Isoflavonoid-Inducible Resistance to the Phytoalexin Glyceollin In

Total Page:16

File Type:pdf, Size:1020Kb

Isoflavonoid-Inducible Resistance to the Phytoalexin Glyceollin In JOURNAL OF BACTERIOLOGY, June 1991, p. 3432-3439 Vol. 173, No. 11 0021-9193/91/113432-08$02.00/0 Copyright X 1991, American Society for Microbiology Isoflavonoid-Inducible Resistance to the Phytoalexin Glyceollin in Soybean Rhizobia MARTIN PARNISKE,* BETTINA AHLBORN, AND DIETRICH WERNER Fachbereich Biologie der Philipps-Universitat, Karl-von-Frisch-Strasse, D-3550 MarburglLahn, Federal Republic of Germany Received 13 August 1990/Accepted 25 March 1991 The antibacterial effect of the soybean phytoalexin glyceollin was assayed using a liquid microculture technique. Log-phase cells of Bradyrhizobium japonicum and Sinorhizobium fredii were sensitive to glyceollin. As revealed by growth rates and survival tests, these species were able to tolerate glyceollin after adaptation. Incubation in low concentrations of the isoflavones genistein and daidzein induced resistance to potentially bactericidal concentrations of glyceollin. This inducible resistance is not due to degradation or detoxification of the phytoalexin. The inducible resistance could be detected in B. japonicum 110spc4 and 61A101, representing the two taxonomically divergent groups of this species, as well as in S. fredii HH103, suggesting that this trait is a feature of all soybean-nodulating rhizobia. Glyceollin resistance was also inducible in a nodDlD2YABC deletion mutant of B. japonicum 110spc4, suggesting that there exists another recognition site for flavonoids besides the nodD genes identified so far. Exudate preparations from roots infected with Phytophthora megasperma f. sp. glycinea exhibited a strong bactericidal effect toward glyceollin-sensitive cells of B. japonicum. This killing effect was not solely due to glyceollin since purified glyceollin at concentrations similar to those present in exudate preparations had a much lower toxicity. However, glyceollin-resistant cells were also more resistant to exudate preparations than glyceollin-sensitive cells. Isoflavonoid-inducible resistance must therefore be ascribed an important role for survival of rhizobia in the rhizosphere of soybean roots. The gram-negative, slow-growing soil bacterium Brady- rhizobia, which may have consequences for the symbiotic rhizobium japonicum as well as the fast-growing Sinorhizo- interaction. bium fredii (3) are able to form effective nitrogen-fixing Glyceollin, a phytoalexin of soybean (Fig. 1), is strongly symbioses with the host plant Glycine max. During the early induced in response to a number of biological, chemical, and stages of interaction between host and microsymbiont, physical stresses, e.g., infection with pathogenic fungi, the rhizobia act very much like plant pathogens: they have to presence of heavy metals, or UV radiation (10, 19, 45). In invade the root hairs of the host, thereby overcoming symbiotic interactions, the accumulation of glyceollin has possible plant defense responses. Analogies between the also been observed. Morandi et al. (26) found higher con- early stages of the Rhizobium-legume symbiosis and a patho- centrations of glyceollin in mycorrhiza-infected roots of G. genic interaction have been pointed out by several investi- max than in axenic roots. Glyceollin accumulation may also gators (8, 9, 21, 38, 42). take place in later stages of the Glycine-Bradyrhizobium In a number of plant-pathogen interactions, the induction interaction: nodule cells of Glycine sp. display a hypersen- of phytoalexins, plant-derived antimicrobial low-molecular- sitive reaction when infected with incompatible or mutant weight molecules, is believed to play an essential part in host strains of Bradyrhizobium sp. (32, 34, 46). The work of resistance (10, 43). In several legumes, phytoalexins belong several laboratories confirms the assumption that, even in to the isoflavonoid type (e.g., pisatin in Pisum sp.; glyceollin very early stages of the interaction, rhizobial infection in Glycine sp.; medicarpin in Medicago sp.). This is of contributes to enhanced release of flavonoids and phytoalex- special interest because flavonoids have been shown to be ins by the host plant. Recourt et al. (37) found an increase in regulators of rhizobial nod gene activity (see reference 25 for the number of flavonoids exuded by Vicia sativa in response a review). Considering the microsymbionts of soybean, the to infection with a compatible Rhizobium leguminosarum most active inducing compounds are isoflavonoids (1, 14, strain. Enhanced levels of glyceollin could be detected in the 22). Despite this intriguing bifunctionality of isoflavonoids, rhizosphere of G. max 20 h after infection with B. japonicum i.e., regulatory substances and phytoalexins, only a few data (33, 39a). are available concerning the significance of phytoalexins in It is very likely that soybean roots produce considerable the interaction between rhizobia and their legume host. amounts of glyceollin under field conditions due to the Pankhurst and co-workers studied the inhibition of rhizobia widespread presence of stress factors that induce defense by isoflavonoids (28) as well as by flavolans (31). They found reactions. High glyceollin levels are a challenge for micro- an ineffective Rhizobium strain to be more sensitive to the organisms living in the rhizosphere, including symbiotic root flavolan of the host plant Lotus corniculatus than its bacteria. In this study, we analyzed the effect of a phyto- effective counterpart (30). In addition, the ineffective strain alexin of the host plant on the microsymbionts of soybean. induced the synthesis of higher flavolan concentrations in the nodules of this plant (29). Taken together, these results indicate the importance of flavonoids as toxic compounds for MATERIALS AND METHODS Microbial strains. B. japonicum USDA 110spc4 (17) and 61A101 (Nitragin Co., Milwaukee, Wis.) and S.fredii HH103 * Corresponding author. (B. Bohlool, Paia, Hawaii) were used as wild-type strains. 3432 VOL. 173, 1991 INDUCIBLE PHYTOALEXIN RESISTANCE IN RHIZOBIA 3433 density at 600 nm (OD6.) of the suspension in the vials. Measurements were corrected for the optical density of vials 0 containing only medium, giving the AOD6.J value. Aliquots (50 Ru) were taken at varying intervals, bacteria were pel- 1 leted by centrifugation, and the glyceollin concentration in the supematant was analyzed by HPLC. Alternatively, the degree of resistance ofbacterial cultures was tested by using viability tests. Aliquots of the cultures were adjusted to a AOD6. of 0.1. Samples of 10 ,u were mixed with 90 ,ul of 20E containing glyceollin. When indi- HO 0 cated, 20E was replaced by 5 mM MES buffer (pH 6.5) 2 (MES). The final concentration of glyceollin was 90 to 300 ,uM. After 3 h of incubation, appropriate dilutions were OH plated on 20E agar to estimate the number of surviving CFU. In some experiments, a mixed inoculum was used contain- FIG. 1. Structures of the soybean phytoalexin glyceollin I (1) and ing equal numbers of cells of B. japonicum 110spc4 and A3. the isoflavones daidzein (R = H) and genistein (R = OH) (2). To achieve this, cultures of both strains were diluted to a AOD6. of 0.1 and mixed in a 1:1 ratio. A 10-,ul sample of the resulting suspension was mixed with 90 RI of MES contain- The nodDlD2YABC deletion mutant A1240 and the ing either glyceollin or root exudate at different concentra- nijD::TnS insertion mutant A3 (17) of B. japonicum 110spc4 tions. After 3 h of incubation, appropriate dilutions were were supplied by M. Gottfert and H. Hennecke, Zurich, plated in parallel on 20E agar and on 20E agar supplemented Switzerland. Phytophthora megasperma f. sp. glycinea race with kanamycin and streptomycin (100 mg of each per liter). 1 was obtained from T. Waldmuller and J. Ebel, Freiburg, B. japonicum A3 could be differentiated from its parent Federal Republic of Germany. strain B. japonicum 110spc4 by its ability to grow at these Isolation and analysis of glyceollin. Glyceollin was isolated concentrations of antibiotics. by the method of Grisebach (16), with the modification that Growth of seedlings, zoospore infection, and exudate prep- glyceollin isomers I to III were collected after high-pressure aration. Culture and zoospore induction ofP. megasperma f. liquid chromatographic (HPLC) separation from other fla- sp. glycinea were performed as previously described (19). vonoids. The identity ofglyceollin isomers was confirmed by Soybean seeds (G. max cv. Kenwood) were surface steril- the UV spectra and mass spectra of their trimethylsilyl ized by immersion in 30% H202 for 10 min, washed 10 times derivatives. with water, soaked for 6 h, and washed again. The seeds HPLC analysis of media and culture supematants contain- were then placed on nitrogen-free nutrient agar (47) and ing glyceollin was performed under isocratic conditions grown for 2 days in a growth chamber at 25°C (16 h light/8 h using a 5-,um RP-18 column (Serva, Heidelberg, Federal dark). The seedlings were transferred to 2.5-ml test tubes Republic of Germany) with methanol-water (50:50, vol/vol) with their roots submerged in 2.3 ml of a zoospore suspen- as the solvent system. The analysis of root exudates was sion of P. megasperma f. sp. glycinea race 1 (approximately done with a linear gradient from 100% water to 70% aceto- 104 spores per plant). After 5 days of incubation in the nitrile over 32 min. After HPLC separation, glyceollin con- growth chamber, the root exudates of 100 seedlings were centration was determined with a UV detector and an pooled, adjusted to 10% methanol, and filtered successively integrator, using an 8280 of 10,000. through glass fiber and 0.2-pum-pore-size filters. The exudate Glyceollin isomers were separated by two-dimensional was evaporated to dryness and taken up in 50% ethanol. A thin-layer chromatography, using Silica Gel 60 nano-HPTLC white, ethanol-water-insoluble precipitate was discarded. plates (10 by 10 cm) with fluorescent indicator (Macherey- Aliquots were evaporated to dryness and redissolved in 5 Nagel, Duren, Federal Republic of Germany). The solvent mM MES buffer (pH 6.5) containing 1% ethanol, giving final system for the first dimension was chloroform-methanol- test concentrations of glyceollin from 90 to 270 ,uM, as formic acid (93:6:1, vol/vol), and that for the second dimen- determined by HPLC.
Recommended publications
  • Biologically Active Molecules from Soybeans
    10 Biologically Active Molecules from Soybeans Michio Kurosu Department of Pharmaceutical Sciences, University of Tennessee Health Science Center USA 1. Introduction Soybeans (Glycine max [L.] Merr.) contain an impressive array of biologically active components. People have been eating soybeans for almost 5,000 years. Unlike most plant foods, soybeans are high in protein. Researchers are interested in both the nutritional value and the potential health benefits of soybeans. Research of the health effects of soyfoods and soybean constituents has been received significant attention to support the health improvements or health risks observed clinically or in vitro experiments. This research includes a wide range of areas, such as cancer, coronary heart disease (cardiovascular disease), osteoporosis, cognitive function (memory related), menopausal symptoms, renal function, and many others. This chapter provides up-to-date coverage on biologically active and related organic molecules isolated from soy and soy products. Their biological activities are briefly summarized. Molecules discussed in this chapter are as follows: isoflavones, phytic acid, soy lipids, soy phytoalexins, soyasaponins, lectins, hemagglutinin, soy toxins, and vitamins. 2. Health benefit of soy or soy products Soy products have been considered as great source of protein for many decades. Japanese, in particular, eat a soy-based diet. Japanese monks eat soy products as their main protein source. They are known to live longer and have lower rates of chronic diseases. Because soybeans contain practically no starch, soybeans are an important part of a diabetic diet. Soybeans are 1) rich in protein (vide supra), calcium, and vitamins, and 2) high in mono- saturated fatty acids. In addition, soybeans contain several biologically interesting phytochemicals as minor components, which scientists are interested in understanding their biological functions.
    [Show full text]
  • Metabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia Phymatum Σ54 During Symbiosis with Phaseolus Vulgaris
    Research Collection Journal Article Metabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia phymatum σ54 During Symbiosis with Phaseolus vulgaris Author(s): Lardi, Martina; Liu, Yilei; Giudice, Gaetano; Ahrens, Christian H.; Zamboni, Nicola; Pessi, Gabriella Publication Date: 2018-04 Permanent Link: https://doi.org/10.3929/ethz-b-000258158 Originally published in: International Journal of Molecular Sciences 19(4), http://doi.org/10.3390/ijms19041049 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library International Journal of Molecular Sciences Article Metabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia phymatum σ54 During Symbiosis with Phaseolus vulgaris Martina Lardi 1, Yilei Liu 1, Gaetano Giudice 1, Christian H. Ahrens 2, Nicola Zamboni 3 and Gabriella Pessi 1,* ID 1 Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland; [email protected] (M.L.); [email protected] (Y.L.); [email protected] (G.G.) 2 Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & Swiss Institute of Bioinformatics (SIB), CH-8820 Wädenswil, Switzerland; [email protected] 3 Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-6352904 Received: 28 February 2018; Accepted: 28 March 2018; Published: 1 April 2018 Abstract: RpoN (or σ54) is the key sigma factor for the regulation of transcription of nitrogen fixation genes in diazotrophic bacteria, which include α- and β-rhizobia.
    [Show full text]
  • The Pharmacologist 2 0 0 6 December
    Vol. 48 Number 4 The Pharmacologist 2 0 0 6 December 2006 YEAR IN REVIEW The Presidential Torch is passed from James E. Experimental Biology 2006 in San Francisco Barrett to Elaine Sanders-Bush ASPET Members attend the 15th World Congress in China Young Scientists at EB 2006 ASPET Awards Winners at EB 2006 Inside this Issue: ASPET Election Online EB ’07 Program Grid Neuropharmacology Division Mixer at SFN 2006 New England Chapter Meeting Summary SEPS Meeting Summary and Abstracts MAPS Meeting Summary and Abstracts Call for Late-Breaking Abstracts for EB‘07 A Publication of the American Society for 121 Pharmacology and Experimental Therapeutics - ASPET Volume 48 Number 4, 2006 The Pharmacologist is published and distributed by the American Society for Pharmacology and Experimental Therapeutics. The Editor PHARMACOLOGIST Suzie Thompson EDITORIAL ADVISORY BOARD Bryan F. Cox, Ph.D. News Ronald N. Hines, Ph.D. Terrence J. Monks, Ph.D. 2006 Year in Review page 123 COUNCIL . President Contributors for 2006 . page 124 Elaine Sanders-Bush, Ph.D. Election 2007 . President-Elect page 126 Kenneth P. Minneman, Ph.D. EB 2007 Program Grid . page 130 Past President James E. Barrett, Ph.D. Features Secretary/Treasurer Lynn Wecker, Ph.D. Secretary/Treasurer-Elect Journals . Annette E. Fleckenstein, Ph.D. page 132 Past Secretary/Treasurer Public Affairs & Government Relations . page 134 Patricia K. Sonsalla, Ph.D. Division News Councilors Bryan F. Cox, Ph.D. Division for Neuropharmacology . page 136 Ronald N. Hines, Ph.D. Centennial Update . Terrence J. Monks, Ph.D. page 137 Chair, Board of Publications Trustees Members in the News .
    [Show full text]
  • Phytoalexins: Current Progress and Future Prospects
    Phytoalexins: Current Progress and Future Prospects Edited by Philippe Jeandet Printed Edition of the Special Issue Published in Molecules www.mdpi.com/journal/molecules Philippe Jeandet (Ed.) Phytoalexins: Current Progress and Future Prospects This book is a reprint of the special issue that appeared in the online open access journal Molecules (ISSN 1420-3049) in 2014 (available at: http://www.mdpi.com/journal/molecules/special_issues/phytoalexins-progress). Guest Editor Philippe Jeandet Laboratory of Stress, Defenses and Plant Reproduction U.R.V.V.C., UPRES EA 4707, Faculty of Sciences, University of Reims, PO Box. 1039, 51687 Reims cedex 02, France Editorial Office MDPI AG Klybeckstrasse 64 Basel, Switzerland Publisher Shu-Kun Lin Managing Editor Ran Dang 1. Edition 2015 MDPI • Basel • Beijing ISBN 978-3-03842-059-0 © 2015 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents About the Editor ............................................................................................................... VII List of
    [Show full text]
  • ABSTRACT Title of Document: BIOLOGICAL
    ABSTRACT Title of Document: BIOLOGICAL EFFICACY, MECHANISMS OF ACTIONS OF SOY-DERIVED PHYTOALEXIN GLYCEOLLINS IN PREVENTION OF CHRONIC DISEASES Haiqiu Huang, Doctor of Philosophy, 2014 Directed By: Professor Liangli (Lucy) Yu Department of Nutrition and Food Science Cardiovascular disease (CVD) is the leading cause of deaths worldwide. Prostate cancer is the most prevalent cancer in U.S. male population. Diet-induced hypercholesterolemia and chronic inflammation promote the development of both CVD and prostate cancer. Glyceollins are a group of soy phytoalexins possessing a variety of biological activities. This research project focused on characterizing glyceollins’ bioactivities in alleviating cholesterol dysregulation, prevention of prostate cancer, and regulating gut microbiome. The first part of the project aimed to evaluate glyceollins’ cholesterol- lowering effect in-vivo. Male golden Syrian hamsters were fed high-fat diet with or without glyceollins supplementation for 28 days. Glyceollins supplementation led to a significant reduction of plasma VLDL, hepatic cholesterol esters and total lipid content. Consistent with changes in circulating cholesterol, glyceollins supplementation also altered expression of the genes related to cholesterol metabolism in the liver. The second part of the study aimed to evaluate glyceollins’ effect in reducing prostate cancer tumor growth in a xenograft model. An initial delayed appearance of tumor was observed in a PC-3 xenograft model. However, no difference in tumor sizes was observed in a LNCaP xenograft model. Extrapolation analysis of tumor measurements indicated that no difference in sizes was expected for both PC-3 and LNCaP tumors. Glyceollins had no effect on the androgen responsive pathway, its proliferation, cell cycle, or on angiogenesis genes in tumor and xenobiotic metabolism, cholesterol transport, and inflammatory cytokine genes in liver.
    [Show full text]
  • Gmmyb176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-28-2017 12:00 AM GmMYB176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean Arun Kumaran Anguraj Vadivel The University of Western Ontario Supervisor Dr. Sangeeta Dhaubhadel The University of Western Ontario Joint Supervisor Dr. Mark Bernards The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Arun Kumaran Anguraj Vadivel 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Molecular Biology Commons, and the Plant Biology Commons Recommended Citation Anguraj Vadivel, Arun Kumaran, "GmMYB176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean" (2017). Electronic Thesis and Dissertation Repository. 4639. https://ir.lib.uwo.ca/etd/4639 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i Abstract MYB transcription factors are one of the largest transcription factor families characterized in plants. They are classified into four types: R1 MYB, R2R3 MYB, R3 MYB and R4 MYB. GmMYB176 is an R1MYB transcription factor that regulates Chalcone synthase (CHS8) gene expression and isoflavonoid biosynthesis in soybean. Silencing of GmMYB176 suppressed the expression of the GmCHS8 gene and reduced the accumulation of isoflavonoids in soybean hairy roots. However, overexpression of GmMYB176 does not alter either GmCHS8 gene expression or isoflavonoid levels suggesting that GmMYB176 alone is not sufficient for GmCHS8 gene regulation.
    [Show full text]
  • The Science of Flavonoids the Science of Flavonoids
    The Science of Flavonoids The Science of Flavonoids Edited by Erich Grotewold The Ohio State University Columbus, Ohio, USA Erich Grotewold Department of Cellular and Molecular Biology The Ohio State University Columbus, Ohio 43210 USA [email protected] The background of the cover corresponds to the accumulation of flavonols in the plasmodesmata of Arabidopsis root cells, as visualized with DBPA (provided by Dr. Wendy Peer). The structure corresponds to a model of the Arabidopsis F3 'H enzyme (provided by Dr. Brenda Winkel). The chemical structure corresponds to dihydrokaempferol. Library of Congress Control Number: 2005934296 ISBN-10: 0-387-28821-X ISBN-13: 978-0387-28821-5 ᭧2006 Springer ScienceϩBusiness Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceϩBusiness Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America (BS/DH) 987654321 springeronline.com PREFACE There is no doubt that among the large number of natural products of plant origin, debatably called secondary metabolites because their importance to the eco- physiology of the organisms that accumulate them was not initially recognized, flavonoids play a central role.
    [Show full text]
  • Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance
    Int. J. Mol. Sci. 2013, 14, 14136-14170; doi:10.3390/ijms140714136 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance Philippe Jeandet *, Christophe Clément, Eric Courot and Sylvain Cordelier Laboratory of Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne”, UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, Reims 51687, France; E-Mails: [email protected] (C.C.); [email protected] (E.C.); [email protected] (S.C.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-3-2691-3341; Fax: +33-3-2691-3340. Received: 25 April 2013; in revised form: 19 June 2013 / Accepted: 25 June 2013 / Published: 8 July 2013 Abstract: Phytoalexins are antimicrobial substances of low molecular weight produced by plants in response to infection or stress, which form part of their active defense mechanisms. Starting in the 1950’s, research on phytoalexins has begun with biochemistry and bio-organic chemistry, resulting in the determination of their structure, their biological activity as well as mechanisms of their synthesis and their catabolism by microorganisms. Elucidation of the biosynthesis of numerous phytoalexins has permitted the use of molecular biology tools for the exploration of the genes encoding enzymes of their synthesis pathways and their regulators. Genetic manipulation of phytoalexins has been investigated to increase the disease resistance of plants. The first example of a disease resistance resulting from foreign phytoalexin expression in a novel plant has concerned a phytoalexin from grapevine which was transferred to tobacco.
    [Show full text]
  • Identification and Characterization of the Isoflavonoid-Specific Prenyltransferase Gene Family to Prevent Stem and Root Rot in Soybean
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-30-2016 12:00 AM Identification and Characterization of the Isoflavonoid-Specific Prenyltransferase Gene Family to Prevent Stem and Root Rot in Soybean Arjun Sukumaran The University of Western Ontario Supervisor Dr. Sangeeta Dhaubhadel The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Arjun Sukumaran 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biology Commons, Genetics and Genomics Commons, Plant Biology Commons, and the Plant Pathology Commons Recommended Citation Sukumaran, Arjun, "Identification and Characterization of the Isoflavonoid-Specific Prenyltransferase Gene Family to Prevent Stem and Root Rot in Soybean" (2016). Electronic Thesis and Dissertation Repository. 4130. https://ir.lib.uwo.ca/etd/4130 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i Abstract Soybean is one of the most predominantly grown legumes worldwide, however, one deterrent to maximizing its yield is the pathogen, Phytophthora sojae, which causes stem and root rot disease. Many strategies have been implemented to combat this pathogen such as use of pesticides and certain agricultural practices. However, these have been largely ineffective in completely preventing P. sojae infection. An alternative strategy would be to improve the innate resistance of soybean by promoting increased glyceollin production. Glyceollins are soybean-specific antimicrobial agents which are derived from the isoflavonoid branch of the general phenylpropanoid pathway.
    [Show full text]
  • Molecular Plant-Microbe Interacfions
    GET ENGAGED. GROW YOUR KNOWLEDGE. MAKE CONNECTIONS. Publish your work and submit to Molecular Plant-Microbe Interactions (MPMI) Grow your career with the Career Center Read the latest IS-MPMI member news in Interactions Find a colleague and start collaborating using the Member Directory Network with over 1,500 IS-MPMI members ismpmi.org/welcome Get all the latest updates! Follow IS-MPMI. Welcome to Glasgow and the XVIII International Congress on Molecular Plant-Microbe Interactions! We have created a wide-reaching program that showcases emerging topics in plant-microbe interactions; new concurrent sessions on topics such as post- translational modifications, long-distance/systemic signaling, invertebrate-plant interactions, and environmental impacts on microbial infection; and established popular sessions on symbiosis and mutualism, microbial manipulation of the host, molecular recognition, and cell biology. A diverse selection of satellite meetings will be offered on Sunday, July 14, and a workshop on Tuesday, July 16, will highlight the importance of scientific reproducibility. We are proud to have achieved gender balance in our slate of plenary speakers and to have speakers for the scheduled talks that represent the full diversity of the scientists working in our field. More than 1,400 delegates from 52 countries have registered to attend the meeting to discuss the current breakthroughs and future directions of research on plant-microbe interactions. Seventy early career researchers have received travel awards to attend the congress;
    [Show full text]
  • A Phytochemical Perspective on Plant Defense Against Nematodes
    REVIEW published: 13 November 2020 doi: 10.3389/fpls.2020.602079 A Phytochemical Perspective on Plant Defense Against Nematodes Willem Desmedt 1,2,3, Sven Mangelinckx 4, Tina Kyndt 1* and Bartel Vanholme 2,3 1 Research Group Epigenetics and Defense, Department of Biotechnology, Ghent University, Ghent, Belgium, 2 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium, 3 VIB Center for Plant Systems Biology, Ghent, Belgium, 4 Research Group Synthesis, Bioresources and Bioorganic Chemistry (SynBioC), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium Given the large yield losses attributed to plant-parasitic nematodes and the limited availability of sustainable control strategies, new plant-parasitic nematode control strategies are urgently needed. To defend themselves against nematode attack, plants possess sophisticated multi-layered immune systems. One element of plant immunity against nematodes is the production of small molecules with anti-nematode activity, either constitutively or after nematode infection. This review provides an overview of such metabolites that have been identified to date and groups them by chemical class (e.g., terpenoids, flavonoids, glucosinolates, etc.). Furthermore, this review discusses strategies that have been used to identify such metabolites and highlights the ways in which studying anti-nematode metabolites might be of use to agriculture and crop protection. Particular Edited by: attention is given to emerging, high-throughput approaches for
    [Show full text]
  • Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE
    Current Biology 24, 422–427, February 17, 2014 ª2014 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.12.053 Report Cleavage of the SYMBIOSIS RECEPTOR- LIKE KINASE Ectodomain Promotes Complex Formation with Nod Factor Receptor 5 Meritxell Antolı´n-Llovera,1 Martina K. Ried,1 leaf cells expressing L. japonicus SYMRK (Figures 1A and and Martin Parniske1,* 1B). SYMRK cleavage is thus either mediated by proteases 1Genetics, Faculty of Biology, University of Munich (LMU), present in both L. japonicus roots and N. benthamiana leaves Großhaderner Straße 4, 82152 Martinsried, Germany or, alternatively, is an intrinsic activity of the ectodomain. Upon expression in N. benthamiana leaf cells, most of the fluores- cently tagged protein was observed at the plasma membrane Summary (Figures S2 and S3). Moreover, most of the tagged protein as judged by protein blots (Figures 1, S1, and S4) is in the full- Plants form root symbioses with fungi and bacteria to length state. This observation, together with the observed gly- improve their nutrient supply. SYMBIOSIS RECEPTOR- codecoration of the MLD fragment, makes a cleavage at the LIKE KINASE (SYMRK) is required for phosphate-acquiring plasma membrane a likely scenario, but does not exclude arbuscular mycorrhiza, as well as for the nitrogen-fixing the possibility that it occurs already en route through the root nodule symbiosis of legumes [1] and actinorhizal plants secretory pathway. [2, 3], but its precise function was completely unclear. Here we show that the extracytoplasmic region of SYMRK, which The GDPC Motif Connects the LRRs with the MLD and Is comprises three leucine-rich repeats (LRRs) and a malectin- Critical for MLD Release and Symbiosis like domain (MLD) related to a carbohydrate-binding protein The symrk-14 mutant suffered from abnormal epidermal infec- from Xenopus laevis [4], is cleaved to release the MLD in the tion after inoculation with either arbuscular mycorrhiza (AM) absence of symbiotic stimulation.
    [Show full text]