The Synergistic Effect of Co-Treatment of Methyl Jasmonate

Total Page:16

File Type:pdf, Size:1020Kb

The Synergistic Effect of Co-Treatment of Methyl Jasmonate International Journal of Molecular Sciences Article The Synergistic Effect of Co-Treatment of Methyl Jasmonate and Cyclodextrins on Pterocarpan Production in Sophora flavescens Cell Cultures 1,2, 1, 1 1 1 Soyoung Kim y, Yu Jeong Jeong y, Su Hyun Park , Sung-Chul Park , Saet Buyl Lee , Jiyoung Lee 1, Suk Weon Kim 1, Bo-Keun Ha 2, Hyun-Soon Kim 3, HyeRan Kim 3, Young Bae Ryu 4, Jae Cheol Jeong 1,* and Cha Young Kim 1,* 1 Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; [email protected] (S.K.); [email protected] (Y.J.J.); [email protected] (S.H.P.); [email protected] (S.-C.P.); [email protected] (S.B.L.); [email protected] (J.L.); [email protected] (S.W.K.) 2 Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; [email protected] 3 Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; [email protected] (H.-S.K.); [email protected] (H.K.) 4 Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; [email protected] * Correspondence: [email protected] (J.C.J.); [email protected] (C.Y.K.); Tel.: +82-63-570-5001 (C.Y.K.); Fax: +82-63-570-5009 (C.Y.K.) These authors contributed equally to this work. y Received: 9 April 2020; Accepted: 29 May 2020; Published: 30 May 2020 Abstract: Pterocarpans are derivatives of isoflavonoids, found in many species of the family Fabaceae. Sophora flavescens Aiton is a promising traditional Asian medicinal plant. Plant cell suspension cultures represent an excellent source for the production of valuable secondary metabolites. Herein, we found that methyl jasmonate (MJ) elicited the activation of pterocarpan biosynthetic genes in cell suspension cultures of S. flavescens and enhanced the accumulation of pterocarpans, producing mainly trifolirhizin, trifolirhizin malonate, and maackiain. MJ application stimulated the expression of structural genes (PAL, C4H, 4CL, CHS, CHR, CHI, IFS, I3’H, and IFR) of the pterocarpan biosynthetic pathway. In addition, the co-treatment of MJ and methyl-β-cyclodextrin (MeβCD) as a solubilizer exhibited a synergistic effect on the activation of the pterocarpan biosynthetic genes. The maximum level of total pterocarpan production (37.2 mg/g dry weight (DW)) was obtained on day 17 after the application of 50 µM MJ on cells. We also found that the combined treatment of cells for seven days with MJ and MeβCD synergistically induced the pterocarpan production (trifolirhizin, trifolirhizin malonate, and maackiain) in the cells (58 mg/g DW) and culture medium (222.7 mg/L). Noteworthy, the co-treatment only stimulated the elevated extracellular production of maackiain in the culture medium, indicating its extracellular secretion; however, its glycosides (trifolirhizin and trifolirhizin malonate) were not detected in any significant amounts in the culture medium. This work provides new strategies for the pterocarpan production in plant cell suspension cultures, and shows MeβCD to be an effective solubilizer for the extracellular production of maackiain in the cell cultures of S. flavescens. Keywords: Sophora flavescens; cell cultures; pterocarpan; maackiain; trifolirhizin; elicitation Int. J. Mol. Sci. 2020, 21, 3944; doi:10.3390/ijms21113944 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 3944 2 of 14 Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 14 1. Introduction 1. Introduction Plants produce a wide variety of secondary metabolites that are economically important as pharmaceuticals,Plants produce agrochemicals, a wide variety bio-pesticides, of secondary flavors, metabolites fragrances, that colors,are economically and food additivesimportant [ 1as,2]. pharmaceuticals, agrochemicals, bio-pesticides, flavors, fragrances, colors, and food additives [1,2]. Sophora flavescens Aiton, the shrubby sophora, belongs to the family Fabaceae (Leguminosae) and is Sophora flavescens Aiton, the shrubby sophora, belongs to the family Fabaceae (Leguminosae) and is an important legume in Asia [3]. The root of S. flavescens, also known as Kosam in Korean (Kushen an important legume in Asia [3]. The root of S. flavescens, also known as Kosam in Korean (Kushen in Chinese), is commonly used as a traditional herbal medicine because of its various biological in Chinese), is commonly used as a traditional herbal medicine because of its various biological activities, including anti-cancer, anti-arrhythmic, anti-allergic, anti-inflammatory, and anti-asthmatic activities, including anti-cancer, anti-arrhythmic, anti-allergic, anti-inflammatory, and anti-asthmatic effects [3–6]. It has been officially listed in the Korean Pharmacopoeia and Chinese Pharmacopoeia. S. effects [3–6]. It has been officially listed in the Korean Pharmacopoeia and Chinese Pharmacopoeia. flavescens is known to produce a wide range of secondary metabolites, including flavonoids, alkaloids, S. flavescens is known to produce a wide range of secondary metabolites, including flavonoids, triterpenoids, and pterocarpans [3]. Among them, pterocarpans—including maackiain, trifolirhizin, alkaloids, triterpenoids, and pterocarpans [3]. Among them, pterocarpans—including maackiain, andtrifolirhizin, trifolirhizin and malonate—are trifolirhizin malonate—are isoflavonoids isofla foundvonoids in many found species in many of Fabaceae. species of TheyFabaceae. have They been reportedhave been to have reported various to have biological various activities, biological such activities, as anti-microbial, such as anti-microbial, anti-cancerous, anti-cancerous, anti-inflammatory, anti- andinflammatory, anti-malarial and activities anti-malarial [7,8]. Pterocarpansactivities [7,8]. comprise Pterocarpans the secondcomprise largest the second group largest of isoflavonoids group of afterisoflavonoids isoflavones. after They isoflavones. primarily They act asprimarily phytoalexins act as phytoalexins in leguminous in leguminous plants, and plants, also function and also as signalfunction molecules as signal in plant–microorganism molecules in plant–microorganism interactions [7,9 ].interactions Leguminous [7,9]. plants Leguminous are known plants to produce are pterocarpanknown to produce phytoalexins pterocarpan [10]. Pterocarpans phytoalexins of [10]. pisatin, Pterocarpans medicarpin, of pisatin, and maackiain medicarpin, are produced and maackiain in pea (Pisumare produced sativum), in peanut pea (Pisum (Arachis sativum hypogaea), peanut), and (ArachisSophora hypogaea japonica),, respectivelyand Sophora japonica [10–13]., respectively Pterocarpans [10– are formed13]. Pterocarpans at the last stages are formed of the flavonoidat the last biosyntheticstages of the pathwayflavonoid as biosynthetic a part of the pathway isoflavonoid as a part branch of the [7]. Isoflavonoidsisoflavonoid arebranch synthesized [7]. Isoflavo by anoids legume-specific are synthesized branch by of a thelegume general-specific phenylpropanoid branch of the pathway.general Thephenylpropanoid first product in pathway. the biosynthesis The first of product flavonoids in the and biosynthesis isoflavonoids of flavonoids is chalcone, and which isoflavonoids requires anis enzymaticchalcone, reactionwhich requires catalyzed an by enzymatic chalcone synthasereaction (CHS)catalyzed [14]. by Isoliquiritigenin chalcone synthase and liquiritigenin(CHS) [14]. areIsoliquiritigenin produced from and chalcones liquiritigenin by additional are produced legume-specific from chalcones enzymes, by additional chalcone reductaselegume-specific (CHR) andenzymes, chalcone chalcone isomerase reductase (CHI) (CHR) [15,16 ].and Isoflavonoid chalcone isomerase biosynthesis (CHI) is [15,16]. further Isoflavonoid catalyzed bybiosynthesis isoflavone synthaseis further (IFS) catalyzed to biosynthesize by isoflavone isoflavanone synthase (daidzein),(IFS) to biosynthesize which is then isoflavanone modified by(daidzein), methyltransferase which is (I4’OMT),then modified hydroxylase by (I3’H),methyltransferase reductase (IFR), (I4'OMT), glucosyltransferase hydroxylase (IF7GT), (I3'H), and malonyltransferasereductase (IFR), (IF7MaT)glucosyltransferase to form isoflavonoids (IF7GT), and (pterocarpans) malonyltransferase (Figure (IF7MaT)1)[ 17]. Theto form flavonoid isoflavonoids biosynthetic (pterocarpans) pathway has(Figure been elucidated,1) [17]. The andflavonoid many biosynthetic of the related pathwa genesy havehas been been elucidated, characterized and inmany other of speciesthe related [18]. Recently,genes have putative been genes characterized involved in in other the flavonoid species [18]. biosynthesis Recently, in putativeS. flavescens geneswere involved discovered in the by transcriptomeflavonoid biosynthesis (RNA-Seq) in analysis S. flavescens [5,19 were]. Lee discovered et al. [5] analyzed by transcript the contentsome (RNA-Seq) of phenolic analysis compounds [5,19]. inLee the et leaves, al. [5] stems,analyzed and the roots contents of S. of flavescens phenolic, and compounds have identified in the leaves, candidate stems, genes and involvedroots of S. in theflavescens biosynthesis, and ofhave phenolic identified acids candidate and flavonoids. genes involved They have in alsothe biosynthesis reported the of expression phenolic patternsacids and of theflavonoids. biosynthesis-related They have genesalso reported in different the organs expressi andon developmentalpatterns of the stages.biosynthesis-related genes in different organs
Recommended publications
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Fungicide
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Fungicide Chemical Dosage (+)-3-HYDROXY-9-METHOXYPTEROCARPAN IC26-78=100 uM (+)-VESTITONE -- (-)-3-HYDROXY-9-METHOXYPTEROCARPAN IC31-69=100 uM (-)-ACANTHOCARPAN ED50=<50-100 (-)-APIOCARPIN ED50=<50 (-)-CANESCACARPIN ED50=<50 (-)-CLANDESTACARPIN ED50=<50 (-)-CRISTACARPIN ED50=<50 (-)-DEMETHYLMEDICARPIN EC50=50-100 (-)-DOLICHIN-A ED50=>100 (-)-DOLICHIN-B ED50=>100 (-)-EPIGALLOCATECHIN-GALLATE -- (-)-GLYCEOCARPIN ED50=50-100 (-)-GLYCEOFURAN ED50=>100 (-)-GLYCEOLLIN-I ED50=<50 (-)-GLYCEOLLIN-II ED50=<50 (-)-GLYCEOLLIN-III ED50=<50 (-)-GLYCEOLLIN-IV ED50=<50 (-)-GLYCINOL ED50=50->100 (-)-ISOSATIVAN -- (-)-JASMONIC-ACID -- (-)-MEDICARPIN ED50=<50 (-)-VESTITOL -- (-)-VESTITONE -- (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE -- -METHOXYBRASSITIN -- 1,2-DIHYDROXY-4-GLUCOSYLNAPTHALENE -- Chemical Dosage 1,2-DIMETHOXY-3,8-DIHYDROXYXANTHONE > miconazole 1,7-DIHYDROXY-4-METHOXYXANTHONE <miconazole 1,8-CINEOLE -- 1-TULIPOSIDE-A -- 1-TULIPOSIDE-B -- 13',II8-BIAPIGENIN -- 15-GLUCOPYRANOSYL-GLAUCORUBOLONE -- 2'-HYDROXYDAIDZEIN ED50=>100 2'-HYDROXYGENISTEIN ED50=50->100 2,3-DEHYDROKIEVITONE -- 2,6-DIMETHOXY-P-BENZOQUINONE -- 2,7-DIMETHOXY-5-ISOPROPYL-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE -- 2-HYDROXY-5-ISOPROPYL-7-METHOXY-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE -- 2-METHOXYPHASEOLLINISOFLAVON IC80-89=100uM 26-DESGLUCOAVENACOSIDE-A -- 26-DESGLUCOAVENACOSIDE-B -- 3'-FORMYL-2',4',6'-TRIHYDROXY-5'-METHYLDIHYDROCHALCONE -- 3'-FORMYL-2',4',6'-TRIHYDROXYDIHYDROCHALCONE -- 3,4-DIMETHOXYTOLUENE
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • Genetic Regulation of the Elicitation of Glyceollin Biosynthesis in Soybean
    Graduate Theses, Dissertations, and Problem Reports 2019 GENETIC REGULATION OF THE ELICITATION OF GLYCEOLLIN BIOSYNTHESIS IN SOYBEAN Md. Asraful Jahan West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Agricultural Science Commons, Genetics Commons, Molecular Genetics Commons, Plant Breeding and Genetics Commons, and the Plant Pathology Commons Recommended Citation Jahan, Md. Asraful, "GENETIC REGULATION OF THE ELICITATION OF GLYCEOLLIN BIOSYNTHESIS IN SOYBEAN" (2019). Graduate Theses, Dissertations, and Problem Reports. 3782. https://researchrepository.wvu.edu/etd/3782 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Genetic Regulation of the Elicitation of Glyceollin Biosynthesis in Soybean Md. Asraful Jahan Dissertation submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Nikola Kovinich, Ph.D., Committee Chair Daniel G.
    [Show full text]
  • Enhanced Biosynthesis of the Natural Antimicrobial Glyceollins in Soybean Seedlings by Priming and Elicitation
    Enhanced biosynthesis of the natural antimicrobial glyceollins in soybean seedlings by priming and elicitation Kalli, S., Araya-Cloutier, C., Lin, Y., de Bruijn, W. J. C., Chapman, J., & Vincken, J. P. This is a "Post-Print" accepted manuscript, which has been Published in "Food Chemistry" This version is distributed under a non-commercial no derivatives Creative Commons (CC-BY-NC-ND) user license, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and not used for commercial purposes. Further, the restriction applies that if you remix, transform, or build upon the material, you may not distribute the modified material. Please cite this publication as follows: Kalli, S., Araya-Cloutier, C., Lin, Y., de Bruijn, W. J. C., Chapman, J., & Vincken, J. P. (2020). Enhanced biosynthesis of the natural antimicrobial glyceollins in soybean seedlings by priming and elicitation. Food Chemistry, 317, [126389]. https://doi.org/10.1016/j.foodchem.2020.126389 You can download the published version at: https://doi.org/10.1016/j.foodchem.2020.126389 Enhanced biosynthesis of the natural antimicrobial glyceollins in soybean seedlings by priming and elicitation Sylvia Kallia, Carla Araya-Cloutiera, Yiran Lina, Wouter J.C. de Bruijna, John Chapmanb, and Jean-Paul Vinckena,* a Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands. b Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands. * Correspondence to: [email protected] 1 Highlights • Priming prior to Rhizopus-elicitation enhances the production of glyceollins. • Priming with reactive oxygen species was superior to wounding in glyceollin production.
    [Show full text]
  • Glyceollin Is an Important Component of Soybean Plant Defense Against Phytophthora Sojae and Macrophomina Phaseolina
    Biochemistry and Cell Biology Glyceollin is an Important Component of Soybean Plant Defense Against Phytophthora sojae and Macrophomina phaseolina Anatoliy V. Lygin, Olga V. Zernova, Curtis B. Hill, Nadegda A. Kholina, Jack M. Widholm, Glen L. Hartman, and Vera V. Lozovaya First, second, third, fourth, fifth, and seventh authors: Department of Crop Sciences, University of Illinois, 1201 W. Gregory Drive, Urbana 61801; and sixth author: United States Department of Agriculture–Agricultural Research Service, University of Illinois, 1101 W. Peabody Drive, Urbana 61801. Accepted for publication 16 April 2013. ABSTRACT Lygin, A. V., Zernova, O. V., Hill, C. B., Kholina, N. A., Widholm, J. M., moter compared with the untransformed control during the 10-day obser- Hartman, G. L., and Lozovaya, V. V. 2013. Glyceollin is an important vation period, with the precursors of isoflavone synthesis being accumu- component of soybean plant defense against Phytophthora sojae and lated in the cotyledons of transgenic plants. These results indicated that Macrophomina phaseolina. Phytopathology 103:984-994. the lectin promoter could be active not only during seed development but also during seed germination. Downregulation of isoflavone synthesis only The response of soybean transgenic plants, with suppressed synthesis in the seed or in the whole soybean plant caused a strong inhibition of the of isoflavones, and nontransgenic plants to two common soybean patho- pathogen-inducible glyceollin in cotyledons after inoculation with P. s o j a e , gens, Macrophomina phaseolina and Phytophthora sojae, was studied. which resulted in increased susceptibility of the cotyledons of both trans- Transgenic soybean plants of one line used in this study were previously genic lines to this pathogen compared with inoculated cotyledons of un- generated via bombardment of embryogenic cultures with the phenyl- transformed plants.
    [Show full text]
  • Isoflavonoid-Inducible Resistance to the Phytoalexin Glyceollin In
    JOURNAL OF BACTERIOLOGY, June 1991, p. 3432-3439 Vol. 173, No. 11 0021-9193/91/113432-08$02.00/0 Copyright X 1991, American Society for Microbiology Isoflavonoid-Inducible Resistance to the Phytoalexin Glyceollin in Soybean Rhizobia MARTIN PARNISKE,* BETTINA AHLBORN, AND DIETRICH WERNER Fachbereich Biologie der Philipps-Universitat, Karl-von-Frisch-Strasse, D-3550 MarburglLahn, Federal Republic of Germany Received 13 August 1990/Accepted 25 March 1991 The antibacterial effect of the soybean phytoalexin glyceollin was assayed using a liquid microculture technique. Log-phase cells of Bradyrhizobium japonicum and Sinorhizobium fredii were sensitive to glyceollin. As revealed by growth rates and survival tests, these species were able to tolerate glyceollin after adaptation. Incubation in low concentrations of the isoflavones genistein and daidzein induced resistance to potentially bactericidal concentrations of glyceollin. This inducible resistance is not due to degradation or detoxification of the phytoalexin. The inducible resistance could be detected in B. japonicum 110spc4 and 61A101, representing the two taxonomically divergent groups of this species, as well as in S. fredii HH103, suggesting that this trait is a feature of all soybean-nodulating rhizobia. Glyceollin resistance was also inducible in a nodDlD2YABC deletion mutant of B. japonicum 110spc4, suggesting that there exists another recognition site for flavonoids besides the nodD genes identified so far. Exudate preparations from roots infected with Phytophthora megasperma f. sp. glycinea exhibited a strong bactericidal effect toward glyceollin-sensitive cells of B. japonicum. This killing effect was not solely due to glyceollin since purified glyceollin at concentrations similar to those present in exudate preparations had a much lower toxicity.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Fungicide
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Fungicide Chemical Dosage (+)-3-HYDROXY-9-METHOXYPTEROCARPAN IC26-78=100 uM (+)-VESTITONE -- (-)-3-HYDROXY-9-METHOXYPTEROCARPAN IC31-69=100 uM (-)-ACANTHOCARPAN ED50=<50-100 (-)-APIOCARPIN ED50=<50 (-)-CANESCACARPIN ED50=<50 (-)-CLANDESTACARPIN ED50=<50 (-)-CRISTACARPIN ED50=<50 (-)-DEMETHYLMEDICARPIN EC50=50-100 (-)-DOLICHIN-A ED50=>100 (-)-DOLICHIN-B ED50=>100 (-)-EPIGALLOCATECHIN-GALLATE -- (-)-GLYCEOCARPIN ED50=50-100 (-)-GLYCEOFURAN ED50=>100 (-)-GLYCEOLLIN-I ED50=<50 (-)-GLYCEOLLIN-II ED50=<50 (-)-GLYCEOLLIN-III ED50=<50 (-)-GLYCEOLLIN-IV ED50=<50 (-)-GLYCINOL ED50=50->100 (-)-ISOSATIVAN -- (-)-JASMONIC-ACID -- (-)-MEDICARPIN ED50=<50 (-)-VESTITOL -- (-)-VESTITONE -- (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE -- -METHOXYBRASSITIN -- 1,2-DIHYDROXY-4-GLUCOSYLNAPTHALENE -- Chemical Dosage 1,2-DIMETHOXY-3,8-DIHYDROXYXANTHONE > miconazole 1,7-DIHYDROXY-4-METHOXYXANTHONE <miconazole 1,8-CINEOLE -- 1-TULIPOSIDE-A -- 1-TULIPOSIDE-B -- 13',II8-BIAPIGENIN -- 15-GLUCOPYRANOSYL-GLAUCORUBOLONE -- 2'-HYDROXYDAIDZEIN ED50=>100 2'-HYDROXYGENISTEIN ED50=50->100 2,3-DEHYDROKIEVITONE -- 2,6-DIMETHOXY-P-BENZOQUINONE -- 2,7-DIMETHOXY-5-ISOPROPYL-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE -- 2-HYDROXY-5-ISOPROPYL-7-METHOXY-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE -- 2-METHOXYPHASEOLLINISOFLAVON IC80-89=100uM 26-DESGLUCOAVENACOSIDE-A -- 26-DESGLUCOAVENACOSIDE-B -- 3'-FORMYL-2',4',6'-TRIHYDROXY-5'-METHYLDIHYDROCHALCONE -- 3'-FORMYL-2',4',6'-TRIHYDROXYDIHYDROCHALCONE -- 3,4-DIMETHOXYTOLUENE
    [Show full text]
  • Distinct Mechanisms of Biotic and Chemical Elicitors Enable Additive Elicitation of the Anticancer Phytoalexin Glyceollin I
    molecules Article Distinct Mechanisms of Biotic and Chemical Elicitors Enable Additive Elicitation of the Anticancer Phytoalexin Glyceollin I Kelli Farrell 1,†, Md Asraful Jahan 2,† and Nik Kovinich 2,* 1 Department of Biology, West Virginia University, Morgantown, WV 26506, USA; [email protected] 2 Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-304-293-9240 † These Authors contributed equally to this article. Received: 16 June 2017; Accepted: 25 July 2017; Published: 27 July 2017 Abstract: Phytoalexins are metabolites biosynthesized in plants in response to pathogen, environmental, and chemical stresses that often have potent bioactivities, rendering them promising for use as therapeutics or scaffolds for pharmaceutical development. Glyceollin I is an isoflavonoid phytoalexin from soybean that exhibits potent anticancer activities and is not economical to synthesize. Here, we tested a range of source tissues from soybean, in addition to chemical and biotic elicitors, to understand how to enhance the bioproduction of glyceollin I. Combining the inorganic chemical silver nitrate (AgNO3) with the wall glucan elicitor (WGE) from the soybean pathogen Phytophthora sojae had an additive effect on the elicitation of soybean seeds, resulting in a yield of up to 745.1 µg gt−1 glyceollin I. The additive elicitation suggested that the biotic and chemical elicitors acted largely by separate mechanisms. WGE caused a major accumulation of phytoalexin gene transcripts, whereas 00 AgNO3 inhibited and enhanced the degradation of glyceollin I and 6 -O-malonyldaidzin, respectively. Keywords: bioproduction; phytoalexin; isoflavonoid; glyceollin; soybean [Glycine max (L.) Merr.] 1.
    [Show full text]
  • Phytoserms in Licorice
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 1-1-2019 Cheminformatic Approach for Deconvolution of Active Compounds in a Complex Mixture - phytoserms in Licorice Manal Mohammad Alhusban Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Alhusban, Manal Mohammad, "Cheminformatic Approach for Deconvolution of Active Compounds in a Complex Mixture - phytoserms in Licorice" (2019). Electronic Theses and Dissertations. 1954. https://egrove.olemiss.edu/etd/1954 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. CHEMINFORMATIC APPROACH FOR DECONVOLUTION OF ACTIVE COMPOUNDS IN A COMPLEX MIXTURE - PHYTOSERMS IN LICORICE A Dissertation Presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences, Emphasis in Pharmacognosy The University of Mississippi Manal M. Alhusban August 2019 Copyright © 2019 by Manal M. Alhusban All rights reserved ABSTRACT The genus Glycyrrhiza, encompasses several species exhibiting complex structural diversity of secondary metabolites and hence biological activities. The intricate nature of botanical remedies, such as licorice, rendered them obsolete for scientific research or medical industry. Understanding and finding the mechanisms of efficacy or safety for a plant-based therapy is very challenging, yet it remains crucial and warranted. The licorice plant is known to have Selective Estrogen Receptor Modulatory effects (SERMs), with a spectrum of estrogenic and anti-estrogenic activities attributed to women’s health.
    [Show full text]
  • Isoneorautenol and Other Pterocarpan Phytoalexins from Calopogonium Mucunoides
    Isoneorautenol and Other Pterocarpan Phytoalexins from Calopogonium mucunoides John L. Ingham Phytochemical Unit, Department of Botany, University of Reading, P. O. Box 221, Reading RG6 2AS, England Satoshi Tahara Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo 060, Japan Z. Naturforsch. 40c, 482—489 (1985); received March 16, 1985 Leguminosae, Calopogonium, Isoflavonoids, (—) —Pterocarpans, Phytoalexins Following inoculation with the fungus Helminthosporium carbonum, excised leaflets of the tropical papilionate legume Calopogonium mucunoides have been found to produce isoneorautenol, a new dimethylpyrano-substituted isoflavonoid (pterocarpan) phytoalexin. This compound accumulates together with demethylmedicarpin, neodunol, tuberosin, sophorap- terocarpan A, and a sixth highly antifungal isoflavonoid (calopocarpin) characterised as 3,9- dihydroxy-2-(3,3-dimethylallyl)pterocarpan. Chromatographic and spectroscopic examination of ‘homoedudiol’ (a pterocarpan from Neorautanenia edulis roots previously considered to possess the structure now assigned to calopocarpin) has shown that in reality this substance is identical with sophorapterocarpan A. The systematic relationship of Calopogonium to other genera within the legume tribe Phaseoleae is briefly discussed. Introduction and as a source of green manure [5]. Although pre­ A considerable number of phenolic isoflavonoid vious studies have revealed that the seeds of C. phytoalexins [1] have now been obtained from the mucunoides are rich in isoflavones [6, 7], there are fungus-treated tissues of tropical species belonging to no reports on the isolation of constitutive or induced the subfamily Papilionoideae of the Leguminosae isoflavonoids from the herbaceous tissues of this [1—4], Many of these compounds are pterocarpans legume. which characteristically possess a tetracyclic ring sys­ In the present study we have investigated the abili­ tem with oxygenation at C-3 and C-9 on rings A and ty of excised C.
    [Show full text]
  • An Update on the Effects of Glyceollins on Human Health
    An Update on the Effects of Glyceollins on Human Health Possible Anticancer Effects and Underlying Mechanisms Thu Ha Pham, Sylvain Lecomte, Theo Efstathiou, François Ferriere, Farzad Pakdel To cite this version: Thu Ha Pham, Sylvain Lecomte, Theo Efstathiou, François Ferriere, Farzad Pakdel. An Update on the Effects of Glyceollins on Human Health Possible Anticancer Effects and Underlying Mechanisms. Nutrients, MDPI, 2019, 11 (1), pp.79. 10.3390/nu11010079. hal-01978725 HAL Id: hal-01978725 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01978725 Submitted on 8 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. nutrients Review An Update on the Effects of Glyceollins on Human Health: Possible Anticancer Effects and Underlying Mechanisms Thu Ha Pham 1, Sylvain Lecomte 1, Theo Efstathiou 2, Francois Ferriere 1 and Farzad Pakdel 1,* 1 Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; [email protected] (T.H.P.); [email protected] (S.L.); [email protected]
    [Show full text]
  • The NAC Family Transcription Factor Gmnac42–1 Regulates
    Jahan et al. BMC Genomics (2019) 20:149 https://doi.org/10.1186/s12864-019-5524-5 RESEARCHARTICLE Open Access The NAC family transcription factor GmNAC42–1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean Md Asraful Jahan1, Brianna Harris2, Matthew Lowery3, Katie Coburn2, Aniello M. Infante4, Ryan J. Percifield2, Amanda G. Ammer5 and Nik Kovinich1* Abstract Background: Glyceollins are isoflavonoid-derived pathogen-inducible defense metabolites (phytoalexins) from soybean (Glycine max L. Merr) that have important roles in providing defense against pathogens. They also have impressive anticancer and neuroprotective activities in mammals. Despite their potential usefulness as therapeutics, glyceollins are not economical to synthesize and are biosynthesized only transiently and in low amounts in response to specific stresses. Engineering the regulation of glyceollin biosynthesis may be a promising approach to enhance their bioproduction, yet the transcription factors (TFs) that regulate their biosynthesis have remained elusive. To address this, we first aimed to identify novel abiotic stresses that enhance or suppress the elicitation of glyceollins and then used a comparative transcriptomics approach to search for TF gene candidates that may positively regulate glyceollin biosynthesis. Results: Acidity stress (pH 3.0 medium) and dehydration exerted prolonged (week-long) inductive or suppressive effects on glyceollin biosynthesis, respectively. RNA-seq found that all known biosynthetic genes were oppositely regulated by acidity stress and dehydration, but known isoflavonoid TFs were not. Systemic acquired resistance (SAR) genes were highly enriched in the geneset. We chose to functionally characterize the NAC (NAM/ATAF1/2/CUC2)-family TF GmNAC42–1 that was annotated as an SAR gene and a homolog of the Arabidopsis thaliana (Arabidopsis) indole alkaloid phytoalexin regulator ANAC042.
    [Show full text]