor Chemistry and Biochemistry Chemistry and Biochemistry ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ George Flowers Dean Graduate School SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Moses G. Gichinga A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillments of the Requirements for the Degree of Doctor of Philosophy Auburn, AL August 10, 2009 SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Moses G. Gichinga Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions at their expense. The author reserves all publication rights. ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Signature of Author ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Date of Graduation iii VITA Moses Gichinga, son of Joseph Gichinga and Hannah Wangui, was born on June 2, 1980 in Kenya. He graduated with a Bachelor of Science degree in Chemistry in May, 2004 from University of Nairobi, Kenya. In the fall of 2004, he entered the Graduate School in the Department of Chemistry and Biochemistry at Auburn University. In January of 2005, he joined the laboratory of Dr. Susanne Striegler and is currently pursuing a Ph.D. degree. iv DISSERTATION ABSTRACT SYNTHESIS, SPECTROSCOPIC INVESTIGATION AND IMMOBILIZATION OF COPPER(II) COMPLEXES AS OXIDATION CATALYSTS Moses G.
    [Show full text]