Nmat July N&V.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Nmat July N&V.Indd NEWS & VIEWS z mirror, reduced-loss backward waves in y related metal–dielectric–metal waveguide x Input y structures1–3, as well as in conceptually t Negative x 1 refraction z distinct photonic metamaterials4,5. As Lezec (φ < 0) t 2 and colleagues demonstrate, such tailored 2 Output Input metallic nanostructures provide us with φ2 slit slit φ1 many new opportunities for optics and Ouput Positive photonics applications that natural optical W2 W1 refraction substances just do not have. More surprises W2 W1 W2 (φ2 > 0) can be expected in future. Al Ag Si3N4 Au Air © 2007 AAAS © 2007 References 1. Lezec, H. J., Dionne, J. A. & Atwater, H. A. Science 316, 430–432 (2007). Figure 2 Plasmonic waveguide structure. Illustration of the plasmonic nanostructure used by Henri Lezec and 2. Tournois, P. & Laude, V. Opt. Commun. 137, 41–45 (1997). co-workers for the demonstration of all-angle negative refraction in the visible region1. The W1 regions support 3. Shin, H. & Fan, S. Phys. Rev. Lett. 96, 073907 (2006). 4. Soukoulis, C. M., Linden, S. & Wegener, M. Science backward waves for green light (forward waves for red light), the W2 regions support forward waves. a, Side view 315, 47–49 (2007). and b, Top view. Reprinted in part with permission from ref. 1. 5. Shalaev, V. Nature Photon. 1, 41–48 (2006). 6. Shelby, R. A., Smith, D. R. & Schultz, S. Science 292, 77–79 (2001). 7. Pendry, J. B. Phys. Rev. Lett. 85, 3966–3969 (2000). 8. Fang, N., Lee, H., Sun, C. & Zhang, X. Science 308, 534–537 (2005). 9. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Science optics the sign of the beam displacement slower by factor n inside the material than 315, 1686 (2007). 10. Smolyaninov, I. I., Hung, Y.-J. & Davis, C. C. Science in Fig. 1 is strictly identical to that of the the vacuum speed of light c0. 315, 1699–1701 (2007). refractive index n. Th e logical conclusion Backward waves may seem strange 11. Lai, H. M., Kwok, C. W., Loo, Y. W. & Xu, B. Y. Phys. Rev. E is that we should stop calling the refractive but they are certainly much less rare 62, 7330–7339 (2000). index n ‘refractive index’. We should rather a species than it is tempting to believe 12. Russell, P. St. J. Phys. Rev. A 33, 3232–3242 (1986). 13. Zengerle, R. J. Mod. Opt. 34, 1589–1617 (1987). call it the ‘slowness factor’ according to its at fi rst sight. In the visible, damped 14. Zhang, Y., Fluegel, B. & Mascarenhas, A. Phys. Rev. Lett. defi nition: Th e phase velocity of light c is backward waves occur in your bathroom 91, 157404 (2003). MATERIAL WITNESS Tendentious tilings Quasicrystal enthusiasts may Although nearly all of the designs Most provocatively, Bonner have been baffl ed by a rather evident on Islamic buildings of this time are discusses the late-fi ft eenth-century cryptic spate of comments periodic, Lu and Steinhardt found that those Topkapi architectural scroll that and clarifi cations following on a fi ft eenth-century shrine in modern- furnishes the key evidence for Lu and in the wake of a recent article day Iran can be mapped almost perfectly Steinhardt’s girih scheme. Bonner points claiming that medieval Islamic onto another tiling scheme, devised by out how this scroll reveals explicitly the artists had the tools needed mathematician Roger Penrose, which does “underlying polygonal sub-grid” used to construct quasicrystalline generate true quasicrystals. to construct the pattern it depicts. He patterns. Th at suggestion But in 1992 Makovicky made a very proposes that the artists commonly used was made by Peter Lu at similar claim for a diff erent Islamic tomb such a polygonal matrix, composed of Harvard University and Paul Steinhardt at dating from 1197. Some accused Lu and tile-like elements, and demonstrates Princeton (Science 315, 1106–1110; 2007). Steinhardt of citing Makovicky’s work in how these can create aperiodic But in a news article in the same issue, staff a way that did not make this clear. Th e space-fi lling designs. writer John Bohannon explained that these authors, meanwhile, admitted that they were Bonner does not mention claims had already caused controversy, unconvinced by Makovicky’s analysis and quasicrystals, and his use of terms such as being allegedly anticipated in the work didn’t want to get into an argument about it. self-similarity and even symmetry do not of crystallographer Emil Makovicky at Th e dispute has ruffl ed feathers. Science always fi t easily with that of physicists and the University of Copenhagen (Science subsequently published a ‘clarifi cation’ that mathematicians. But there’s no doubting 315, 1066; 2007). irons out barely perceptible wrinkles in that his work deepens the “can of worms” Th e central thesis of Lu and Steinhardt Bohannon’s article, while Lu and Steinhardt that Bohannon says Lu and Steinhardt is that Islamic artists used a series of attempted to calm the waters with a letter have opened. tile shapes, which they call girih tiles, in which they ‘gladly acknowledge’ earlier All this suggests that the satellite to construct their complex patterns. work (Science 316, 982; 2007). It remains conference of the forthcoming Th ey can be used to make patterns of to be seen whether that will do the trick, European Crystallographic Meeting in interlocking pentagons and decagons with for Makovicky wasn’t the only one upset by Marrakech this August, entitled “Th e the ‘forbidden’ symmetries characteristic their paper. Design consultant Jay Bonner enchanting crystallography of Moroccan of quasicrystalline metal alloys, in which in Santa Fe has also made previous links ornaments”, might be more stormy than these apparent symmetries, evident in between Islamic patterns and quasicrystals enchanting — for it includes back-to-back diff raction patterns, are permitted by a (see http://www.bonner-design.com/ talks by Makovicky and Bonner. lack of true periodicity. publications/self-similar.htm). Philip Ball 476 nature materials | VOL 6 | JULY 2007 | www.nature.com/naturematerials.
Recommended publications
  • Big Bang Blunder Bursts the Multiverse Bubble
    WORLD VIEW A personal take on events IER P P. PA P. Big Bang blunder bursts the multiverse bubble Premature hype over gravitational waves highlights gaping holes in models for the origins and evolution of the Universe, argues Paul Steinhardt. hen a team of cosmologists announced at a press world will be paying close attention. This time, acceptance will require conference in March that they had detected gravitational measurements over a range of frequencies to discriminate from fore- waves generated in the first instants after the Big Bang, the ground effects, as well as tests to rule out other sources of confusion. And Worigins of the Universe were once again major news. The reported this time, the announcements should be made after submission to jour- discovery created a worldwide sensation in the scientific community, nals and vetting by expert referees. If there must be a press conference, the media and the public at large (see Nature 507, 281–283; 2014). hopefully the scientific community and the media will demand that it According to the team at the BICEP2 South Pole telescope, the is accompanied by a complete set of documents, including details of the detection is at the 5–7 sigma level, so there is less than one chance systematic analysis and sufficient data to enable objective verification. in two million of it being a random occurrence. The results were The BICEP2 incident has also revealed a truth about inflationary the- hailed as proof of the Big Bang inflationary theory and its progeny, ory. The common view is that it is a highly predictive theory.
    [Show full text]
  • Arxiv:1307.1848V3 [Hep-Th] 8 Nov 2013 Tnadmdla O Nris N H Urn Ig Vacuum Higgs Data
    Local Conformal Symmetry in Physics and Cosmology Itzhak Bars Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089-0484, USA, Paul Steinhardt Physics Department, Princeton University, Princeton NJ08544, USA, Neil Turok Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada. (Dated: July 7, 2013) Abstract We show how to lift a generic non-scale invariant action in Einstein frame into a locally conformally-invariant (or Weyl-invariant) theory and present a new general form for Lagrangians consistent with Weyl symmetry. Advantages of such a conformally invariant formulation of particle physics and gravity include the possibility of constructing geodesically complete cosmologies. We present a conformal-invariant version of the standard model coupled to gravity, and show how Weyl symmetry may be used to obtain unprecedented analytic control over its cosmological solutions. Within this new framework, generic FRW cosmologies are geodesically complete through a series of big crunch - big bang transitions. We discuss a new scenario of cosmic evolution driven by the Higgs field in a “minimal” conformal standard model, in which there is no new physics beyond the arXiv:1307.1848v3 [hep-th] 8 Nov 2013 standard model at low energies, and the current Higgs vacuum is metastable as indicated by the latest LHC data. 1 Contents I. Why Conformal Symmetry? 3 II. Why Local Conformal Symmetry? 8 A. Global scale invariance 8 B. Local scale invariance 11 III. General Weyl Symmetric Theory 15 A. Gravity 15 B. Supergravity 22 IV. Conformal Cosmology 25 Acknowledgments 31 References 31 2 I. WHY CONFORMAL SYMMETRY? Scale invariance is a well-known symmetry [1] that has been studied in many physical contexts.
    [Show full text]
  • Traversing Cosmological Singularities, Complete Journeys Through Spacetime Including Antigravity
    Traversing Cosmological Singularities Complete Journeys Through Spacetime Including Antigravity ∗ Itzhak Bars Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA A unique description of the Big Crunch-Big Bang transition is given at the classical gravity level, along with a complete set of homogeneous, isotropic, analytic solutions in scalar-tensor cosmology, with radiation and curvature. All solutions repeat cyclically; they have been obtained by using conformal gauge symmetry (Weyl symmetry) as a powerful tool in cosmology, and more generally in gravity. The significance of the Big Crunch-Big Bang transition is that it provides a model inde- pendent analytic resolution of the singularity, as an unambiguous and unavoidable solution of the equations at the classical gravitational physics level. It is controlled only by geometry (including anisotropy) and only very general features of matter coupled to gravity, such as kinetic energy of a scalar field, and radiation due to all forms of relativistic matter. This analytic resolution of the singularity is due to an attractor mechanism created by the leading terms in the cosmological equa- tion. It is unique, and it is unavoidable in classical relativity in a geodesically complete geometry. Its counterpart in quantum gravity remains to be understood. I. INTRODUCTION AND SUMMARY OF RESULTS Resolving the big bang singularity is one of the central challenges for fundamental physics and cosmology. The issue arises naturally in the context of classical relativity due to the geodesically incomplete nature of the singular spacetime [1]-[2]. The resolution may not be completed until the physics is understood in the context of quantum gravity.
    [Show full text]
  • First Nuclear Test Created 'Impossible' Quasicrystals
    formed in a collision between two asteroids in the early Solar System, Steinhardt says. Some of the lab-made quasicrystals were also pro- duced by smashing materials together at high speed, so Steinhardt and his team wondered whether the shockwaves from nuclear explo- sions might form quasicrystals, too. ‘Slicing and dicing’ In the aftermath of the Trinity test — the first detonation of a nuclear bomb, which took place on 16 July 1945 at New Mexico’s Alamo- gordo Bombing Range — researchers found a vast field of greenish glassy material that had formed from the liquefaction of desert sand. They dubbed this trinitite. The bomb had been detonated on top of a 30-metre-high tower laden with sensors and their cables. As a result, some of the trinitite that formed had reddish inclusions, says Stein- LUCA BINDI, PAUL J. STEINHARDT BINDI, PAUL LUCA hardt. “It was a fusion of natural material with This sample of red trinitite was found to contain a previously unknown type of quasicrystal. copper from the transmission lines.” Quasi- crystals often form from elements that would not normally combine, so Steinhardt and his colleagues thought samples of the red trinitite FIRST NUCLEAR TEST would be a good place to look. “Over the course of ten months, we were slic- CREATED ‘IMPOSSIBLE’ ing and dicing, looking at all sorts of minerals,” Steinhardt says. “Finally, we found a tiny grain.” QUASICRYSTALS The quasicrystal has the same kind of icosa- hedral symmetry as the one in Shechtman’s Researchers have discovered the once-controversial original discovery. “The dominance of silicon in its structure is structures in the aftermath of a 1945 bomb test.
    [Show full text]
  • Profile of James Peebles, Michel Mayor, and Didier Queloz: 2019 Nobel Laureates in Physics
    PROFILE Profile of James Peebles, Michel Mayor, and Didier Queloz: 2019 Nobel Laureates in Physics PROFILE Neta A. Bahcalla,1 and Adam Burrowsa Mankind has long been fascinated by the mysteries of our Universe: How old and how big is the Universe? How did the Universe begin and how is it evolving? What is the composition of the Universe and the nature of its dark matter and dark energy? What is our Earth’s place in the cosmos and are there other planets (and life) around other stars? The 2019 Nobel Prize in Physics honors three pioneering scientists for their fundamental contributions to these cosmic questions—Professors James Peebles of Princeton University, Michel Mayor of the University of Geneva, and Didier Queloz of the University of Geneva and the University of Cambridge—“for contributions (Left) Profs. James Peebles (Princeton University), (Center) Michel Mayor (University of Geneva), and (Right) Didier Queloz (University of Geneva and the University of to our understanding of the evolution of the universe Cambridge). Jessica Gow, Frank Perry, Isabel Infantes/AFP/Scanpix Sweden. and Earth’s place in the cosmos,” with one half to James Peebles “for theoretical discoveries in physical cosmology,” and the other half jointly to Michel Mayor The science of cosmology started in earnest mostly and Didier Queloz “for the discovery of an exoplanet with Einstein’s theory of general relativity. Alexander orbiting a solar-type star.” Friedman, Willem de Sitter, and Georges Lemaître, using Einstein’s equations, recognized that our Universe The Evolution of the Universe is not static, it must be either expanding or contracting James Peebles was born in Southern Manitoba, Can- and Hubble’s remarkable observational discovery of the ada, in 1935; he moved to Princeton University for expanding Universe in 1929 confirmed this.
    [Show full text]
  • Burt Alan Ovrut Curriculum Vitae Personal
    BURT ALAN OVRUT CURRICULUM VITAE PERSONAL: Marital Status: Widower Birthplace: New York, NY, USA ADDRESS: Office: University of Pennsylvania Department of Physics Philadelphia, PA 19104 (215) 898-3594 Home: 324 Conshohocken State Road Penn Valley, PA 19072 (215) 668-1890 EDUCATION: Ph.D. - The University of Chicago, June 1978 Thesis - An SP(4) x U(1) Gauge Model of the Weak and Electromagnetic Interactions Thesis Advisors - Professors Benjamin W. Lee and Yoichiro Nambu RESEARCH POSITIONS: July 1990- present Full Professor, Theory Group University of Pennsylvania, Philadelphia, PA July 1985 - June 1990 Associate Professor, Theory Group University of Pennsylvania, Philadelphia, PA January 1983 - June 1985 Assistant Professor, Theoretical Particle Physics Rockefeller University, New York, NY Sept. 1980 - Dec. 1982 Member, School of Natural Sciences The Institute for Advanced Study Princeton, New Jersey September 1978 - June 1980 Research Associate, High Energy Physics Brandeis University, Boston, Massachusetts VISITING POSITIONS: July 1981 - September 1981 Scientific Associate, Theory Group, CERN Geneva, Switzerland October 1988 - October 1990 Adjunct Professor, Theoretical Particle Physics Rockefeller University, New York, NY October 1992 - October 1993 Scientific Associate, Theory Group, CERN Geneva, Switzerland December 1994- January 1995 Scientific Associate, Theory Group, CERN Geneva, Switzerland September, 1996- May, 1997 Member, School of Natural Sciences The Institute for Advanced Study Princeton, New Jersey September, 1997-August 2001
    [Show full text]
  • The B-L Phase Transition – Implications for Cosmology
    DESY-THESIS-2012-039 Juli 2012 The B L Phase Transition − Implications for Cosmology and Neutrinos Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universitt Hamburg vorgelegt von Kai Schmitz arXiv:1307.3887v1 [hep-ph] 15 Jul 2013 aus Berlin Hamburg 2012 Gutachter der Dissertation: Prof. Dr. Wilfried Buchm¨uller Prof. Dr. Mark Hindmarsh Prof. Dr. G¨unter Sigl Gutachter der Disputation: Prof. Dr. Wilfried Buchm¨uller Prof. Dr. Jan Louis Datum der Disputation: 9. Juli 2011 Vorsitzender des Prfungsausschusses: Prof. Dr. Georg Steinbr¨uck Vorsitzender des Promotionsausschusses: Prof. Dr. Peter Hauschildt Dekan der Fakultt fr Mathematik, Informatik und Naturwissenschaften: Prof. Dr. Heinrich Graener Abstract We investigate the possibility that the hot thermal phase of the early universe is ignited in consequence of the B L phase transition, which represents the cosmological realization of − the spontaneous breaking of the Abelian gauge symmetry associated with B L, the differ- − ence between baryon number B and lepton number L. Prior to the B L phase transition, − the universe experiences a stage of hybrid inflation. Towards the end of inflation, the false vacuum of unbroken B L symmetry decays, which entails tachyonic preheating as well as − the production of cosmic strings. Observational constraints on this scenario require the B L − phase transition to take place at the scale of grand unification. The dynamics of the B L − breaking Higgs field and the B L gauge degrees of freedom, in combination with thermal pro- − cesses, generate an abundance of heavy (s)neutrinos. These (s)neutrinos decay into radiation, thereby reheating the universe, generating the baryon asymmetry of the universe and setting the stage for the thermal production of gravitinos.
    [Show full text]
  • Medieval Islamic Architecture, Quasicrystals, and Penrose and Girih Tiles: Questions from the Classroom
    Medieval Islamic Architecture, Quasicrystals, and Penrose and Girih Tiles: Questions from the Classroom Raymond Tennant Professor of Mathematics Zayed University P.O. Box 4783 Abu Dhabi, United Arab Emirates [email protected] Abstract Tiling Theory studies how one might cover the plane with various shapes. Medieval Islamic artisans developed intricate geometric tilings to decorate their mosques, mausoleums, and shrines. Some of these patterns, called girih tilings, first appeared in the 12th Century AD. Recent investigations show these medieval tilings contain symmetries similar to those found in aperiodic Penrose tilings first investigated in the West in the 1970’s. These intriguing discoveries may suggest that the mathematical understanding of these artisans was much deeper than originally thought. Connections like these, made across the centuries, provide a wonderful opportunity for students to discover the beauty of Islamic architecture in a mathematical and historical context. This paper describes several geometric constructions for Islamic tilings for use in the classroom along with projects involving girih tiles. Open questions, observations, and conjectures raised in seminars across the United Arab Emirates are described including what the medieval artisans may have known as well as how girih tiles might have been used as tools in the actual construction of intricate patterns. 1. Islamic Tilings and Traditional Strapwork The Islamic world has a rich heritage of incorporating geometry in the construction of intricate designs that appear on architecture and tile walkways as well as patterns on fabric, see [4]. This highly stylized form of art has evolved over the centuries from simple designs to fairly complex geometry involving a high degree of mathematical symmetry.
    [Show full text]
  • Black Holes Stimulate Higgs Vacuum Decay Supervisor: Author: Paul Steinhardt Luca Victor Iliesiu Collaborator: Ana Roxana Pop Abstract
    Princeton University Department of Mathematics Certificate in Applied and Computational Mathematics | Final Paper Black Holes Stimulate Higgs Vacuum Decay Supervisor: Author: Paul Steinhardt Luca Victor Iliesiu Collaborator: Ana Roxana Pop Abstract In this paper, we provide evidence that black holes with masses around ∼ 0:1 kg severely enhance the Higgs vacuum decay rate to the true vacuum. Results from the LHC show that in flat space the lifetime of the Higgs vacuum is much longer than the estimated age of the universe. However, assuming the standard model, we find that a single primordial black hole that evaporates down to a mass of mBH ∼ 0:03 kg − 0:17 kg, could make the transition to the true vacuum almost instantaneous. The enhancement of the decay rate is caused primarily by metric distortions around the black hole, as we show that thermal and backreaction effects are negligible. Our paper thus places tension between the standard model and cosmological models which predict the existence of primordial black holes in our past lightcone. May 11, 2015 Contents 1 Introduction 1 2 The Higgs Instability in Flat Space 3 3 The Fubini Instanton and Primordial Black Holes 5 4 Metric Backreaction and Thermal Effects 8 5 Discussion 9 1 Introduction The recent results at the LHC not only confirm our understanding of the standard model, with the discovery of the Higgs boson, but also give an indication about the stability of our vacuum. If the standard model is valid up to energies greater than 1012GeV, the observed masses of the Higgs boson and the top-quark indicate that the vacuum is meta-stable and that it will transition to a lower energy state in the future.
    [Show full text]
  • The Inflation Debate
    Author Bio Text until an ‘end nested style character’ (Com- mand+3) xxxx xxxx xx xxxxx xxxxx xxxx xxxxxx xxxxxx xxx xx xxxxxxxxxx xxxx xxxxxxxxxx xxxxxx xxxxxxxx xxxxxxxx. COSMOLOGY Is the theory at the heart of modern cosmology deeply flawed? By Paul J. Steinhardt 36 Scientific American, April 2011 Illustrations by Malcolm Godwin © 2011 Scientific American Deflating cosmology? Cosmologists are reconsidering whether the universe really went through an intense growth spurt (yellowish region) shortly after the big bang. April 2011, ScientificAmerican.com 37 © 2011 Scientific American Paul J. Steinhardt is director of the Princeton Center for Theo- retical Science at Princeton University. He is a member of the Na- tional Academy of Sciences and received the P.A.M. Dirac Medal from the International Center for Theoretical Physics in 2002 for his contributions to inflationary theory. Steinhardt is also known for postulating a new state of matter known as quasicrystals. hirty years ago alan h. guth, then a struggling physics two cases are not equally well known: the postdoc at the Stanford Linear Accelerator Center, gave a evidence favoring inflation is familiar to series of seminars in which he introduced “inflation” a broad range of physicists, astrophysi- into the lexicon of cosmology. The term refers to a brief cists and science aficionados. Surpris- burst of hyperaccelerated expansion that, he argued, ingly few seem to follow the case against may have occurred during the first instants after the big inflation except for a small group of us bang. One of these seminars took place at Harvard Uni- who have been quietly striving to ad- versity, where I myself was a postdoc.
    [Show full text]
  • December 2020
    The Newsletter of Westchester Amateur Astronomers December 2020 An eyepiece view of the Double Cluster by Steve Bellavia. SERVING THE ASTRONOMY COMMUNITY SINCE 1986 1 Westchester Amateur Astronomers SkyWAAtch December 2020 WAA December 2020 Meeting WAA January 2021 Meeting Friday, December 4th at 7:30 pm Friday, January 15th at 7:30 pm On-line via Zoom On-line via Zoom Intensity Mapping of the Large Scale Microquasars Structure of Matter Diana Hannikainen, Ph.D. Paul O’Connor, Ph.D. Observing Editor Sky & Telescope Brookhaven National Laboratory Call: 1-877-456-5778 (toll free) for announcements, Paul O’Connor is Senior Scientist at Brookhaven's weather cancellations, or questions. Also, don’t for- Instrumentation Division. He was a member of the get to visit the WAA website. team that built the CCD camera for the Large Synop- tic Survey Telescope (now the Vera Rubin Telescope) Starway to Heaven in Chile, the largest digital camera in the world. He is Ward Pound Ridge Reservation, currently working on designing radio telescope in- Cross River, NY strumentation for improved mapping of the 21-cm HI (neutral hydrogen) line, with the goal of creating a 3- Our next club star party will be in March 2021. Mem- dimensional map of the matter density of the uni- bers are invited to view at Ward Pound Ridge verse. This will be key to understanding the formation Reservation on clear nights, provided they notify the and evolution of galaxies and the behavior of the park in advance and bring their ID cards. cosmic web. New Members Pre-lecture socializing with fellow WAA members and guests begins at 7:00 pm! Uziel Crescenzi Bronx Rodrigo Morales Hartsdale WAA Members: Contribute to the Newsletter! Francesca Varga Pleasantville Send articles, photos, or observations to Carlos Vegerano Bronx [email protected] Renewing Members SkyWAAtch © Westchester Amateur Astronomers, Inc.
    [Show full text]
  • Volume 35 Spring 2019 Copyright © 2019 by the President and Fellows of Harvard College U.S
    Volume 35 Spring 2019 Copyright © 2019 by the President and Fellows of Harvard College U.S. ISSN 0897-2761 TABLE OF CONTENTS ARTICLES 1 A Note from the Editors The Editors 5 Capitalism, Anti-Blackness, and the Law: A Very Short History Jonathon Booth 11 Coldest Winter Ever Amanda “330” Carter 13 Black, White & Blue Shannon Cumberbatch 15 The Great Rural Boon: Racial Politics and the Criminalization of the Urban Poor Darnell Epps 19 Mirror, Mirror: Anti-Blackness and Lawyering as an Identity Brandon Greene 27 21st Century Harriet Tubman?: An Interview With Susan Burton Bryonn Bain 39 Unholy Union: St. Louis Prosecutors and Police Unionize to Maintain Racist State Power Whitney Benns 65 Why the Congressional Black Caucus Must Reject Private Prison Money Demarquin Johnson 71 My City Teriq “Lil Riq” 73 Capitalism and California’s Urgent Need to Reform the Prison Volunteer Program Delrisha White 77 “You Can Kill the Revolutionary, But You Can’t Kill the Revolution”: A Reflection on Deputy Chairman Fred Hampton’s Life and Legacy 50 Years After His Assassination Jakobi Williams 85 Pardon Me Please: Cyntoia Brown and the Justice System’s Contempt for the Rights of Black People Danielle Wingfield-Smith Harvard BlackLetter Law Journal Harvard Law School Caspersen Student Center 1585 Massachusetts Avenue Cambridge, MA 02138 www.harvardblackletter.org The Harvard BlackLetter Law Journal is published annually by Harvard Law School students. Subscriptions: All correspondence concerning subscriptions should be addressed to the Subscriptions Manager, Student Journals Office, Harvard Law School, 1585 Massachusetts Avenue, Cambridge, MA 02138; +1 (617) 495-3694; email to [email protected].
    [Show full text]