1. Examination of Higher Mental Functions Page Numbers a (1-19)

Total Page:16

File Type:pdf, Size:1020Kb

1. Examination of Higher Mental Functions Page Numbers a (1-19) NSI HANDBOOK OF CLINICAL EXAMINATION List of contributors: 1. Examination of higher mental functions Page numbers A (1-19) Dr Sarat Chandra, Professor, Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 2. Examination of 1st& XIIth cranial nerves Page numbers B (1-7) Dr Samarendra N Ghosh, Professor and Head, Department of Neurosurgery, Bangur Institute of Neurosciences, Kolkata 3. Examination of visual acuity and fields Page numbers C (1-8) Dr Daljit Singh, Professor, Department of Neurosurgery, G.B.Pant Hospital, New Delhi 4. Fundus examination Page numbers D (1-23) Dr Vikas Kanaujia, Additional Professor , Department of Ophthalmology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 5. Extraocular movement deficits Page numbers E (1-34) Dr Manas Panigrahi, Senior Consultant Neurosurgeon, KIMS, Hyderabad. Ex-Professor, Neurosurgery, NIMS, Hyderabad 6. Supranuclear control of eye movements Page numbers F (1-15) Dr Kumudini Sharma, Professor and Head, Department of Ophthalmology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 7. Examination of nystagmus Page numbers G (1-11) Dr Ashish Suri, Professor, Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi Dr Manjul Tripathi, Post Doctoral Fellow, Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 8. Examination of Vth cranial nerve Page numbers H (1-12) Dr Awadhesh K Jaiswal, Additional Professor, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow Dr Guruprasad Bettaswamy, Post Doctoral Fellow, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow Dr. Kuntal Kanti Das, Assistant Professor, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow Dr. Sanjay Behari, Professor and Head, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 9. Examination of VIIth cranial nerve Page numbers I (1-14) Dr Suresh Nair, Professor and Head, Department of Neurosurgery, The SreeChitraTirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 10. Bedside hearing assessment Page numbers J (1-5) Dr Sunil K Gupta, Professor, Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh Dr Saudaminilele, Senior Resident, Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh 11. Examination of vestibular system Page numbers K (1-4) Dr Paritosh Pandey, Additional Professor, Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangaluru Dr S Baruah, Senior Resident, Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangaluru 12. Examination of IXth, Xth, XIth cranial nerves Page numbers L (1-17) Dr Altaf Ramzan, Professor and Head, Department of Neurosurgery, Sher-e-Kashmir Institute of Medical Sciences, Srinagar 13. Examination of Muscle tone and muscle wasting Page numbers M (1-4) Dr Rabi N Sahu, Additional Professor, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow Dr Arun Srivastava, Associate Professor, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow Dr Amit Keshri, Assistant Professor, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow Dr Kamlesh S. Bhaisora, Postdoctoral Fellow, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 14. Examination of muscle power Page numbers N (1-16) Dr. Sandip Chatterji, Honorary Professor, Department of Neurosurgery, Vivekanand Institute of Medical Sciences and Senior Consultant Neurosurgeon, Park Clinic, Kolkata Dr Anil Chandra, Professor, Department of Neurosurgery, King George Medical University, Lucknow 15. Examination of motor reflexes Page numbers O (1-11) Dr Chandrashekhar Deopujari, Professor and Head, Department of Neurosurgery, Bombay Hospital Institute of Medical Sciences, Mumbai 16. Examination of abnormal movements Page numbers P (1-4) Dr V G Ramesh, Professor and Head, Department of Neurosurgery, Chettinad Hospital & Research Institute, Chennai, Ex- Professor of Neurosurgery, Institute of Neurology,Madras Medical College, Chennai 17. Examination of gait and stance Page numbers Q (1-8) Dr Manmohan Singh, Additional Professor, Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi Dr N Damodaran, Senior Resident, Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 18. Examination of motor system in brachial plexus injuries Page numbers R (1-9) Dr Dhananjay Bhatt, Additional Professor, Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangaluru 19. Examination of Sensory System Page numbers S (1-16) Dr B K Ojha, Professor and Head, Department of Neurosurgery, King George Medical University, Lucknow 20. Examination of cerebellar system Page numbers T (1-14) Dr Manoj K Tewari, Professor, Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh 21. Examination of release reflexes and lobar signs Page numbers U (1-10) Dr Vedantam Rajshekhar, Professor and Head, Department of Neurosurgery, Christian Medical College, Vellore Dr Ranjith K Moorthy, Professor, Department of Neurosurgery, Christian Medical College, Vellore 22. Evaluation of a patient in altered sensorium Page numbers V (1-9) Dr RC Mishra, Senior Consultant Neurosurgeon, Rainbow Hospital, Agra and former Professor and Head, SN Medical College, Agra Dr Anant Mehrotra, Assistant Professor, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow Dr Jayesh Sardhara, Postdoctoral Fellow, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow EXAMINATION OF HIGHER MENTAL FUNCTIONS Dr. P. Sarat Chandra, Dr. Manjari Tripathi “This chapter is dedicated to all neurosurgery residents, for most of whom, examination of higher mental functions is limited to just saying that the “patient is conscious, alert and oriented.” “Also to all Neurology residents, who may know more but still fall short of practicing this important component of Neurology.” Definition: The examination of higher mental status involves a structured assessment of the patient's behavioral and cognitive functioning. It provides an objective insight to the examiner on the patient’s level of cognitive functioning, his/her ability to interact with environment and adjust to the existing social structures. It is not a single function, but a constellation of multiple capabilities localized to various parts of the brain. Some functions have a definite localization while other functions cannot be localized to any single area of the brain and occur as a result of interaction of multiple neuronal circuits. Historical Background: Historically, there has been a paradigm shift in our understanding of localization of various cognitive functions. In the medieval times, people could not fully grasp the importance of the brain. Ancient Egyptians thought that the cranium contained “lymph”. They removed it prior to mummification from a hole made through the nose. Even though ancient Greek scholars understood the basic functions of the brain, it was only in the 19th century, when Paul Broca discovered the “expressive language” area that the scientists began to understand how higher mental functions such as language could be localized in the brain. Paul Broca, Carl Wernicke, and Hughlings Jackson developed different models of brain function, and each contributed important insights to the study of aphasia. Broca's contributions were influenced by the fundamental question of whether higher mental function could be localized in the brain at all; Wernicke's contributions were influenced by an attempt to unite more mechanistic and physiological principles to a model of higher brain functions; and Jackson's contributions were influenced by British association psychology. Norman Geschwind (1926-84) made an important contribution towards understanding of dyslexias, the neuroanatomy of cerebral lateral asymmetries, and other areas of neurological dysfunction. He is especially known to have provided an anatomical insight towards disconnection syndromes. Scope Of The Chapter And Importance Of Clinical Examination Of Higher Mental Functions: The current scope of the chapter is to provide “practical guidelines” for clinical examination at bed-side for residents using simple yet objective methods. While examination of higher mental functions (HMF) currently is the field of clinical psychologists, it is still important for the residents to be aware of this aspect of examination for the reasons given below 1. HMF, pre-operatively, prior to cranial surgery provides baseline information for the cognitive status. While the clinical psychologists provide a very extensive examination, an examination by the operating surgeon will provide him/her an idea of the patient’s cognitive status before and after the surgery 2. HMF examination provides an idea to the examiner for the areas of the cognition that need re-training. For e.g, in a patient with aphasia, post operative speech therapy would be more useful. 3. Most of the formal examinations e.g aphasia batteries are quite extensive. Hence a brief clinical examination is many times more useful providing the examiner a better idea
Recommended publications
  • Functional MRI, DTI and Neurophysiology in Horizontal Gaze Palsy with Progressive Scoliosis
    Neuroradiology (2008) 50:453–459 DOI 10.1007/s00234-007-0359-1 FUNCTIONAL NEURORADIOLOGY Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis Sven Haller & Stephan G. Wetzel & Jürg Lütschg Received: 19 August 2007 /Accepted: 14 December 2007 /Published online: 24 January 2008 # Springer-Verlag 2008 Abstract suspected HGPPS, any technique appears appropriate for Introduction Horizontal gaze palsy with progressive scoliosis further investigation. Auditory fMRI suggests that a (HGPPS) is an autosomal recessive disease due to a mutation monaural auditory system with bilateral auditory activations in the ROBO3 gene. This rare disease is of particular interest might be a physiological advantage as compared to a because the absence, or at least reduction, of crossing of the binaural yet only unilateral auditory system, in analogy to ascending lemniscal and descending corticospinal tracts in the anisometropic amblyopia. Moving-head fMRI studies in the medulla predicts abnormal ipsilateral sensory and motor future might show whether the compensatory head move- systems. ments instead of normal eye movements activate the eye- Methods We evaluated the use of functional magnetic movement network. resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) Keywords Functional MRI . HGPPS . ROBO3 tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. Abbreviations Results As expected, motor fMRI, somatosensory evoked BAEP brainstem auditory evoked potentials potentials (SSEP) and motor evoked potentials (MEP) were BOLD blood oxygenation level dependent dominantly ipsilateral to the stimulation side. DTI tractography DTI diffusion tensor imaging revealed ipsilateral ascending and descending connectivity in fMRI functional magnetic resonance imaging the brainstem yet normal interhemispheric connections in the FEF frontal eye field corpus callosum.
    [Show full text]
  • Bedside Neuro-Otological Examination and Interpretation of Commonly
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2004.054478 on 24 November 2004. Downloaded from BEDSIDE NEURO-OTOLOGICAL EXAMINATION AND INTERPRETATION iv32 OF COMMONLY USED INVESTIGATIONS RDavies J Neurol Neurosurg Psychiatry 2004;75(Suppl IV):iv32–iv44. doi: 10.1136/jnnp.2004.054478 he assessment of the patient with a neuro-otological problem is not a complex task if approached in a logical manner. It is best addressed by taking a comprehensive history, by a Tphysical examination that is directed towards detecting abnormalities of eye movements and abnormalities of gait, and also towards identifying any associated otological or neurological problems. This examination needs to be mindful of the factors that can compromise the value of the signs elicited, and the range of investigative techniques available. The majority of patients that present with neuro-otological symptoms do not have a space occupying lesion and the over reliance on imaging techniques is likely to miss more common conditions, such as benign paroxysmal positional vertigo (BPPV), or the failure to compensate following an acute unilateral labyrinthine event. The role of the neuro-otologist is to identify the site of the lesion, gather information that may lead to an aetiological diagnosis, and from there, to formulate a management plan. c BACKGROUND Balance is maintained through the integration at the brainstem level of information from the vestibular end organs, and the visual and proprioceptive sensory modalities. This processing takes place in the vestibular nuclei, with modulating influences from higher centres including the cerebellum, the extrapyramidal system, the cerebral cortex, and the contiguous reticular formation (fig 1).
    [Show full text]
  • Hirayama Disease
    VIDEO CASE SOLUTION VIDEO CASE SOLUTION Hirayama Disease BY AZIZ SHAIBANI, MD, FACP, FAAN, FANA Last month’s case presented a 21-year-old shrimp peeler who developed weakness of his fingers five years earlier that pro- gressed to a point where he was unable to perform his job. CPK and 530 U/L and EMG revealed chronic diffuse denerva- tion of the arms and muscles with normal sensory and motor responses. Watch the exam at PracticalNeurology.com. Chronic unilateral or bilateral pure motor weakness of the hand and muscles in a young patient is not common. DIFFERENTIAL DIAGNOSIS • Cervical cord pathology such as Syringomyelia: dissociated sensory loss is typically present. • Brachial plexus pathology: sensory findings are usually present. • Motor neurons disease: ALS, spinal muscular atrophy (SMA). – Cervical Spines are usually investigated before neuromuscular referrals are made. – The lack of pain, radicular or sensory symptoms and normal sensory SNAPS and cervical MRIs ruled out most of the mentioned possibilities except: • distal myopathy (usually not unilaterial) and spinal muscular atrophy. • EMG/NCS demonstration of chronic distal denervation with normal sensory responses and no demyelinating features lim- ited the diagnosis to MND. • Segmental denervation pattern further narrows the diagnosis to Hirayama disease (HD). HIRAYAMA DISEASE • HD is a sporadic and focal form of SMA that affects predominantly males between the ages of 15 and 25 years. • Weakness and atrophy usually starts unilaterally in C8-T1 muscles of the hands and forearm (typically in the dominant hand). – In roughly one-third of cases, the other hand is affected and weakness may spread to the proximal muscles.
    [Show full text]
  • Diabetic Ketoacidosis Associated with Guillain-Barre Syndromewith
    CASE REPORT Diabetic Ketoacidosis Associated with Guillain-Barre Syndromewith AutonomicDysfunction Setsuko Fujiwara, Hiroyuki Oshika, Kenzo Motoki, Kenji Kubo*, Yukiaki Ryujin*, Masahiro Shinozaki**, Takuzo Hano*** and Ichiro Nishio*** Abstract Case Report A37-year-old womanwas admitted in a comatosestate, In March 1996, a 37-year-old womanwas admitted to Koyo after exhibiting fever and diarrhea. Diabetic ketoacidosis Hospital in a comatose state after fever, diarrhea and vomiting was diagnosed due to an increased blood glucose level (672 of 1-week duration. Diabetes mellitus was diagnosed in 1990, mg/dl), metabolic addosis, and positive urinary ketone bod- and the patient had taken anti-diabetic drugs for five years, but ies. On the fifth hospital day, despite recovery from the criti- follow-up was discontinued in 1995. She had no episodes of cal state of ketoacidosis, the patient suffered from dyspha- neurological deficit or fainting and was workingas a nurse. gia, hypesthesia and motor weakness, followed by respira- On admission, Kussmaul's breathing, blood pressure of 96/ tory failure. Cerebrospinal fluid analysis was suggestive of 56 mmHg,and a heart rate of 122/min were observed. DKA Guillain-Barre syndrome (GBS). Autonomic dysfunction was diagnosed on the basis of an increased blood glucose level was manifested as tachycardia and mild hypertension in (672 mg/dl), severe metabolic acidosis (arterial blood gas analy- the acute stage. Marked orthostatic hypotension persisted sis: pH 6.703, PCO2 13.8 mmHg, PO2 281.4 mmHg, HCO3 1.7 long after paresis was improved, indicating an atypical clini- jjmol//, BE -36.3 jimol//) and urinary ketone bodies. Other labo- cal course of GBS.
    [Show full text]
  • Sounds, Spectra, Audio Illusions, and Data Representations
    Sounds, spectra, audio illusions, and data representations Edoardo Milotti, Dipartimento di Fisica, Università di Trieste Introduction to Signal Processing Techniques A. Y. 2016-17 Piano notes Pure 440 Hz sound BacK to the initial recording, left channel amplitude (volt, ampere, normalized amplitude units … ) time (sample number) amplitude (volt, ampere, normalized amplitude units … ) 0.004 0.002 0.000 -0.002 -0.004 0 1000 2000 3000 4000 5000 time (sample number) amplitude (volt, ampere, normalized amplitude units … ) 0.004 0.002 0.000 -0.002 -0.004 0 1000 2000 3000 4000 5000 time (sample number) squared amplitude frequency (frequency index) Short Time Fourier Transform (STFT) Fourier Transform A single blocK of data Segmented data Fourier Transform squared amplitude frequency (frequency index) squared amplitude frequency (frequency index) amplitude of most important Fourier component time Spectrogram time frequency • Original audio file • Reconstruction with the largest amplitude frequency component only • Reconstruction with 7 frequency components • Reconstruction with 7 frequency components + phase information amplitude (volt, ampere, normalized amplitude units … ) time (sample number) amplitude (volt, ampere, normalized amplitude units … ) time (sample number) squared amplitude frequency (frequency index) squared amplitude frequency (frequency index) squared amplitude Include only Fourier components with amplitudes ABOVE a given threshold 18 Fourier components frequency (frequency index) squared amplitude Include only Fourier components with amplitudes ABOVE a given threshold 39 Fourier components frequency (frequency index) squared amplitude frequency (frequency index) Glissando In music, a glissando [ɡlisˈsando] (plural: glissandi, abbreviated gliss.) is a glide from one pitch to another. It is an Italianized musical term derived from the French glisser, to glide.
    [Show full text]
  • Distributed Hierarchical Processing in the Primate Cerebral Cortex
    Distributed Hierarchical Processing Daniel J. Felleman1 and David C. Van Essen2 in the Primate Cerebral Cortex 1 Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77030, and 2 Division of Biology, California Institute of Technology, Pasadena, California 91125 In recent years, many new cortical areas have been During the past decade, there has been an explosion identified in the macaque monkey. The number of iden- of information about the organization and connectiv- tified connections between areas has increased even ity of sensory and motor areas in the mammalian ce- more dramatically. We report here on (1) a summary of rebral cortex. Many laboratories have concentrated the layout of cortical areas associated with vision and their efforts on the visual cortex of macaque monkeys, with other modalities, (2) a computerized database for whose superb visual capacities in many ways rival storing and representing large amounts of information those of humans. In this article, we survey recent on connectivity patterns, and (3) the application of these progress in charting the layout of different cortical data to the analysis of hierarchical organization of the areas in the macaque and in analyzing the hierarchical cerebral cortex. Our analysis concentrates on the visual relationships among these areas, particularly in the Downloaded from system, which includes 25 neocortical areas that are visual system. predominantly or exclusively visual in function, plus an The original notion of hierarchical processing in additional 7 areas that we regard as visual-association the visual cortex was put forward by Hubel and Wiesel areas on the basis of their extensive visual inputs.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS 1. INTRODUCTION . Faculty . Program 2. GUIDELINES . Fellowship Appointments . Fellow Selection 3. REQUIREMENTS . UAB Child Neurology Training Requirements . Call Requirements . Moonlighting Policy . ACGME Duty Hours . Policy on Fatigue . ABPN Training Requirements 4. GOALS AND OBJECTIVES . Overall Program Goals and Objectives . Adult Year PG3-PG4 . Inpatient PG4 . Inpatient PG5 . Outpatient . Neuromuscular . Epilepsy . Neuropathology . Psychiatry . Conferences . Required Research Survey Course 5. CURRICULUM IN CHILD NEUROLOGY . Purpose . Structure . Content 6. SALARY AND BENEFITS 7. CRITERIA FOR ADVANCEMENT . Educational Expectations . Disciplinary Procedures . Grievance Procedure 8. EVALUATIONS . Supervision of Fellows Policy . Fellow Evaluations . Attending Evaluations . Program Evaluations . Peer and Self Evaluations . Healthcare Professional Evaluations INTRODUCTION: Child Neurology is a specialty of both pediatrics and neurology which focuses on the nervous system of the pediatric population. The practice of child neurology requires competence and training in both pediatrics and neurology in order to understand and treat disorders of the pediatric nervous system. This manual outlines the goals and expectations as well as logistics of the Child Neurology training program at The University of Alabama at Birmingham. A. Clinical competence requires: 1. A solid fund of basic and clinical knowledge and the ability to maintain it at current levels for a lifetime of continuous education. 2. The ability to perform an adequate history and physical examination. 3. The ability to appropriately order and interpret diagnostic tests. 4. Adequate technical skills to carry out selected diagnostic procedures. 5. Clinical judgment to critically apply the above data to individual patients. 6. Attitudes conducive to the practice of neurology, including appropriate interpersonal interactions with patients and families, professional colleagues, supervisory faculty and all paramedical personnel.
    [Show full text]
  • EM Guidemap - Myopathy and Myoglobulinuria
    myopathy EM guidemap - Myopathy and myoglobulinuria Click on any of the headings or subheadings to rapidly navigate to the relevant section of the guidemap Introduction General principles ● endocrine myopathy ● toxic myopathy ● periodic paralyses ● myoglobinuria Introduction - this short guidemap supplements the neuromuscular weakness guidemap and offers the reader supplementary information on myopathies, and a short section on myoglobulinuria - this guidemap only consists of a few brief checklists of "causes of the different types of myopathy" that an emergency physician may encounter in clinical practice when dealing with a patient with acute/subacute muscular weakness General principles - a myopathy is suggested when generalized muscle weakness involves large proximal muscle groups, especially around the shoulder and proximal girdle, and when the diffuse muscle weakness is associated with normal tendon reflexes and no sensory findings - a simple classification of myopathy:- Hereditary ● muscular dystrophies ● congenital myopathies http://www.homestead.com/emguidemaps/files/myopathy.html (1 of 13)8/20/2004 5:14:27 PM myopathy ● myotonias ● channelopathies (periodic paralysis syndromes) ● metabolic myopathies ● mitochondrial myopathies Acquired ● inflammatory myopathy ● endocrine myopathies ● drug-induced/toxic myopathies ● myopathy associated with systemic illness - a myopathy can present with fixed weakness (muscular dystrophy, inflammatory myopathy) or episodic weakness (periodic paralysis due to a channelopathy, metabolic myopathy
    [Show full text]
  • Introduction the Vestibular Stimulus Turntable
    Journal of Vestibular Research, Vol. 1, pp. 223-239, 1990/91 0957-4271/91 $3.00 + .00 Printed in the USA. All rights reserved. Copyright © 1991 Pergamon Press pic EFFECT OF INCISIONS IN THE BRAINSTEM COMMISSURAL NETWORK ON THE SHORT-TERM VESTIBULO-OCULAR ADAPTATION OF THE CAT G. Cheron The Laboratory of Neurophysiology, Faculty of Medicine, University of Mons, 24, avenue du Champ de Mars, 7000 Mons, Belgium Reprint address: G. Cheron, The Laboratory of Neurophysiology, Faculty of Medicine, University of Mons, 24, avenue du Champ de Mars, 7000 Mons, Belgium o Abstract - This study was intended to test the combined stimulation during the training was still adaptive plasticity of the vestibulo-ocular reflex be­ operative in all lesioned cats, the adaptive plastic­ fore and after either a midsagittal or parasagittal ity was completely abolished by the lesions. These incision in the brainstem. Eye movements were results suggest that the commissural brainstem net­ measured with the electromagnetic search coil tech­ work may playa crucial role in the acquisition of nique during the vestibulo-ocular reflex (VORD) the forced VOR adaptation. in the dark, the optokinetic reflex (OKN), and the visuo-vestibular adaptive training procedure. Two o Keywords - ve-stibulo-ocular adaptation; types of visual-vestibular combined stimulation brain stem commissural incisions; cat. were applied by means of low frequency stimuli (0.05 to 0.10 Hz). In order to increase or decrease the VORD gain, the optokinetic drum was oscil­ lated either 180° out-of-phase or in-phase with Introduction the vestibular stimulus turntable. This "training" procedure was applied for 4 hours.
    [Show full text]
  • Graduate Neuroanatomy GSBS GS141181
    Page 1 Graduate Neuroanatomy GSBS GS141181 Laboratory Guide Offered and Coordinated by the Department of Neurobiology and Anatomy The University of Texas Health Science Center at Houston. This course guide was adatped from the Medical Neuroscience Laboratory Guide. Nachum Dafny, Ph.D., Course Director; Michael Beierlein, Ph.D., Laboratory Coordinator. Online teaching materials are available at https://oac22.hsc.uth.tmc.edu/courses/neuroanatomy/ Other course information available at http://openwetware.org/wiki/Beauchamp:GraduateNeuroanatomy Contents © 2000-Present University of Texas Health Science Center at Houston. All Rights Reserved. Unauthorized use of contents subject to civil and/or criminal prosecution. Graduate Neuroanatomy : Laboratory Guide Page 2 Table of Contents Overview of the Nervous System ................................................................................................................ 3 Laboratory Exercise #1: External Anatomy of the Brain ......................................................................... 19 Laboratory Exercise #2: Internal Organization of the Brain ..................................................................... 35 Graduate Neuroanatomy : Laboratory Guide Page 3 Overview of the Nervous System Nachum Dafny, Ph.D. The human nervous system is divided into the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS, in turn, is divided into the brain and the spinal cord, which lie in the cranial cavity of the skull and the vertebral canal, respectively. The CNS and the PNS, acting in concert, integrate sensory information and control motor and cognitive functions. The Central Nervous System (CNS) The adult human brain weighs between 1200 to 1500g and contains about one trillion cells. It occupies a volume of about 1400cc - approximately 2% of the total body weight, and receives 20% of the blood, oxygen, and calories supplied to the body. The adult spinal cord is approximately 40 to 50cm long and occupies about 150cc.
    [Show full text]
  • High-Yield Neuroanatomy
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • Immobilization and Anaesthesia in Asiatic Lions (Panthera Leo Persica)
    Advances in Animal and Veterinary Sciences Research Article Immobilization and Anaesthesia in Asiatic Lions (Panthera leo persica) 1 2 1 MURUGAN BHARATHIDASAN , BENJAMIN JUSTIN WILLIAM *, RAMAMURTHY JAYAPRAKASH , THANDAVAN 2 3 1 ARTHANARI KANNAN , RAJARTHANAM THIRUMURUGAN , RAVI SUNDAR GEORGE 1Department of Veterinary Surgery and Radiology, Tamil Nadu Veterinary and Animal Sciences University, India; 2Centre for Stem Cell Research and Regenerative Medicine, Madras Veterinary College, Chennai – 600007, Tamil Nadu, India; 3Veterinary Assistant Surgeon, Arignar Anna Zoological Park, Chennai, India. Abstract | A total of 12 trials were conducted in 8 Asiatic and hybrid lions (Panthera leo persica) for diagnostic and surgical procedures. All the lions were immobilized with a combination of xylazine and ketamine at the rate of 1.00 mg/kg and 2.00 mg/kg body weight, respectively, using darts based on assumed body weight. Ketamine and propofol intravenously were used as induction agents sufficiently to achieve deep plane of anaesthesia and good jaw muscle relaxation in six trials each of treatment I and II. The commercially available large animal endotracheal tubes and cus- tom made silicon medical grade tubes were used for intubation either by direct visualization or by digital palpation of glottis. Anaesthesia was maintained with isoflurane. The study revealed that the young lions required 1.08±0.10 and 2.70±0.26 mg/kg and adult required 1.06±0.30 and 2.64±0.08 mg/kg body weight of xylazine and ketamine, respec- tively for immobilization. Ear flick reflex was taken as an indicator for safe and appropriate time for approaching the lion after immobilization, which was completely abolished only after 1.37 and 2.01 minutes after recumbency in young and adult lions, respectively.
    [Show full text]