An Update on the Effects of Glyceollins on Human Health

Total Page:16

File Type:pdf, Size:1020Kb

An Update on the Effects of Glyceollins on Human Health An Update on the Effects of Glyceollins on Human Health Possible Anticancer Effects and Underlying Mechanisms Thu Ha Pham, Sylvain Lecomte, Theo Efstathiou, François Ferriere, Farzad Pakdel To cite this version: Thu Ha Pham, Sylvain Lecomte, Theo Efstathiou, François Ferriere, Farzad Pakdel. An Update on the Effects of Glyceollins on Human Health Possible Anticancer Effects and Underlying Mechanisms. Nutrients, MDPI, 2019, 11 (1), pp.79. 10.3390/nu11010079. hal-01978725 HAL Id: hal-01978725 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01978725 Submitted on 8 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. nutrients Review An Update on the Effects of Glyceollins on Human Health: Possible Anticancer Effects and Underlying Mechanisms Thu Ha Pham 1, Sylvain Lecomte 1, Theo Efstathiou 2, Francois Ferriere 1 and Farzad Pakdel 1,* 1 Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; [email protected] (T.H.P.); [email protected] (S.L.); [email protected] (F.F.) 2 Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 rue Jules Maillard de la Gournerie, 35012 Rennes Cedex, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)22-323-5132 Received: 29 November 2018; Accepted: 23 December 2018; Published: 3 January 2019 Abstract: Biologically active plant-based compounds, commonly referred to as phytochemicals, can influence the expression and function of various receptors and transcription factors or signaling pathways that play vital roles in cellular functions and are then involved in human health and diseases. Thus, phytochemicals may have a great potential to prevent and treat chronic diseases. Glyceollins, a group of phytoalexins that are isolated from soybeans, have attracted attention because they exert numerous effects on human functions and diseases, notably anticancer effects. In this review, we have presented an update on the effects of glyceollins in relation to their potential beneficial roles in human health. Despite a growing number of studies suggesting that this new family of phytochemicals can be involved in critical cellular pathways, such as estrogen receptor, protein kinase, and lipid kinase signaling pathways, future investigations will be needed to better understand their molecular mechanisms and their specific significance in biomedical applications. Keywords: glyceollins; phytochemicals; dietary compounds; signaling pathways; estrogen receptor; breast cancer; human health 1. Introduction Thousands of bioactive molecules, among phytochemicals, naturally occur in plants after secondary metabolism. Out of these compounds, polyphenols represent the most important family, including more than 500 identified compounds [1,2]. They are mainly composed of flavonoids, phenolic acids, stilbenes, and lignans, found in a wide variety of plant-based foods. Polyphenol concentrations in foods and quantities consumed differ considerably, leading to wide differences in the daily intake between polyphenol compounds [2]. Polyphenols have often been associated with a decreased incidence of several human diseases and have been used in traditional medicines and functional foods [3]. Epidemiological studies have shown that a high intake of polyphenolic phytochemicals in the diet can prevent many diseases, such as cancers, diabetes or inflammatory, cardiovascular, and neurodegenerative diseases [4–9]. However, these studies have some limitations because they do not always take into account the geographical diversity, sex, age, and region of residence of the subjects. In addition, an accurate evaluation of polyphenol intake, which appears to be essential in these studies, is not always completed [2,8]. Polyphenols are also used as food supplements and in pharmaceutical and cosmetic products [10–12]. One of the advantages of ingesting phytochemicals through the diet is that combinatory effects from these compounds can occur [9]. Nutrients 2019, 11, 79; doi:10.3390/nu11010079 www.mdpi.com/journal/nutrients NutrientsNutrients2019 2018, 11, 10, 79, x FOR PEER REVIEW 22 ofof 24 24 The phytoalexins, a group of polyphenolic compounds possessing strong antimicrobial and antifungalThe phytoalexins, properties, aare group produced of polyphenolic by plants as compounds defense molecules possessing against strong phytopathogens antimicrobial and[13]. antifungalThey are only properties, present are in very produced small byquantities plants asin defensehealthy plants, molecules but againstaccumulate phytopathogens in large quantities [13]. Theyfollowing are only an presentattack by in verybacteria, small fungi, quantities or nemato in healthydes [14,15]. plants, butIn addition accumulate to biotic in large agents, quantities other followingstresses, ansuch attack as high by bacteria,temperature, fungi, ultraviolet or nematodes (UV) [ 14radiation,,15]. In addition humidity, to and biotic dryness, agents, can other also stresses, induce suchthe production as high temperature, of these compounds ultraviolet [14,15]. (UV) radiation, Phytoalexins humidity, are very and diverse dryness, and can have also been induce found the in productionvarious crops, of these such compounds as rice [16], [14 soybean,15]. Phytoalexins [17], maize are [18], very barley diverse [19], and and have banana been [20]. found Phytoalexins in various crops,can be such produced as rice in [16 numerous], soybean parts [17], of maize the plant, [18], su barleych as [the19], flowers, and banana leaves, [20 stems,]. Phytoalexins seeds, and canroot betubers produced [19,21]. in numerous parts of the plant, such as the flowers, leaves, stems, seeds, and root tubersGlyceollins, [19,21]. a group of phytoalexins, are the most important bioactive compounds present in soybeansGlyceollins, upon exposure a group ofto phytoalexins,certain fungi and are thesome most abiotic important elicitors, bioactive such as compoundsUV light, aluminum present inchloride, soybeans or upon methyl exposure jasmonate to certain [17,22]. fungi Glyceollin and some I, abioticII, and elicitors, III (GI, suchGII, asand UV GIII) light, are aluminum de novo chloride,synthesized or methyl from jasmonatethe soy isoflavone [17,22]. Glyceollin daidzein. I, II,In and addition III (GI, to GII, their and GIII)antibacterial, are de novo antifungal, synthesized and fromantinematode the soy isoflavone actions, daidzein.glyceollins In additionhave recently to their received antibacterial, much antifungal, attention andbecause antinematode of their actions,antiproliferative, glyceollins antiestrogenic, have recently anti-inflammatory, received much antioxidative, attention because and anticholesterolemic of their antiproliferative, activities. antiestrogenic,They may possess anti-inflammatory, potential medicinal antioxidative, properties and anticholesterolemic in humans, notably activities. protective They effects may possess against potentialhormone-dependent medicinal properties cancers, and in humans, metabolic notably and cardia protectivec diseases effects (Figure against 1) hormone-dependent [23,24]. Accordingly, cancers,glyceollins and metabolicare effectively and cardiac able diseases to inhibit (Figure proinflammatory1)[ 23,24]. Accordingly, cytokines glyceollins by areinhibiting effectively the ableactivation/phosphorylation to inhibit proinflammatory of the cytokines transcription by inhibitingnuclear factor-kappa the activation/phosphorylation B (NF-κB). They prevented of the the transcriptionlipopolysaccharide nuclear (LPS)-induced factor-kappa B expression (NF-κB). They of ni preventedtric oxide thesynthase lipopolysaccharide (iNOS) and cyclo-oxygenase (LPS)-induced expression(COX)-2 in of murine nitric oxide macrophage synthase cell (iNOS) lines and and cyclo-oxygenase were able to reduce (COX)-2 12- inO-tetradecanoylphorbol-13- murine macrophage cell linesacetate and (TPA)-induced were able to reduce skin 12-inflammationO-tetradecanoylphorbol-13-acetate in mice. These natural (TPA)-inducedcompounds also skin inhibit inflammation hormone- independent mice. These breast natural and compoundsovarian cancer also cell inhibit growth hormone-dependent [25,26]. One of the mechanisms breast and ovarian responsible cancer for cell the growthantitumoral [25,26 ].effect One ofof the glyceollins mechanisms is responsibletheir antiestrogenic for the antitumoral action [25,27,28]. effect of glyceollins However, is theirother antiestrogenicantitumorigenic action actions, [25,27 whose,28]. However, mechanisms other are antitumorigenic not well understood, actions, of whose glyceollins mechanisms have also are been not wellreported. understood, For instance, of glyceollins Lee et al. have repo alsorted on been an reported.inhibitory Foreffect instance, of glyceollins Lee et on al. the reported kinase activity on an inhibitoryof the vascular effect of endothelial glyceollins ongrowth the kinase factor activity (VEG ofF) thereceptor vascular as endothelial well as its growth
Recommended publications
  • Phytoalexins: Current Progress and Future Prospects
    Phytoalexins: Current Progress and Future Prospects Edited by Philippe Jeandet Printed Edition of the Special Issue Published in Molecules www.mdpi.com/journal/molecules Philippe Jeandet (Ed.) Phytoalexins: Current Progress and Future Prospects This book is a reprint of the special issue that appeared in the online open access journal Molecules (ISSN 1420-3049) in 2014 (available at: http://www.mdpi.com/journal/molecules/special_issues/phytoalexins-progress). Guest Editor Philippe Jeandet Laboratory of Stress, Defenses and Plant Reproduction U.R.V.V.C., UPRES EA 4707, Faculty of Sciences, University of Reims, PO Box. 1039, 51687 Reims cedex 02, France Editorial Office MDPI AG Klybeckstrasse 64 Basel, Switzerland Publisher Shu-Kun Lin Managing Editor Ran Dang 1. Edition 2015 MDPI • Basel • Beijing ISBN 978-3-03842-059-0 © 2015 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents About the Editor ............................................................................................................... VII List of
    [Show full text]
  • ABSTRACT Title of Document: BIOLOGICAL
    ABSTRACT Title of Document: BIOLOGICAL EFFICACY, MECHANISMS OF ACTIONS OF SOY-DERIVED PHYTOALEXIN GLYCEOLLINS IN PREVENTION OF CHRONIC DISEASES Haiqiu Huang, Doctor of Philosophy, 2014 Directed By: Professor Liangli (Lucy) Yu Department of Nutrition and Food Science Cardiovascular disease (CVD) is the leading cause of deaths worldwide. Prostate cancer is the most prevalent cancer in U.S. male population. Diet-induced hypercholesterolemia and chronic inflammation promote the development of both CVD and prostate cancer. Glyceollins are a group of soy phytoalexins possessing a variety of biological activities. This research project focused on characterizing glyceollins’ bioactivities in alleviating cholesterol dysregulation, prevention of prostate cancer, and regulating gut microbiome. The first part of the project aimed to evaluate glyceollins’ cholesterol- lowering effect in-vivo. Male golden Syrian hamsters were fed high-fat diet with or without glyceollins supplementation for 28 days. Glyceollins supplementation led to a significant reduction of plasma VLDL, hepatic cholesterol esters and total lipid content. Consistent with changes in circulating cholesterol, glyceollins supplementation also altered expression of the genes related to cholesterol metabolism in the liver. The second part of the study aimed to evaluate glyceollins’ effect in reducing prostate cancer tumor growth in a xenograft model. An initial delayed appearance of tumor was observed in a PC-3 xenograft model. However, no difference in tumor sizes was observed in a LNCaP xenograft model. Extrapolation analysis of tumor measurements indicated that no difference in sizes was expected for both PC-3 and LNCaP tumors. Glyceollins had no effect on the androgen responsive pathway, its proliferation, cell cycle, or on angiogenesis genes in tumor and xenobiotic metabolism, cholesterol transport, and inflammatory cytokine genes in liver.
    [Show full text]
  • Gmmyb176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-28-2017 12:00 AM GmMYB176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean Arun Kumaran Anguraj Vadivel The University of Western Ontario Supervisor Dr. Sangeeta Dhaubhadel The University of Western Ontario Joint Supervisor Dr. Mark Bernards The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Arun Kumaran Anguraj Vadivel 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Molecular Biology Commons, and the Plant Biology Commons Recommended Citation Anguraj Vadivel, Arun Kumaran, "GmMYB176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean" (2017). Electronic Thesis and Dissertation Repository. 4639. https://ir.lib.uwo.ca/etd/4639 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i Abstract MYB transcription factors are one of the largest transcription factor families characterized in plants. They are classified into four types: R1 MYB, R2R3 MYB, R3 MYB and R4 MYB. GmMYB176 is an R1MYB transcription factor that regulates Chalcone synthase (CHS8) gene expression and isoflavonoid biosynthesis in soybean. Silencing of GmMYB176 suppressed the expression of the GmCHS8 gene and reduced the accumulation of isoflavonoids in soybean hairy roots. However, overexpression of GmMYB176 does not alter either GmCHS8 gene expression or isoflavonoid levels suggesting that GmMYB176 alone is not sufficient for GmCHS8 gene regulation.
    [Show full text]
  • The Science of Flavonoids the Science of Flavonoids
    The Science of Flavonoids The Science of Flavonoids Edited by Erich Grotewold The Ohio State University Columbus, Ohio, USA Erich Grotewold Department of Cellular and Molecular Biology The Ohio State University Columbus, Ohio 43210 USA [email protected] The background of the cover corresponds to the accumulation of flavonols in the plasmodesmata of Arabidopsis root cells, as visualized with DBPA (provided by Dr. Wendy Peer). The structure corresponds to a model of the Arabidopsis F3 'H enzyme (provided by Dr. Brenda Winkel). The chemical structure corresponds to dihydrokaempferol. Library of Congress Control Number: 2005934296 ISBN-10: 0-387-28821-X ISBN-13: 978-0387-28821-5 ᭧2006 Springer ScienceϩBusiness Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceϩBusiness Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America (BS/DH) 987654321 springeronline.com PREFACE There is no doubt that among the large number of natural products of plant origin, debatably called secondary metabolites because their importance to the eco- physiology of the organisms that accumulate them was not initially recognized, flavonoids play a central role.
    [Show full text]
  • Isoflavonoid Biosynthesis 21321.Pdf
    Isoflavonoid Biosynthesis https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map00943&keyword=flavonoids Isoflavonoids are biologically active compounds, such as phytoestrogens, produced by pea family plants. While flavonoids (in the narrow sense) have the 2- phenylchromen-4-one backbone, isoflavonoids have the 3-phenylchromen-4-one backbone with no hydroxyl group substitution at position 2. Isoflavonoids are derived from the flavonoid biosynthesis pathway via liquiritigenin or naringenin. (Flavonoid Biosynthesis) -> [1,2] 1) Liquiritigenin -> [1,2,3] 1) flavone synthesis I & II -> 7,4’Dihydroxyflavone OR 2) flavonoid 6-hydroxylase -> 6,7,4’-Trihydroxyflavanone -> 2- hydroxyisoflavone synthase -> 2,6,7,4’-tetrahydroxyisoflavanone -> 6- Hydroxydaidzein -> Glycitein -> isoflavone 7-O-glucosyltransferase -> Glycitein 7-O-glucoside -> isoflavone 7-O-glucoside-6’’-O-malonyltransferase -> Glycitein 7-O-glucoside-6”-O-malonate OR 3) 2-hydroxyisoflavanone synthase -> 2,7,4’Trihydroxyisoflavanone -> [1,2] 1) Feedback Loop 2,7,4’-trihydroxyisoflavanone 4’-O-methyltransferase / isoflavone 4’-O-methyltransferase -> 2,7-Dihydroxy-4’-methoxyisoflavanone -> 2- hydroxyisoflavanone dehydratase -> Formononetin OR 2) 2-hydroxyisoflavone dehydratase -> Daidzein -> [1,2,3,4,5] 1) isoflavone/4’-methoxyisoflavone 2’-hydroxylase -> 2’Hydroxydaidzein -> 2’Hydroxydaidzein reductase -> 2’-Hydroxydihydrodaidzein -> 3,9-Dihydroxypterocarpan -> 3,9-dihydroxypterocarpan 6a-monooxygenase -> 3,6,9- Trihydroxypterocarpan -> [1,2] 1) trihydroxypterocarpan dimethylallyltransferase
    [Show full text]
  • Identification and Characterization of the Isoflavonoid-Specific Prenyltransferase Gene Family to Prevent Stem and Root Rot in Soybean
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-30-2016 12:00 AM Identification and Characterization of the Isoflavonoid-Specific Prenyltransferase Gene Family to Prevent Stem and Root Rot in Soybean Arjun Sukumaran The University of Western Ontario Supervisor Dr. Sangeeta Dhaubhadel The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Arjun Sukumaran 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biology Commons, Genetics and Genomics Commons, Plant Biology Commons, and the Plant Pathology Commons Recommended Citation Sukumaran, Arjun, "Identification and Characterization of the Isoflavonoid-Specific Prenyltransferase Gene Family to Prevent Stem and Root Rot in Soybean" (2016). Electronic Thesis and Dissertation Repository. 4130. https://ir.lib.uwo.ca/etd/4130 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i Abstract Soybean is one of the most predominantly grown legumes worldwide, however, one deterrent to maximizing its yield is the pathogen, Phytophthora sojae, which causes stem and root rot disease. Many strategies have been implemented to combat this pathogen such as use of pesticides and certain agricultural practices. However, these have been largely ineffective in completely preventing P. sojae infection. An alternative strategy would be to improve the innate resistance of soybean by promoting increased glyceollin production. Glyceollins are soybean-specific antimicrobial agents which are derived from the isoflavonoid branch of the general phenylpropanoid pathway.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Fungicide
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Fungicide Chemical Dosage (+)-3-HYDROXY-9-METHOXYPTEROCARPAN IC26-78=100 uM (+)-VESTITONE -- (-)-3-HYDROXY-9-METHOXYPTEROCARPAN IC31-69=100 uM (-)-ACANTHOCARPAN ED50=<50-100 (-)-APIOCARPIN ED50=<50 (-)-CANESCACARPIN ED50=<50 (-)-CLANDESTACARPIN ED50=<50 (-)-CRISTACARPIN ED50=<50 (-)-DEMETHYLMEDICARPIN EC50=50-100 (-)-DOLICHIN-A ED50=>100 (-)-DOLICHIN-B ED50=>100 (-)-EPIGALLOCATECHIN-GALLATE -- (-)-GLYCEOCARPIN ED50=50-100 (-)-GLYCEOFURAN ED50=>100 (-)-GLYCEOLLIN-I ED50=<50 (-)-GLYCEOLLIN-II ED50=<50 (-)-GLYCEOLLIN-III ED50=<50 (-)-GLYCEOLLIN-IV ED50=<50 (-)-GLYCINOL ED50=50->100 (-)-ISOSATIVAN -- (-)-JASMONIC-ACID -- (-)-MEDICARPIN ED50=<50 (-)-VESTITOL -- (-)-VESTITONE -- (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE -- -METHOXYBRASSITIN -- 1,2-DIHYDROXY-4-GLUCOSYLNAPTHALENE -- Chemical Dosage 1,2-DIMETHOXY-3,8-DIHYDROXYXANTHONE > miconazole 1,7-DIHYDROXY-4-METHOXYXANTHONE <miconazole 1,8-CINEOLE -- 1-TULIPOSIDE-A -- 1-TULIPOSIDE-B -- 13',II8-BIAPIGENIN -- 15-GLUCOPYRANOSYL-GLAUCORUBOLONE -- 2'-HYDROXYDAIDZEIN ED50=>100 2'-HYDROXYGENISTEIN ED50=50->100 2,3-DEHYDROKIEVITONE -- 2,6-DIMETHOXY-P-BENZOQUINONE -- 2,7-DIMETHOXY-5-ISOPROPYL-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE -- 2-HYDROXY-5-ISOPROPYL-7-METHOXY-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE -- 2-METHOXYPHASEOLLINISOFLAVON IC80-89=100uM 26-DESGLUCOAVENACOSIDE-A -- 26-DESGLUCOAVENACOSIDE-B -- 3'-FORMYL-2',4',6'-TRIHYDROXY-5'-METHYLDIHYDROCHALCONE -- 3'-FORMYL-2',4',6'-TRIHYDROXYDIHYDROCHALCONE -- 3,4-DIMETHOXYTOLUENE
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • Glyceollin) in Soybeans and Pullulan from Sucrose
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2020 Developing Microbial Based Process to Produce High Value Natural Antimicrobial (Glyceollin) in Soybeans and Pullulan from Sucrose Andrea Zavadil South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Agronomy and Crop Sciences Commons, Environmental Microbiology and Microbial Ecology Commons, and the Plant Biology Commons Recommended Citation Zavadil, Andrea, "Developing Microbial Based Process to Produce High Value Natural Antimicrobial (Glyceollin) in Soybeans and Pullulan from Sucrose" (2020). Electronic Theses and Dissertations. 5002. https://openprairie.sdstate.edu/etd/5002 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. DEVELOPING MICROBIAL BASED PROCESS TO PRODUCE HIGH VALUE NATURAL ANTIMICROBIAL (GLYCEOLLIN) IN SOYBEANS AND PULLULAN FROM SUCROSE BY ANDREA ZAVADIL A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Microbiology South Dakota State University 2020 ii THESIS ACCEPTANCE PAGE Andrea Zavadil This thesis is approved as a creditable and independent investigation by a candidate for the master’s degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department.
    [Show full text]
  • Glyceollins Trigger Anti-Proliferative Effects Through Estradiol-Dependent
    Lecomte et al. Cell Communication and Signaling (2017) 15:26 DOI 10.1186/s12964-017-0182-1 RESEARCH Open Access Glyceollins trigger anti-proliferative effects through estradiol-dependent and independent pathways in breast cancer cells Sylvain Lecomte1,2, Frederic Chalmel1,3, François Ferriere1,2, Frederic Percevault1,2, Nicolas Plu4, Christian Saligaut1,2, Claire Surel4, Marie Lelong1,2, Theo Efstathiou4 and Farzad Pakdel1,2* Abstract Background: Estrogen receptors (ER) α and β are found in both women and men in many tissues, where they have different functions, including having roles in cell proliferation and differentiation of the reproductive tract. In addition to estradiol (E2), a natural hormone, numerous compounds are able to bind ERs and modulate their activities. Among these compounds, phytoestrogens such as isoflavones, which are found in plants, are promising therapeutics for several pathologies. Glyceollins are second metabolites of isoflavones that are mainly produced in soybean in response to an elicitor. They have potentially therapeutic actions in breast cancer by reducing the proliferation of cancer cells. However, the molecular mechanisms driving these effects remain elusive. Methods: First, to determine the proliferative or anti-proliferative effects of glyceollins, in vivo and in vitro approaches were used. The length of epithelial duct in mammary gland as well as uterotrophy after treatment by E2 and glyceollins and their effect on proliferation of different breast cell line were assessed. Secondly, the ability of glyceollin to activate ER was assessed by luciferase assay. Finally, to unravel molecular mechanisms involved by glyceollins, transcriptomic analysis was performed on MCF-7 breast cancer cells. Results: In this study, we show that synthetic versions of glyceollin I and II exert anti-proliferative effects in vivo in mouse mammary glands and in vitro in different ER-positive and ER-negative breast cell lines.
    [Show full text]
  • Genetic Regulation of the Elicitation of Glyceollin Biosynthesis in Soybean
    Graduate Theses, Dissertations, and Problem Reports 2019 GENETIC REGULATION OF THE ELICITATION OF GLYCEOLLIN BIOSYNTHESIS IN SOYBEAN Md. Asraful Jahan West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Agricultural Science Commons, Genetics Commons, Molecular Genetics Commons, Plant Breeding and Genetics Commons, and the Plant Pathology Commons Recommended Citation Jahan, Md. Asraful, "GENETIC REGULATION OF THE ELICITATION OF GLYCEOLLIN BIOSYNTHESIS IN SOYBEAN" (2019). Graduate Theses, Dissertations, and Problem Reports. 3782. https://researchrepository.wvu.edu/etd/3782 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Genetic Regulation of the Elicitation of Glyceollin Biosynthesis in Soybean Md. Asraful Jahan Dissertation submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Nikola Kovinich, Ph.D., Committee Chair Daniel G.
    [Show full text]
  • Supplementary Figure S1
    Supplementary Figure S1 A 100 80 (%) 60 40 Proportion 20 0 Seed HypocotylCotyledon Root Root Seedling Glyceollin I Glyceollin II Glyceollin III B 100 80 60 40 Proportion (%) 20 0 microspores WGE C 100 80 60 40 Proportion (%) 20 0 AgNO3 CuCl2 BTD AVG SA Chemical elicitor DGlyceollin100 I Glyceollin II Glyceollin III 80 60 40 Proportion (%) 20 0 WGE + AGNO3 Elicitor Supplementary Figure S1. Relative proportion of glyceollins from soybean organs treated with purified wall glucan elicitor (WGE) from P. sojae (A), from soybean seeds treated with biotic elicitors (B), chemical elicitors silver nitrate (AgNO3), copper chloride (CuCl2), benzothiadiazole (BTD), aminoethoxyvinyl glycine (AVG), and salicylic acid (SA) at 1 -1 mM (C), seeds with AgNO3 (5 mM) and WGE (20 mg mL ) (D). Dashed line demarcates 50%. Supplementary Figure S2 Supplementary Figure S2. (A) Glyceollin I accumulation dynamics -1 after eliciting imbibed seeds with 5 mg mL WGE or 2.5 mM AgNO3 for the indicated times. (B) Metabolite induction compared to the solvent control (H2O). Two-way ANOVA, Tukey post hoc test (P < 0.001). Supplementary Figure S3 A 2nd quartile 3rd quartile Mean 300 a ) 1 - abc 200 ab cd 100 d Glyceollin gt I (µg d 0 0 1 2.5 5 7.5 10 3rd quartile 2nd quartile Mean B AgNO3 (mM) a 600 ) 1 - 500 abc c d d 400 300 200 Glyceollin gt I (µg 100 e 0 0 5 10 20 40 60 WGE (mg mL-1) Supplementary Figure S3. (A) Glyceollin I concen- trations in imbibing soybean seeds elicited with different concentrations of AgNO3.
    [Show full text]