03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page269

UNEXPECTED RELATIONSHIPS BETWEEN δ13 C AND PERFORMANCE IN ORGANIC FARMING

Edoardo A.C. COSTANTINI 1* , Alessandro AGNELLI 1, Pierluigi BUCELLI 1, Aldo CIAMBOTTI 2, Valentina DELL’ORO 2, Laura NATARELLI 1, Sergio PELLEGRINI 1, Rita PERRIA 3, Simone PRIORI 1, Paolo STORCHI 3, Christos TSOLAKIS 2 and Nadia VIGNOZZI 1 1: Consiglio per la ricerca e la sperimentazione in agricoltura, CRA-ABP, Research Centre for Agrobiology and Pedology, Florence, Italy 2: CRA-ENO Research Centre for Oenology, Asti, Italy 3: CRA-VIC Research Unit for , Arezzo, Italy

Abstract Résumé Aim :Toevaluatetherelationshipbetweencarbonisotope Méthodes et résultats :L’essaiaétéréalisépendantquatre ratio( δ13 C)andwinegrapeviticulturalandoenological ansdanslarégionduChiantiClassico(Italiecentrale),sur performanceinorganicfarming. vignesnonirriguéesconduitesenagriculturebiologique.La Methods and results :Thestudywascarriedoutforfour variétéderéférenceestle.Onzesitesontété yearsintheChiantiClassicowineproductiondistrict choisispourlesuividelavigneetlamaturationduraisin. (CentralItaly),onfivenonirrigatedvineyardsconductedin Lesvariablesmesuréespourévaluerlaperformanceontété organicfarming.ThereferencevarietywasSangiovese. l’alcooletlateneurensucredanslemoût,letaux Elevensiteswerechosenforvinemonitoringandgrape d’accumulationdesucre,lepoidsmoyendesbaies,etles 13 sampling.Theperformanceparameterswerealcoholand polyphénolsextractibles.Le δ C,lepotentielhydriquede mustsugarcontent,sugaraccumulationrate,meanberry tige,etladisponibilitéeneaudusolontétésuivis.L’azote weight,andextractablepolyphenols. δ13 C,stemwater dusolainsiquel’azoteassimilabledanslemoûtontété 13 potential,andsoilwateravailabilitywerealsomonitored. mesurés.Le δ Cétaitcorréléaveclepotentielhydriquede Finally,soilnitrogenaswellasyeastavailablenitrogenin tigeetledéficiteneaudusol,etaindiquéunegammede themustweremeasured. δ13 Cwasdirectlyrelatedtostem stresshydriqueentreabsentetmodéréàfort.Cependant,la waterpotentialandsoilwaterdeficit,andindicatedarange relationaveclesrésultatsviticolesetœnologiquesétait ofwaterstressconditionsfromnoneandmoderatetostrong. contraireàcelleattendue.L’indicedeperformancea However,itsrelationshipwithviticulturalandoenological augmentélinéairementlorsquelestresshydriqueadiminué. resultswascontrarytoexpectation,thatis,performance D’autrepart,lamoinsbonneperformanceaétéobtenuedans linearlyincreasedalongwithsoilmoisture.Ontheother lessituationsoùl’eauetl’azoteontétélimitants. hand,theworstperformancewasobtainedwherebothwater Conclusions :Larelationinattendueentre δ13 Cetla andnitrogenweremorelimiting. performanceduSangioveseaétéprovoquéeparlafaible Conclusions :Theunexpectedrelationshipbetween δ13 C disponibilitéenazote.Lessolsétudiésonttousétéd’une andSangioveseperformancewascausedbylownitrogen faiblefertilitéetd’uneteneurenazotefaibleàtrèsfaible. availability.Thestudiedsitesallhadlow-fertilitysoilswith Parconséquent,danslesparcellesoùl’humiditédusolétait poororverypoornitrogencontent.Therefore,intheplots relativementplusélevée,l’absorptiondel’azoteparlaplante wheresoilhumiditywasrelativelyhigher,nitrogenplant aétéfavorisée,cequiaaméliorélaperformancedu uptakewasfavoured,andSangioveseperformance Sangiovese.Dansdesconditionsoùl’azoteaétéleprincipal improved.Macronutrientbeingthemainlimitingfactor,the facteurlimitant,laperformancen’ajamaiséténégativement performancewasnotlowerintheplotswheresoilwater affectéeparladisponibilitéeneaudusol.Parconséquent,le availabilitywasrelativelylarger.Therefore,thebest meilleurrésultataétéobtenudansdesconditionssans 13 viticulturalresultwasobtainedwithnowaterstress contraintehydrique,indiquéespardesvaleursde δ C conditions,atlowratherthanatintermediate δ13 Cvalues. fortementnégatives. Significance and impact of the study :Waternutritionis Signification et impact de l’étude :L’alimentationeneau 13 crucialforwinegrapeperformance. δ13 Cisamethodusedto estcrucialepourlaperformancedelavigne. δ Cestune assessvinewaterstatusduringthegrowingseasonandto méthodeutiliséepourévaluerledegrédecontrainte estimatevineperformance.Agoodperformanceisexpected hydriquesubiaucoursdelasaisonviticoleetd’évaluerla atmoderatestressandintermediate δ13 Cvalues.Abetter performancedelavigne.Unebonneperformanceest knowledgeoftheinteractionbetweenwaterandnutrient attenduepourunecontraintehydriquemodéréeetdes 13 scarcityisneeded,asitcanaffecttheuseof δ13 Ctopredict valeursintermédiairesde δ C.Peudeconnaissances vineperformance. existentausujetdel’interactionentrel’eauetlacarenceen nutriments.Cesrelationspeuventaffecterl’utilisationdu Key words :carbonisotopes,wateravailability,nitrogen, δ13 Cpourprédirelecomportementdelavigne. redgrape,performanceindex,Tuscany Mots clés :isotopesducarbone,disponibilitéeneau,azote, raisinrouge,performance,Toscane

manuscript received 12th February 2013 - revised manuscript received 11th August 2013

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 *Correspondingauthor : [email protected] - 269 - ©Vigne et Vin Publications Internationales (, France) 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page270

Edoardo A.C. COSTANTINI et al.

INTRODUCTION (OjedaandSalmon,2011).Suchresults, inadditiontoothermoreecologicalmotivations, Thebestforredwineproductionarethosein enhancedthelimitationofnitrogenfertilizationin whichsomesoilfactorsarelimitingtovinevigourand premiumviticultureandtheadoptionofbiological berrysize(vanLeeuwenandSeguin,2006),sothat farming.Currently,organicviticulturecoversabout ripencompletelybutslowly.Theselimiting 80,000 hainand44,000inItaly,butnotmuch factorsmaybechemical(limitednitrogennutritionor isknownonitseffectivefeedbackonwinegrape ionantagonisms)orphysical(insufficientwater performance. supplyduringcertainphasesofthegrowthcycleof thevine). Althoughknowledgeofwaterandnitrogennutritionin avineyardisessential,itsassessmentisdifficult,since Asawhole,nitrogennutritionandwatersupply soilwaterandnitrogencontenthaveastrongtemporal duringcertainphasesofthegrowthcycleofthevine and3Dspatialvariability,especiallyinrainfed areconsideredessentialfactorsofwinequality.Their cultivationandbiologicalfarming,wheretheuseof roleindeterminingtheeffecthasbeen syntheticnitrogenfertilizersisnotallowedThen,a experiencedinmanywineproducingareasandwith commonpracticeisthemonitoringofviticulturaland severalvarietiesincluding,amongothers,France,with oenologicalindicators,likeyieldcomponents,leafand Cabernet-Sauvignon(Choné et al. ,2001),Merlot stemwaterpotential( Ψstem),leafanalysis, (Tregoat et al. ,2002)andSauvignonBlanc(Peyrot oenologicalparameters,andsensoryassessment. desGachons et al. ,2005),with(White et al. ,2007),HungarywithKékfrankos Recently,inadditiontotraditionaltechniques,anew (Zsófi et al. ,2009),andUSAwithCabernet- physiologicmarkerhasbeenintroducedforan SauvignonandChardonnay(Chapman et al. ,2005 ; integrativeevaluationoftheoverallvinewateruptake Deluc et al. ,2009). conditionsduringtheripeningperiod,i.e.,theratio betweenthetwostablecarbonisotopes 13 C/ 12 C,called Grapevinenitrogennutrition,inparticular,influences δ13 C.Actually,stomataclosureunderwaterdeficit 12 qualitycomponentsinthegrapeand,ultimately,the restrictswaterandCO 2 flow ;as Cispreferentially wine.Inaddition,fermentationkineticsandformation fixedduringthephotosynthesisprocess,whenstomata offlavour-activemetabolitesarealsoaffectedbythe areopen,thisresultsinarelativeincreaseinthe nitrogenstatusofthemust(BellandHenschke,2005). concentrationoftheheaviestisotope 13 C.Theisotopic Plantuptakeofsoilnitrogenincreasesthe ratiocanbemeasuredeitherinthemustsugarsupon concentrationofmajornitrogenouscompoundssuch harvestingorinthealcoholofthewineproduced(van astotalnitrogen,totalaminoacids,arginine,proline, Leeuwen et al. ,2001 ;Tregoat et al. ,2002 ;van ammoniumand,consequently,yeast-assimilable Leeuwen et al. ,2003),thoughthereisashiftof δ13 C nitrogen(YAN)infruit.IntermediatemustYANoffers betweenethanolandsugars,duetothelossof 13 theoptimumbalancebetweendesirableand C-enrichedcarbonatomsofglucoseasCO 2 during undesirablechemicalandsensorywineattributes(Bell fermentation.Rossmann et al. (1996)foundfor1,631 andHenschke,2005).Whenthenitrogen Italiansamplesameanshiftof1.7‰. concentrationinmustislow,thereisadirect 13 relationshipbetweeninitialnitrogenconcentrationand Reported δ C valuesinthemustsugarsrangefrom- thetotalconcentrationofhigheralcoholsinthewine 21.0to-28.0‰,with-25.5or-26.0‰considered (Äyräpää,1971). thresholdvaluesbetweenwaterdeficitandnon- limitingwaternutrition(vanLeeuwen et al. ,2003 ; Watersupplyduringspecificphasesofthegrowth Deschepper et al. ,2006).Accordingtothesame cycleofthevineisalsoconsideredanessentialfactor authors(vanLeeuwen et al. ,2003 ;Tregoat et al. , ofwinequality.Amildwaterdeficitstress,in 2002),valuesofabout-23‰inthemustcorrespondto particular,isconsideredtoenhancegrapequalityfor aminimum Ψstemcloseto-12 bar,avaluethat theproductionofred(vanLeeuwen et al. , matchedanoptimalcorrelationwiththeberrysugar 2009).Morespecifically,Tregoat et al. (2002)found accumulationrate.Beingcorrelatedwithimportant thatMerlotdevelopmentandberrycompositionwere componentsofmustquality(e.g.,sugarcontentand moreinfluencedbywateruptakeconditionsthanby titratableacidity), δ13 C canalsobeusedtomapterroirs vinenitrogenstatusinBordeaux.Besides,atsimilar atdifferentscales(vanLeeuwen et al. ,2001 ; wateruptakeconditions,lowvinenitrogenstatus Guix-Hébrard et al. ,2007 ;ZuffereyandMurisier, increasedberrypotential.Ontheotherhand,a 2007 ;Reynard et al. ,2011 ;Murisier et al. ,2012).A moderatecomparedtoaweakwaterstressincreased goodqualityperformanceisexpectedatmoderate YANingrapesofMerlot,,Viognier,and waterstressandintermediate δ13 Cvalues.

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 270 - 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page271

IntheChiantiarea(CentralItaly)Costantini et al. tillagetolimitweedgrowth,interruptcapillarityand (2010),usingthe δ13 C toevaluatelandsuitabilityfor reduceevaporation,butonlyatalternaterows,tolimit Sangiovesegrapevine,couldinferthatthethreshold waterrunoffandsoilerosion.Duringtheyears2009 betweengoodandbadsensoryevaluationofwine and2010,compostedmanurewasdistributedatthe matcheda δ13 C valueof-26.7±1.2‰inthealcohol, rateof1,000kgha -1 . correspondingtoaslightwaterdeficitanda Ψstemof -9 bar.Thisvaluemightbechosenasafirstreference Aweatherstationwasplacedneartheselected 2 fortheevaluationofSangioveseperformance. vineyards.Elevenplots,coveringabout100 m each, wereselectedonthebasisofadetailedsurvey, Anothermethodtoevaluatethe“performance”ofthe conductedwithbothtraditionalandmultispectral Sangiovesecultivar,thatis,thevegetativeand imageanalysisandsoilgeoelectricalinvestigation productivebehaviourinaspecificyearandsoil,was (Andrenelli et al. ,2011 ;Martini et al. ,2013),to workedoutbyBucelli et al. (2010).Theyusedasetof representsoilandplantspatialvariabilitywithin selectedviticulturalparametersinamultivariate vineyards.Thus,theyshouldbeconsidered regressiontoestimatewinesensoryevaluation(score) representativeoflargepartsofthefarm. atthepaneltest.Theresultsallowedtoidentify statisticallydifferentclassesofwinesandSangiovese Ineachplot,parallelsoilandvinemonitoring,aswell responsestoyearandenvironmentvariations. asfieldmeasurementsandgrapesamplingwere carriedout.However,astheexperimentalvineyards Notmuchisknownsofarabouttheinfluenceofthe andplotswerenotrestrictedandwereallsubjectedto interactionsbetweendifferentformsofabioticstress conventionalagriculturalmanagement,someplots 13 on δ C,likethosethatmightoccurinrainfedand andmonitoringdevicesweredamagedduringthe organiccultivationbetweenwaterandnutrient studybythewildlifeorfarmmachineryandhadtobe scarcity.Thisresearchstudywassetuptotestthe discarded.Hence,thevalidationwasconductedon 13 relationshipbetween δ CandSangioveseviticultural onlysixplots. andoenologicalperformanceinorganicfarming. ThestudyareawascharacterizedbyaMediterranean MATERIALS AND METHODS sub-oceanic(Costantini et al. ,2013)withcool andrainywinters,withminimummonthlyaverageair 1. Experimental setting, climate and soils temperaturescloseto0 °C,buthotsummers,witha Thestudywascarriedoutforfouryears,threeyearsof relevantnumberofdayswithmaximumtemperature monitoring(2007-2010)andoneofvalidation(2011), higherthan30 °C(onthelongterm,June8.3days, inoneofthelargestandmostimportantfarmofthe July17.5,August17.3,andSeptember2.8).Average ChiantiClassicowineproductiondistrict(Tuscany, long-termannualprecipitationwas800 mm, CentralItaly),on5nonirrigatedvineyards,which concentratedinautumnandspringtime,potential coveredabout40 ha.Thefourthyearof evapotranspiration(ET 0)fromApriltoSeptemberwas experimentationwasconductedtoconfirmthe about850 mm(HargreavesandSamani,1982),and unexpectedresultsobtainedinthethreeyearsof meanvalueoftheWinklerindexwas1,856Degree monitoring. Days. ThereferencevarietywasSangiovese,whichisthe SoildescriptionfollowedthestandardItalianmethods mainvarietyforredwinesinCentralItaly(Fregoni, (Costantini,2007)andclassificationaccordingtothe 2006 ;Costantini et al. ,2006).Plantdensitywas WordReferenceBaseforSoilResources(WRB ; 5,500-6,600perhaandtherootstockwas420A( Vitis FAO-IUSS-ISRIC,2006).Sixsoiltypologicalunits berlandieri ×Vitis riparia ),whichisconsideredtobe (STUs)wereidentifiedinthestudyvineyards resistanttodroughtandactivelime.Vineyardswere (Figure 1) :Nebbiano(NEB),Torricella(TOR), plantedin2000,afterslopereshapingbybulldozing Miniera(MIN),SantaLucia(SLC),andLeccio1and andbackhoeploughingdowntoabout0.8-1.0m.The Leccio2(LEC1,LEC2).Thesoilprofilesatthe vineyardwasorganicallyfarmedandyieldswerelow. elevensites(namedBRO1-2,BRO4-7andBRO9-13) Therefore,chemicalfertilizationwasnotimplemented aredescribedinTables1and2.Nebbianoisa andonlyorganiccompounds(compostedmanure) preservedreddishpalaeosol,deep,moderately wereused.Nevertheless,noevidentsymptomsof structuredandwithloamyorfineloamytexture, nitrogendeficiencywereobserved.Trainingsystem, developedonancientfluvialterracedeposits(Plio- canopymanagement,andnumberofbudsperplant Pleistoceneperiod) ;twositeswerechosen werechoseninordertoreduceproduction.Soil representedbyprofilesBRO4andBRO6.Thegravel surfacewasperiodicallycultivatedwithmechanical contentismoderate(10-25 %)withfinetomedium

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 - 271 - ©Vigne et Vin Publications Internationales (Bordeaux, France) 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page272

Edoardo A.C. COSTANTINI et al.

particles.Thesoilisstronglystructuredandwell gravelly(20-50 %)soil,developedonatertiary drained,withlowcalciumcarbonate(CaCO 3)content calcareousflysch(sitesBRO1andBRO2).Thesoilis (<3%),moderateorganicmatter(1.2-1.7 %),sub- moderatelystructured,welldrained,withhighCaCO 3 alkalinepH(7.7-8.4),andmoderateavailablewater content(about25 %),moderateorganicmatter capacity(AWC)(110-125 mmm -1 ).Thesoilwas (1.4-2.3 %),sub-alkalinepH(7.6-8.3),andlowto classifiedCutanicLuvisol(Hypereutric,Profondic, moderateAWC(90-115 mmm -1 ).Itwasclassified Clayic)accordingtoWRB(FAO-IUSS-ISRIC,2006). HaplicCambisol(Calcaric,Skeletic).Minieraisa Torricellaisapale-brown,clay-loamyandstrongly greyish,clayeysoildevelopedonPliocenemarine

Table 1 – Soil profile descriptions.

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 272 - 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page273

Table 2 – Soil chemical and physical characteristics.

BD, bulk density ; EC, salinity ; CaCO 3, calcium carbonate ; OC, organic carbon ; AWC, available water capacity ; CEC, cation exchange capacity ; n.d., not detected.

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 - 273 - ©Vigne et Vin Publications Internationales (Bordeaux, France) 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page274

Edoardo A.C. COSTANTINI et al.

clayswithsomesandy-gravellylenses,sometimes and11amonnon-transpiringmatureleavesthathad withligniteresidueandgypsumcrystalintheparent beenbaggedbeforemeasurement.Wateravailability material(sitesBRO5andBRO13).Thesoilispoorly ordeficit,expressedasthedifferencebetween structuredormassive,especiallyindepth,whereit measuredsoilwatercontentandwiltingpoint,was oftenshowsredoximorphicfeatures(redoxmottles evaluatedduringtheveraison-harvestphases. andFe-Mnnodules).TheCaCO 3 andtheorganic Monitoringofthesoilwatercontentwasperformed mattercontentarebothlow,thepHissub-alkaline byFDR(FrequencyDomainReflectometry)sensors (8.3-8.5),andtheAWCismoderatetohigh(130- at11differentsites,atintervalsofabout15daysover 170 mmm -1 ).ThesoilwasclassifiedEndogleyic 3growingseasons(2008-2010).Eachsitehad3FDR Stagnosol(Eutric,Clayic).Leccio1,aCutanic replicatedmeasurementpoints,placedunderthesame Luvisol(Ruptic,Hypereutric),andLeccio2,aBrunic vinerowatadistanceofabout5-6 mapart.Two Arenosol(Calcaric,Eutric),werebothsituatedon referencedepths(5-35and35-75 cm)wereselected marinesandsandconglomerates(sitesBRO9and10 accordingtoliterature(White,2003).Moreover,for forLEC1,BRO11and12forLEC2).Leccio1isa eachsitethe3-yearaveragewatercontentofthe ratherpreservedsoilanditisplacedonstablesurfaces 5-75 cmdepthlayer,relatedtotheveraison-harvest orinimpluvia.Sometimesitburiesanoldersoil period,wascalculated.DataforthesitesBRO2, developedonthetertiaryflysch.Itisreddishin BRO9andBRO10wereincomplete,duetodamageto colour,deep,withsandy-clayloamytexture,and themonitoringwells. commonmediumandfinegravels.Ithasscarce CaCO 3 (0.5-4.5 %)andexchangeablepotassium 3. Laboratory analysis -1 (48-143 mgkg ),gooddrainageandamoderateAWC 13 12 13 (120-130 mmm -1 ).Leccio2isthemosterodedsoilon Theisotopicratio C/ C( δ C)wasmeasuredinthe wineethanolbyIsotopeRatioMassSpectrometry. themarinesands,brownishincolour,poorly 13 structuredorloose,loamysandytexturedandwith The δ Cwasexpressedinpartsperthousand variations,referredtotheinternationalstandard variablegravelcontent.TheCaCO 3 ismoderate(5- 15 %),theorganicmatterislow(0.4-1.1 %intheAp (V-PDB)ratio(Farquhar et al. ,1989).Wineswere horizon),drainageisexcessiveandtheAWCislowto analysedtwice. -1 moderate(90-110 mmm ).SantaLucia,aStagnic Traitsofgrapequality(sugarcontent,sugar Cambisol(Calcaric,Clayic),isformedonthe accumulationrate,titratableacidity,totaland relativelymorerecentPlio-Pleistocenefluvio- extractableanthocyaninsandpolyphenols)were lacustrineclays(sitesBRO7).Itisabrownsoil, analysedintheberriesandthemustsaccordingto loamy-claytextured,moderatelystructured,showing OIV(2000)andGlories(2001).YANwasdetermined sometimesferricnodulesorapetroferrichorizonin withtheenzymatic-spectrophotometricmethod depth(about1-1.5mdeep).Thissoilisusuallypoorly (Foodlab,2013)andmeasuredinthegrapemusts gravelly,plasticandwithafirmconsistencywhendry. fromthedifferentexperimentalvineyardsintheyear TheCaCO 3 ismoderate(1.8-12 %)andtheorganic 2008-2010,orplotsintheyear2011. matterisscarce(1-1.2 %intheAphorizon).Thesoil issomewhatpoorlydrainedandhasmoderateAWC Routinesoilanalysisoftheair-dried< 2 mmfraction -1 (130-150 mmm ).Allthesixstudiedsoilswerefully followedtheofficialItalianmethods(MIPAF,2000). basessaturated,butnotsaline,andshowedlow Laboratoryanalyseswerecarriedoutoneachsoil -1 electro-conductivityvalues(<500 μScm ).Nitrogen horizonuptotherootingdepth.Soiltexturewas contentwasalwaysloworverylow,withrelatively testedinthelaboratorybythesieve-pipettemethod. highervaluesinsitesBRO1,BRO9,andBRO11,and CaCO 3 contentwasmeasuredvolumetricallybythe lowestvaluesintheverysandyanderodedsite additionofHClinaDietrich-Fruhlingcalcimeter. BRO12. ActiveCaCO 3 wasanalysedwithasolutionof ammoniumacetate ;thisisthemoreactivefractionof 2. Field analysis CaCO 3,whicheasilydissolvesandprecipitates.Soil Thevegetativebehaviourofthegrapevineswas organiccarboncontentwasdeterminedbyusingthe recordedatspecificphenologicalphasesandyield Walkley-Blackprocedure(WalkleyandBlack,1934) ; componentsweremeasuredatharvest(yieldpervine, pHandelectricalconductivityweremeasuredina -1 clusterandmeanberryweight(MBW),numberof 1:2.5(ww )watersuspension ;cationexchange clusterspervine). Ψstemwasmonitoredatveraison capacity(CEC)wasmeasuredbyuseof1Msodium (firstdaysofAugust)withapressurechamber, acetatesolutionatpH7.0 ;andexchangeablebases accordingtothemethodologyproposedbyChoné et wereextractedwith1MNH 4+ acetatesolutionatpH al. (2001).Measurementswereperformedbetween10 7.0andmeasuredbyflamephotometry(Na,K,and

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 274 - 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page275

Ca)andatomicabsorptionspectrometry(Mg).Bulk termaverages.Theombrothermicdiagramof density(BD)wasobtainedwiththecoremethod BagnoulsandGaussen(1953)wasadoptedto (RobertsonandPaul,2000),averagingtwoorthree characterizetheclimateoftheyearandhighlightthe replicatesamples.AWCwasestimatedasthe occurrenceofaridconditions.Themonthly differencebetweensoilwatercontentatfieldcapacity precipitationandthemeanmonthlytemperaturewere (FC)andwiltingpoint(WP).Soilmoisturecontentat- plottedonthesamegraph,doublingthevaluesonthe 33kPa(FC)and-1500kPa(WP)ofdisturbedsamples scaleofprecipitation ;thedrymonthsarethosewhere ofthebenchmarkprofileswereanalysedinlaboratory therainfallcurvegoesbelowthatoftemperature, bythepressure-platesystem(KasselandNielsen, indicatingtheinversionofthehydricbalance.A 1986)onreplicatedsamples.Themoisturecontentat monthisconsidered“dry”whenthevalueofthesum FCandWP(mmm -1 )weremeasuredonthefineearth ofthemonthlyrainfallisequaltoorlessthantwice fractionandthevalueswerecorrectedforthegravel thevalueoftheaveragemonthlytemperature contentaccordingtoGardner(1986). (P≤ 2T). 4. Climatic and bioclimatic elaborations Theavailabilityofdailydataofsolarradiation, maximumandminimumtemperature,averagewind ET 0 wasestimatedaccordingtoHargreavesand speedandaveragetemperatureofthedewpoint Samani(1982)withtheaimtocomparetheclimatic allowedtheestimationofET accordingtoPenman conditionsofthe4-yearstudyperiodwiththelong- 0 andMonteith(ET 0PM ;ASCE-EWRI,2004).This parameterwasusedtoestimatecropevapo- transpiration(ETc)accordingtoAllen et al. (1998) :

ETc= ET 0PM xKc Kcisthecropcoefficientsforthevine.Theadopted monthlyvalues(DoorenbosandKassam,1979)were differentalongthegrowingseason(0.45April,0.65 May,0.70June,0.75JulyandAugust,0.70 September)totakeintoaccountthevinephenological phasesandthesoilcoverage.Theclimaticwater deficit(WDc)forthevinewascalculatedfromApril1 toSeptember30,asfollows : WDc= P-ETc wherePisthemonthlyrainfall. Twospecificbioclimaticindiceswerealsousedto characterizetheviticulturalenvironment : Thegrowingdegree-daysorWinklerindex(IW ; Winkler,1962)wascalculatedusingthefollowing formula :

where Tmed isthemeandailyairtemperature(°C). TheindexwascalculatedfortheperiodfromApril1 toOctober31. TheHeliothermalindexofHuglin(IH ;Huglin,1986)

wascalculatedasfollows : Fi g ur e 1 – So il map of the five exp erimenta l vin eyard s and eleven site s (BRO1-2 , BR O4-7 an d BRO9- 13).

Soil t yp ologic al un its (S T Us) : N ebbiano (NEB), Torricella (TOR), Miniera (MIN), Santa Lucia (SLC), where Tmed isthemeandailyairtemperature(°C), and Leccio 1 and 2 (LEC1 and LEC2). For more details, Tmax isthemaximumdailyairtemperature(°C),and

please see M&M and Tables 1 and 2. K isthelengthofdaycoefficient(rangefrom1.02to

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 - 275 - ©Vigne et Vin Publications Internationales (Bordeaux, France) 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page276

Edoardo A.C. COSTANTINI et al.

1.06between40°and50°oflatitude,1.03atBrolio) ; accumulationrate,EPIistheextractablepolyphenol inthenorthernhemisphere,theindexiscalculated indexfromberryskin,andMBWisthemeanberry basedontheperiodfromApril1toSeptember30. weightatharvest. 5. Sangiovese performance Theequation,validatedfortheSangiovesevariety cultivatedintheprovinceofSiena,tellsusthatthe ThevineperformanceofSangiovesewasevaluatedby winescoreobtainedinaspecificyearandplotis meansofasyntheticindicatorworkedoutbyBucelli higherwhenthesugarcontentinberriesatharvestis et al. (2010),whichmakesuseofaselectedsetof high,thesugaraccumulationisslow,thepolyphenol vegetativeandproductiveparameterstoestimatethe contentintheberryskinishigh,andberriesarenot scoreobtainedinthewinepaneltest,asfollows : stunted. Y= 8.689°Brix-141.881°Brixd -1 +0.042EPI+ 6. Statistical analysis 16.546MBW-170.646 Dataweresubmittedtoanalysisofvarianceand whereYisthescoreatthewinepaneltest,°Brixisthe regressionanalysis,usingStatisticasoftware(StatSoft berrysugarcontentatharvest,°Brixd -1 isthesugar Inc.,Tulsa,OK,USA).

Table 3 – Climatic indices and rainfall during the growing season of the 4 years of study.

Figure 2 – Ombrothermic diagrams of the studied years (T temperature, ET 0 evapotranspiration, P precipitation).

J . Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 276 -

03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page277

RESULTS AND DISCUSSION long-termaveragein2008and2010,whereasthey werehigherin2009and2011(Table3). 1. Climatic conditions during the study Rainfallduringthegrowingperiodin2009and2011 Theweatherduringthestudywasquitedifferenteach waslowerthanthelong-termaverage(316 mm)and year,andintheyears2010and2011comparedto higherintheyear2010.In2009,rainfallwas long-termaverage(Figure 2).Theyear2010wasthe concentratedinthepost-floweringandpre-harvest coldestandwettest :annualprecipitationwas936 mm periods,whilein2008totalrainfall,showingan andseasonalET 0 was795 mm,whereas2011wasthe amountsimilartothatofthelong-termaverage,was warmestanddriest :annualprecipitationwas424 mm concentratedinafewheavydownpours ;bycontrast, andseasonalET 0 was870 mm. in2010rainfallwasevenlydistributedthroughoutthe Theombrothermicdiagrams(Figure 2)highlighted summer,withgreaterintensitythanintheprevious thatintheyear2008,whichisthemostrepresentative twoyears.In2011,rainfallduringthegrowingseason oflong-termclimate,droughtconditionsoccurredat wasscarceandconcentratedinJuneandJuly(datanot thebeginningofJulyandpersisteduntilmid-August, reported). withJulybeingthedriestmonth ;theyear2009was Theclimaticwaterdeficit,estimatedduringthevine characterizedbyalongerperiodof“drought”,which growingseasononamonthlybasis,further startedatthebeginningofJulyandcontinueduntil highlightedthedifferencesbetweentheyearsofstudy. mid-September,withAugustbeingthedriestmonth ; Apronouncedwaterdeficitoccurredin2009andwas theyear2010showedmoderatedroughtconditions evenmorepronouncedin2011,whenthevinewas thatoccurredfrommid-JuneuntiltheendofJuly ; alwaysunderpotentialwaterdeficitconditions.The finally,theyear2011wasverydry,aridconditions cumulativepotentialclimaticdeficitfromJulyto occurredfrommid-Marchuntilmid-June,andthen Septemberwas-68.8mmin2008,-114.7mmin againfromthebeginningofAugustuntiltheendof 2009,36.7mmin2010,and-120.2mmin2011 September. (Figure 3).

Intheyear2008,themaximumET 0 occurredinJuly 2. Soil water availability andAugust,roughlycoincidingwiththeperiodof maximumrelativearidity.In2009,ET 0 valuesashigh Thewateravailabilityfortheperiodbetweenthe asthoserecordedduringthe«drought»periodwere beginningofJulyandtheharvest,whichisconsidered alsoestimatedinMay.In2010,thepeakvaluesofJuly criticalfortheaccumulationofsugarsandthe werelowerthaninthetwopreviousyears.In2011, developmentofsecondarymetabolitesinthegrapes, therewerehighvaluesofET 0 fromMayuntilAugust. isshowninFigure 4.Thefigureshowsthedifference betweenmeanfieldsoilwatercontentandlabwater Meteorologicalconditionsduringthegrowingperiod contentatatensionof-1,500kPa(standardwilting inthe4yearsofstudywerealsocharacterizedby point)duringtheperiodfromveraisontoharvest.The Hug1l inandWinklerindicesthroughthedataofthe presenceofnegativevaluescanbeexplainedrecalling wea2th erstationplacedinthevineyardsandcompared thatvinesareabletoabsorbwaterfromdepthsgreater with3 thelong-termdatarecordedatthenearbystation thanthatmonitoredandattensionsstrongerthan ofGaioleinChianti.Theywereslightlylowerthanthe -1,500kPa(White,2003).

2008 2009 2010 2011 100 80

) 60 m

m 40 (

t

i 20 c i f 0 e d -20 r e t -40 a

W -60 -80 -100 April May June July August September 4 5 Figure 3 – ClimaticFi gwaterure 3 –deficit Clima tforic w vineater inde ftheicit fourfor v istudyne in t hyears.e four study years. 6 7

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 - 277 - ©Vigne et Vin Publications Internationales (Bordeaux, France)

03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page278

Edoardo A.C. COSTAN1 TIN I et al. 2 3 4 5

) 50

m a

m 30 a 0 0

7 ab / 10 m m (

-10 y t i l i -30 b bc a

l bc i

a -50 v

a c

r -70 e

t c

a c -90 W

1 4 5 6 7 1 2 3 O O O O O 1 1 1 R R R R R O O O B B B B B R R R B B B 6 7 Figure 4 – Mean soil water availability in the 5- to 75-cm depth between the beginning of Figur8e 4 –July Me aandn s otheil w harvestater av a(2008-2010).ilability in t hBarse 5- tmarkedo 75-cm with dep tdifferenth betwee nletters the b areegin significantlyning of July 1 9 different for P<0.05 according to the HSD Tukey's test. 2 and the harvest (2008-2010). Bars marked with different letters are significantly different 10 3 for P < 0.05 according to the HSD Tukey's test. 11 12 %$$ -$ " ,$ "# +$ #! #! ! #! ! ! *$ ! ! e r o

c )$ S ($ '$ &$ %$ $

$% $& $' $( $) $* $+ % & , # # # # # # # $% $% $% " " " " " " " # # # ! ! ! ! ! ! ! " " " 4 ! ! ! 5 Figure 5 – Mean values of Sangiovese performance in the studied sites (2008-2010). Bars 6 markedFig uwithre 5 different– Mean vlettersalues areof S significantlyangiovese p edifferentrforman force iP<0.05n the s taccordingudied sit etos (the200 HSD8-20 10). Bars7 maTukey’srked wi ttest.h di fferent letters are significantly different for P < 0.05 according to the HSD Tukey’s test. 8 9 Despitet10he considerableclimaticdifferencesthat 1.66kgperplant),aspursuedbythefarm,butwithout occurredinthefirstthreeyears,thestatisticalanalysis anystatisticalrelationshipwiththeviticulturalresults ofthemeansoilmoisturedidnotrevealsignificant (Table4)andthecalculatedperformance.Ontheother differencesbetweenyears(about-18 mmonaverage). hand,sitesshowedstatisticallysignificantdifferences Ontheotherhand,therewasahighvariabilitybetween forsomeoftheotherparameters,inspiteofthe sites,andeachsiteshowedsimilarbehaviourthroughout uniformandseverepruning(Table4).Theeffectof themonitoringperiod.Infact,significantdifferences theagriculturalhusbandrywasalsoevidencedbythe emergedamongthedifferentmonitoringsites. absenceofasignificantdifferencebetweenyearsin termsofmeanberryweightandyield.Onthecontrary, Itisnotsurprisingthatapositivedifferenceoccurred theeffectofyearwassignificantonsugarcontentand insandysoils(BRO11andBRO12),whereasclayey accumulation,pointingtohighervaluesin2010,and soilsshowedthemostnegativevalues(BRO1,BRO5 inparticularonpolyphenolcontent. andBRO13).Actually,waterretentioncapacityofthe studiedsoilswasnotonlyaffectedbythetexture,but Thescoreofthemeanthree-yearSangiovese alsobysoilstructure,gravel,andstonecontent. performanceobtainedinthestudiedsiteswasalways Therefore,moistureinpoorlystructuredorverystony above50,whichmeansthatinallplotsthequality clayeysoilsdidnottranslateintoalargervolumeof potentialofthegrapeswasgood.Theperformance watereffectivelypresentinthesoilandavailableto rangedsignificantlybetweenyears(onaverage,58in thevines. 2009versus64inboth2008and2010),andespecially betweensites(Figure 5).SitesBRO12andBRO4 3. Sangiovese performance showedsignificantlyhigherperformancescompared Grapeproductionduringthestudiedyearswas totheothers,especiallycomparedtoBRO1,2,5,7 characterizedbyratherlowvalues(generalaverageof and13.

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 278 - 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page279

Table 4 – Main viticultural results.

*MBW, mean berry weight and n.d., not detected ; in each column, mean values with different letters are significantly different for P < 0.05 according to the HSD Tukey’s test.

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 - 279 - ©Vigne et Vin Publications Internationales (Bordeaux, France) 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page280

1 2 3 Edoardo A.C. COSTANTINI et al. 4 5 6 7 90

80

70 e r

60 o c S 50 y = 0.2429x + 69.456 2 1 R = 0.7216 40 2 3 30 4 -150 -100 -50 0 50 100 5 Soil water availability (mm) 6 7 8 Figure 6 – Data plott9e d frFigureom San g6i o–v eDatase pe rplottedforman fromce and Sangiovese soil water a vperformanceailability in t hande 5- soilto 7 5water-cm d eavailabilitypth in seven insit ethes during the y8ea r1s 02 008-5-20 to10 . 75-cmNegati vdepthe valu eins i nsevendicate sitesmea nduring soil wa ttheer c oyearsntent s2008-2010. below conv eNegativentional w ivalueslting p oindicateint 9 11 meana tsoil the mwatereasur econtentsd depth b ebelowtween vconventionaleraison-harve swiltingt phase s.point at the measured depth 10 12 between veraison-harvest phases. 13 -22 14 -23 y = 0.3894x - 29.976 -24 R2 = 0.7179 -25 ) ‰ ( -26 C 3 1 ! -27 !

-28

-29

-30 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Stem water potential (- bar)

11 13 Figure 7 – Da1ta2 plotFigureted from 7 –δ DataC an dplotted stem w fromater p !o13teCn tandial m stemeasur watered at v potentialeraison in measured four (2010 )at o rveraison eight (20 in11 four) site s. 13 (2010) or eight (2011) sites. 14 Itisworthwh1i5l et onotethattheSangiovese Rossmann et al. ,1996).Thevaluewasslightlylower performancein1th6e stu diedplotswaspositivelyrelated thanthatreportedintheliteratureforredwines,but tosoilwaterav17ail abilityat5-to75-cmdepth,witha matchedwellwiththeoutcomesobtainedfrom ratherhighdeterminationcoefficient(Figure 6).This Sangiovesecultivatedindifferentexperimental outcomewasparticularlyinteresting,sinceprevious settings(Costantini et al. ,2010 ;Palliotti et al. ,2008). studieshadindicatedtha ttheviticulturalresultof Sangioveseisgenerallylimitedbylargewater Infewcases,themeasured Ψstemvalueswerelower than-12 bar,butmostvalueswerelowerthan-9 bar, availability,asitcausessuperfluousgrowingatthe 13 expenseofthetargetgrapequality(Storchi et al. , correspondingtoa δ Cvalueof-26.5‰.Ifwetake 2005 ;Scalabrelli et al. ,2006 ;Costantini et al. ,2008 ; -9 bar ΨstemasathresholdforSangiovesetopointto Palliotti et al. ,2011). theoccurrenceofincipientwaterstress,theresults indicatedthatmanyoftheobservedplantswere 4. Carbon isotopes measured on wine ethanol sufferingfrommoderateorseverewaterstressatthe dateofmeasurement. Asexpected, δ13 Cdeterminedinthewinesampleswas ratherwellcorrelatedwith Ψstem(Figure 7).The Asawhole,thegeneralmean δ13 Cvalueobtainedin Ψstemthresholdof-12 bar,reportedintheliterature thewinesofallplotsandyears,-25.48‰(-23.78‰in toseparatestressfromnostresswaterconditions, themust),pointedtoanaveragewaterstress. correspondedtoa δ13 Cvalueof-25.3‰(broadly Significantdifferencesoccurredbetweenyearsaswell equivalentto-23.7‰inthemust,accordingto asbetweensites.Limitingwaternutritionwas

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 280 - 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page281

13 strongerin2008,moderatein2009,andlowin2010 Table 5 – δ C values (Table5). in the studied years 2008, 2009, 2010. Meanswithdifferentlettersindicatesignificantly differencesbetweensitesinthesameyearforP< 0.05, orbetweenyearaveragesforP< 0.01,accordingto theHSDTukey’stest. Asfortheinfluenceofyear,itisnoteworthythatthere wasnoclearrelationshipbetween δ13 Cvaluesand climaticdeficitduringtheentiregrowingseason,the veraison-harvestphases(Table5),ortheWinklerand Huglinindices.However,inthewettestyear(i.e., 2010)weobtainedthemostnegative δ13 Cvalues,and theamountofclimaticdeficitduringJuly,namelythe timebeforefullveraison,seemedtohaveatrend similartothatof δ13 Cvalues. Ontheotherhand,sitesshowedasimilarrankingin allyears,inotherwords,nostatisticalinteraction Means with different letters indicate significantly betweentheeffectsofthesiteandyearoccurred.This differences between sites in the same year for P < 0.05, or meansthattherewasacleardifferentiationofthe between year averages for P < 0.01, according to the HSD three-yearmeanvaluesbetweensites,inparticular, Tukey’s test. BRO4andBRO12showedthelowestvalues, indicatingnoorverylittlewaterstress,whileallthe humidity.Thus,Sangioveseexhibitedhighadaptation otherswereunderthethresholdofmoderatestress butalsosensitivitytodryconditions. (-26.5‰),withBRO1,BRO2,BRO5,BRO6,BRO7, 5. Yeast-assimilable nitrogen (YAN) BRO10,andBRO11underthethresholdofstrong stress(-25.3‰)(Figure 8). Similarlytosoilnitrogencontent,whichwasalways low,YANmeasuredinthemustobtainedfromthe Themostinterestingoutcomeoftheisotopic bulkyieldofthefiveexperimentalvineyardswasat characterizationofthewines,however,wasachieved 13 alltimesratherlow,thatis,muchlowerthanthe120- when δ Cvalueswererelatedtotheviticulturaland 140 mgL -1 thresholdusuallyconsideredasareference oenologicalresults,assynthesizedintheperformance valuetoassesslimitingcondition(OjedaandSalmon, index(Figure 9).Inthiscase,thecorrelationwas 2011).Onaverage,thethree-yearmeanofYANwas contrarytoexpectation,thatis,theperformance 86.7mgL -1 ,withoutsignificantdifferencesbetween increasedwhenthewaterstressdecreased.Thisresult yearsandratherlowdifferencesbetweenvineyards wasparticularlystrikingsince δ13 Cvalueswerenot 1 (Figure 10).Thenwecanassumethatnitrogen partic2u lar lylow,andcouldconfirmaparticular nutritionwasalwayslimiting,althoughwaterstress sensiti3v ity oftheSangioveseperformancetowater conditionschangedsignificantlybetweenyearsand limita4ti ons ,similartothosecausedbyanexcessof sites. 5

-29 b a -28

-27 c d -26 C de 3 ef de de 1 fg ! ! -25 g g -24

-23

-22

1 2 4 5 6 7 9 0 1 2 3 1 1 1 1 O O O O O O O R R R R R R R O O O O B B B B B B B R R R R B B B B

6 13 7 FigureFigu 8r e –8 Mean– Mea nvalues value s(2008-2010) (2008-2010) ooff δ!13CC i nin t hthee w iwinesnes pr oproducedduced in t hine ethexpe experimentalrimental plots . 8B arsplots. mark eBarsd wit markedh differe nwitht lett differenters are sig lettersnifican tarely d significantlyifferent for P

03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page282

Edoardo A.C. COSTANTINI et al.

6. The validation year Theperformancescorewasonaveragehigherthanin

13 previousyears,butthesiterankingwasthesame. Intheyear2011,theoverallmean δ Cindicated Althoughthelimitedsetofdatadidnotallowa moderatewaterstressconditions,rangingfromno significantcorrelationbetweenthevariables,inthe (BRO4)tostrongstress(BRO1,BRO5,andBRO11) year2011itresultedinaninverserelationship (Table6).Therefore,theselectedsubsetofplotscould between δ13 Candperformance. beconsideredwellrepresentativeoftheexperimental fieldvariability.Alsointhisyear, δ13 Cvaluesdidnot TheYANvaluewasalwayslowtoverylow.The reflecttheseasonalclimate(Table3)andthepotential limitedamountofdatadidnotpermitgeneralization, 1 w aterdeficit(Figure 3) ;rather,theywereverymuch however,therewasadirectrelationbetween similartothoseobtainedinthesamesitesduringthe performanceandYAN.Thus,theplotwiththeworst previousyears(Table6). performanceshowedthestrongestwaterdeficitand

90 80 e

r 70 o c

S 60 50 y = -4.0599x - 41.552 R2 = 0.4234 40 30 -23 -24 -25 -26 -27 -28 -29 -30 !13C (‰)

13 2 Figure 9 – Data plotted from Sangiovese performance and δ C in eleven sites during the years 2008-2010. 1 13 3 Figure2 9 – Data plotted from Sangiovese performance and ! C in eleven sites during the 4 years 2008-2010. 120 a 5 ab 100 ab )

1 ab

6 -

L 80 b

g

m 60 (

N \

A 40 Y 20 0 3 Torricella 1 Torricella 2 Miniera Piazzine Querce 4 Figure 10 – Mean values (2008-2010) of YAN (Yeast-Assimilable Nitrogen) 5 Figure 10 – Mean values (2008-2010) of YAN (Yeast-Assimilable Nitrogen) in the wines in the wines produced in the experimental vineyards. 6 produced in the experimental vineyards. Bars marked with different letters are Bars marked with different letters are significantly different for P < 0.05 according to the HSD Tukey’s test. 7 significantly different for P<0.05 according to the HSD Tukey’s test. 8 Table 6 – Yeast-assimilable nitrogen (YAN) in the must.

MeanswithdifferentlettersaresignificantlydifferentforP< 0.05accordingto theHSDTukey’stest,n.d.:nondetected

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 282 -

03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page283

thelowestnitrogenavailability,whereasthebest andSangioveseperformancewasnotasexpected, performancecorrespondedtomoderateornowater sincepoorsoilfertility,inparticularlownitrogen stressandrelativelyhighernitrogenavailability. content,andtheadoptedviticulturalhusbandry, alwayspreventedvineluxuriation,alsoinnon- CONCLUSIONS limitingwaterconditions. Thesoilsurveyoftheexperimentalvineyardsrevealed Acknowledgements :Theauthorsaregratefulto alargenaturalvariabilityofsoilenvironments, Dr MassimilianoBiagi,agronomistatthe“Barone increasedbythemechanicalworkscarriedoutduring Ricasoli”farm,fortheexcellenttechnicalassistance.This theactivitiesofsurfacepreparationbeforeplanting. researchwasfundedbytheCRA-Consiglioperlaricercae Besidesenhancingsitespecificity,thedeepupsetting lasperimentazioneinagricoltura(ProjectISSUOVINO) oftheoriginalsoilprofileandthestrippingofthe andbythe“BaroneRicasoli”farm.Theauthorsalsothank surfacehorizonsfavouredtheoutcroppingofstones thereviewersandProf.KeesvanLeeuwenfortheiruseful andbiologicallypoor,deepsoillayers.Therefore,the commentsandsuggestions. studiedsoilswereinmostcasesoflowfertility, REFERENCES becauseoftheirlithologicalnatureaswellasa consequenceofpre-plantationactivities. AllenR.G.,PereiraL.S.,RaesD.andSmithM.,1998.Crop evapotranspiration :guidelinesforcomputingcrop Thetargetoenologicalresultpursuedbythefarmwas waterrequirements.In : Irrigation and Drainage theenhancementofwinequalityandsitespecificityby Paper No. 56 .FAO,Rome. meansoflimitedyieldandadoptionoforganic AndrenelliM.C.,MaginiS.,NatarelliL.,VignozziN., farming.Viticulturalhusbandrylimitedfertilization AgnelliA.,BucelliP.,PellegriniS.,PrioriS.and andimplementedhighplantdensity,moderatevigour CostantiniE.A.C.,2011.Applicazioneditecniche rootstock,severepruningandthinningofbunches,and innovativeinviticolturadiprecisione. EQA - Int. asemi-permanentgrasscover. J. Environ. Qual. 7,103-112. ASCE-EWRI,2004.TheASCEstandardizedreference Thevaluesof δ13 Cweresignificantlycorrelatedwith 13 evapotranspirationequation.In : Standardization of leafwaterpotential.A δ Cinthewineof-26.5‰ Reference Evapotranspiration - Task Committee Final correspondedtoa Ψstemof-9 bar,whilea Ψstemof 13 Report . ASCEEnvironmentalandWaterResources -12 barmatchedwitha δ Cof-25.3‰.Theoutcomes Institute.Reston,VA. ofthefieldmonitoringofsoilwateravailability ÄyräpääT.,1971.Biosyntheticformationofhigher confirmedthecrucialroleplayedbywatersupplyon alcoholsbyyeast.Dependenceonthenitrogenous Sangioveseperformance,butwithadirectrelationship, nutrientlevelofthemedium. J. Inst. Brew. , 77 ,266- contrarytowhatisconsideredageneralruleforred 275. wines.Infact,thebestperformancewasachieved BagnoulsF.andGaussenH.,1953.Saisonsècheetindice wherewaternutritionwasnotlimited,thatis,inthe 13 xérothermique. Bull. Soc. Hist. Nat. Toulouse , 88 , plotswherethe δ Cinthewinewaslowerthan- Fasc.3/4. 26.5‰andthe Ψstematveraisonhigherthan-9 bar. BellS.J.andHenschkeP.A.,2005.Implicationsofnitrogen Theunexpectedrelationshipbetween δ13 Cvaluesand nutritionforgrapes,fermentationandwine. Aust. performancescorescouldberelatedtothenitrogen J. Grape Wine Res. , 11 ,242-295. nutrition.Actually,allthestudiedsoilsshowedlowor BucelliP.,CostantiniE.A.C.andStorchiP.,2010.Itis verylownitrogencontent,consequently,nitrogen possibletopredictSangiovesewinequalitythrougha contentinthemustwasalsoloworverylow.Inthe limitednumberofvariablesmeasuredonthevines. plotswherewateravailabilitywasrelativelyhigher, J. Int. Sci. Vigne Vin , 44 ,207-218. nitrogenplantuptakewasfavoured,YANwas ChapmanD.M.,RobyG.,EbelerS.E.,GuinardJ.-X.and relativelyhigher,andsowasSangioveseperformance. MatthewsM.A., 2005. SensoryattributesofCabernet Itmustbestressed,however,thattheusedSangiovese Sauvignonwinesmadefromvineswithdifferent performanceevaluationwasasimplifiedapproach, waterstatus. Aust. J. Grape Wine Res. , 11 , 339-347. whichdidnotallowtohighlightpossibleparticular ChonéX.,vanLeeuwenC.,DubourdieuD.andGaudillere aromasthatmighthavebeenproducedinverylimiting J.P.,2001.Stemwaterpotentialisasensitive soilconditions. indicatorofgrapevinewaterstatus. Ann. Bot. , 4,477- 483. 13 Inconclusion,the δ Cand Ψstemwaterstress CostantiniE.A.C.,BarbettiR.,BucelliP.,L’AbateG.,Lelli indicatorsalonecannotbeusedtoforeseevine L.,PellegriniS.andStorchiP.,2006.Land performanceifanotherimportantfactor,likenitrogen peculiaritiesofthevinecultivationareasinthe availability,islimiting.Therelationshipbetween δ13 C provinceofSiena(Italy),withindicationsconcerning

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 - 283 - ©Vigne et Vin Publications Internationales (Bordeaux, France) 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page284

Edoardo A.C. COSTANTINI et al.

theviticulturalandoenologicalresultsofSangiovese GardnerW.H.,1986.Watercontent.In : Methods of Soil vine . Boll. Soc. Geol. Ital. , 6,147-159. Analysis Part 1 : Physical and Mineralogical nd CostantiniE.A.C.(Ed.),2007. Linee Guida dei Metodi di Methods ,2 edition.KluteA.(Ed.),Agron.Monogr., Rilevamento e Informatizzazione dei Dati Pedologici . 9,ASAandSSSA,Madison,WI,USA,pp.493-544. CRA_ABP,Firenze,Italia,296p.(InItalian,with GloriesY.,2001.Caractérisationdupotentielphénolique : Englishsummary)[On-lineat http://abp.entecra.it/ adaptationdelavinification. Progr. Agric. Vitic. , 118 , soilmaps/ita/downloads.html ]. 347-350. CostantiniE.A.C.,BarbettiR.,BucelliP.,L’AbateG., Guix-HebrardN.,VoltzM.,TrambouzeW.,GarnierF., PellegriniS.andStorchiP.,2008.Scaledependence GaudillereJ.P.andLagacherieP.,2007.Influenceof ofsoilandclimatefunctionalcharacteristicsfor watertabledepthsonthevariationofgrapevinewater qualitativeSangiovesevineproduction.In : Proc. statusatthelandscapescale. Eur. J. Agron. , 27 ,187- XXXI OIV Congress, Verona . AvailableonCD-ROM. 196. Org.Int.VigneVin,Paris,France. HargreavesG.H.andSamaniZ.A.,1982.Estimating CostantiniE.A.C.,PellegriniS.,BucelliP.,BarbettiR., potentialevapotranspiration. J. Irrig. Drain Eng. , 108 , CampagnoloS.,StorchiP.,MaginiS.andPerriaR., 225-230. 2010.MappingsuitabilityforSangiovesewineby HuglinP.,1986. Biologie et Écologie de la Vigne .Payot meansof δ13 Candgeophysicalsensorsinsoilswith Lausane,Paris. moderatesalinity. Eur. J. Agron. , 33 ,208-217. KasselD.K.andNielsenD.R.,1986.Fieldcapacityand CostantiniE.A.C.,FantappiéM.andL’AbateG.,2013. availablewatercapacity.In : Methods of Soil Analysis ClimateandpedoclimateofItaly.In : The Soils of Part 1 : Physical and Mineralogical Methods ,2 nd Italy . CostantiniE.A.C.andDazziC.(Eds.),World edition.KluteA.(Ed.),Agron.Monogr.,9,ASAand SoilsBookSeries,Springer,pp.19-37.DOI : SSSA,Madison,WI,USA,pp.901-926. 10.1007/978-94-007-5642-7. MartiniE.,CominaC.,PrioriS.andCostantiniE.A.C., DelucL.G.,QuiliciD.R.,DecenditA.,GrimpletJ., 2013.Acombinedgeophysical-pedologicalapproach WheatleyM.D.,SchlauchK.A.,MérillonJ.M., forprecisionviticultureintheChiantihills. Boll. Geo. CushmanJ.C.andCramerG.R.,2009.Waterdeficit Teor. Appl. , 54 ,165-181. altersdifferentiallymetabolicpathwaysaffecting importantflavorandqualitytraitsingrapeberriesof MIPAF(MinisterodellePoliticheAgricoleeForestali), CabernetSauvignonandChardonnay. BMC 2000. Metodi di Analisi Chimica del Suolo. Violante Genomics , 10 ,no.212. P.(Ed.),FrancoAngeli,Milan. DeschepperG.,CassassollesX.,DabasM.andPernetD., MurisierF.,ZuffereyV.andSpringJ.L.,2012.Pratiques 2006.Complémentaritédesmesuresderésistivité viticoles :passé,présentetfutur. Rev. Œnol. Tech. électriquedessolsetdu δ13 Cdumoûtdansl’étudeet Vitivini. Œnol. , 145 ,41-43. lavalorisationdesterroirsviticoles.In : VIth O.I.V.,2000. Recueil des méthodes internationales International Terroir Congress ,Bordeaux,pp.232- d’analyse des vins et des moûts. OIV,Paris. 236. OjedaH.andSalmonJ.M.,2011.Stresshydriqueset DoorenbosJ.andKassamA.H.,1979.Yieldresponseto teneursazotéesdesraisinsetmoûts. Rev. Œnol. Tech. water.In : Irrigation and Drainage Paper No. 33 . Vitivini. Œnol. , 141S ,51-52. FAO,Rome,193p. PalliottiA.,SilvestroniO.,PetoumenouD.,VignaroliS. FAO,IUSS,ISRIC,2006. World Soil Resources Reports andBerriosJ.G.,2008.Evaluationoflow-energy No. 103 .Worldreferencebaseforsoilresources, demandadaptivemechanismsinSangiovese FoodandAgricultureOrganizationoftheUnited grapevineduringdrought. J. Int. Sci. Vigne Vin , 42 , Nations(FAO),Rome,133p. 41-47. FarquharG.D.,EhleringerJ.R.andHubickK.T.,1989. PalliottiA.,PoniS.,SilvestroniO.,TombesiS.and Carbonisotopediscriminationandphotosynthesis. BernizzoniF.,2011.Morpho-structuraland Annu. Rev. Plant Physiol. Plant Mol. Biol. , 40 ,503- physiologicalperformanceofSangioveseand 537. Montepulcianocvv.( )undernon- Foodlab,2013. Determinazione dell’APA nel Mosto . limitingwatersupplyconditions. Funct. Plant Biol. , http://www.foodlab.it/analisi-alimentari/apa-vino.html 38 ,888-898. [online,lastaccessed12.02.2013]. PeyrotdesGachonsC.,vanLeeuwenC.,TominagaT., FregoniM.,2006.IlSangiovese,vitignoautoctonoe SoyerJ.P.,GaudillèreJ.P.andDubourdieuD.,2005. internazionale :evoluzioneestrategiedisviluppo.In : Influenceofwaterandnitrogendeficitonfruit Proc. 2nd International Symposium “Sangiovese : ripeningandaromapotentialof Vitis vinifera L.cv Typical and International Vine. Identity and Sauvignonblancinfieldconditions. J. Sci. Food Peculiarity”. ARSIA,Firenze(Italy),pp.21-30. Agric. , 85 ,73-85.

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 284 - 03-COSTANTINI_05b-tomazic 30/12/13 18:56 Page285

ReynardJ.S.,ZuffereyV.,NicolG.C.andMurisierF., vanLeeuwenC.,TrégoatO.,ChonéX.,JaeckM.E., 2011.Vinewaterstatusasaparameterofthe RabusseauS.andGaudillereJ.P.,2003.Lesuividu «terroir»effectunderthenon-irrigatedconditionsof régimehydriquedelavigneetsonincidencesurla theVaudviticulturalarea(Switzerland). J. Int. Sci. maturationduraisin . Bull. O.I.V. , 867-868 ,367-379. Vigne Vin , 45 ,139-147. vanLeeuwenC.andSeguinG.,2006.Theconceptof RobertsonG.P.andPaulE.A.,2000.Decompositionand terroirinviticulture. J. Wine Res. , 17 ,1-10. soilorganicmatterdynamics. In : Methods in Ecosystem Science. SalaO.E.,JacksonR.B.,Mooney vanLeeuwenC.,TrégoatO.,ChonéX.,BoisB.,PernetD. H.A.andHowarthR.W.(Eds.),Springer,NewYork, andGaudillereJ.P.,2009.Vinewaterstatusisakey pp.104-116. factoringraperipeningandvintagequalityforred RossmannA.,SchmidtH.-L.,RenieroF.,VersiniG., Bordeauxwine.Howcanitbeassessedforvineyard MoussaI.andMerleM.H.,1996.Stablecarbon managementpurposes ? J. Int. Sci. Vigne Vin , 43 ,121- isotopecontentinethanolofECdatabankwinesfrom 134. Italy,FranceandGermany. Z. Lebensm. Unters. WalkleyA.andBlackI.A.,1934.Anexaminationofthe Forsch. , 203 ,293-301. Degtjareffmethodfordeterminingsoilorganic ScalabrelliG.,D’OnofrioC.,MacchiaA.,RoselliniD., matter,andaproposedmodificationofthechromic BertuccioliM.andBoselliM.,2006.Comportamento acidtitrationmethod. Soil Sci. , 37 ,29-38. agronomicodelvitignoSangiovesein11zonedel ChiantiClassico.In : Proc. Int. Symposium WhiteR.E.,2003. Soils for Fine Wines .OxfordUniversity “Sangiovese” .ARSIA,Firenze(Italy),pp.530-539. Press,NewYork. StorchiP.,CostantiniE.A.C.andBucelliP.,2005.The WhiteR.,BalachandraL.,EdisR.andChenD.,2007.The influenceofclimateandsoilonviticulturaland soilcomponentofterroir. J. Int. Sci. Vigne Vin , 41 ,9- enologicalparametersof‘Sangiovese’grapevines 18. undernon-irrigatedconditions. Acta Hortic. , 689 ,333- WinklerA.J.,1962. General Viticulture .Universityof 340. CaliforniaPress,Berkeley. TrégoatO.,vanLeeuwenC.,ChonéX.andGaudillèreJ.P., ZsófiZ.,GálL.,SzilágyiZ.,SzűcsE.,MarschallM., 2002.Theassessmentofvinewaterandnitrogen Nagy Z.andBáloB.,2009.Useofstomatal uptakebymeansofphysiologicalindicatorsinfluence onvinedevelopmentandberrypotential( Vitis vinifera conductanceandpre-dawnwaterpotentialtoclassify L.cvMerlot,2000,Bordeaux). J. Int. Sci. Vigne Vin , terroirforthegrapevarietyKékfrankos. Aust. 36 ,133-142. J. Grape Wine Res. , 15 ,36-47. vanLeeuwenC.,GaudillèreJ.P.andTrégoatO.,2001. ZuffereyV.andMurisierF.,2007.Assessmentofplant Evaluationdurégimehydriquedelavigneàpartirdu hydraulicsingrapevineonvarious« terroirs »inthe rapportisotopique 12 C/ 13 C. J. Int. Sci. Vigne Vin , 35 , CantonofVaud(Switzerland). J. Int. Sci. Vigne Vin , 195-205. 41 ,95-102.

J. Int. Sci. Vigne Vin , 2013, 47 , n°4, 269-285 - 285 - ©Vigne et Vin Publications Internationales (Bordeaux, France)