Task Force on Cosmic Microwave Background Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monolayer Graphene Bolometer As a Sensitive Far-IR Detector Boris S
Monolayer graphene bolometer as a sensitive far-IR detector Boris S. Karasik*a, Christopher B. McKitterickb, Daniel E. Proberb aJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA USA 91109; bDepts. of Phys. and Appl. Phys., Yale University, 15 Prospect St., BCT 417, New Haven, CT USA 06520 ABSTRACT In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few µm2 of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature ~ 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity. The analysis shows that the readout contribution can be reduced to that of the bolometer phonon noise if the detector device is operated at 0.05 K and the JNT signal is read at about 10 GHz where the Johnson noise emitted in equilibrium is substantially reduced. Beside the high sensitivity (NEP < 10-20 W/Hz1/2), this bolometer does not have any hard saturation limit and thus can be used for far-IR sky imaging with arbitrary contrast. -
Measurement of the Speed of Gravity
Measurement of the Speed of Gravity Yin Zhu Agriculture Department of Hubei Province, Wuhan, China Abstract From the Liénard-Wiechert potential in both the gravitational field and the electromagnetic field, it is shown that the speed of propagation of the gravitational field (waves) can be tested by comparing the measured speed of gravitational force with the measured speed of Coulomb force. PACS: 04.20.Cv; 04.30.Nk; 04.80.Cc Fomalont and Kopeikin [1] in 2002 claimed that to 20% accuracy they confirmed that the speed of gravity is equal to the speed of light in vacuum. Their work was immediately contradicted by Will [2] and other several physicists. [3-7] Fomalont and Kopeikin [1] accepted that their measurement is not sufficiently accurate to detect terms of order , which can experimentally distinguish Kopeikin interpretation from Will interpretation. Fomalont et al [8] reported their measurements in 2009 and claimed that these measurements are more accurate than the 2002 VLBA experiment [1], but did not point out whether the terms of order have been detected. Within the post-Newtonian framework, several metric theories have studied the radiation and propagation of gravitational waves. [9] For example, in the Rosen bi-metric theory, [10] the difference between the speed of gravity and the speed of light could be tested by comparing the arrival times of a gravitational wave and an electromagnetic wave from the same event: a supernova. Hulse and Taylor [11] showed the indirect evidence for gravitational radiation. However, the gravitational waves themselves have not yet been detected directly. [12] In electrodynamics the speed of electromagnetic waves appears in Maxwell equations as c = √휇0휀0, no such constant appears in any theory of gravity. -
Maps of the Millimetre Sky from the Boomerang Experiment 35
Maps of the Cosmos ASP Conference Series, Vol. 216, 2005 M. Colless, L. Staveley-Smith, R. Stathakis Maps of the Millimetre Sky from the BOOMERanG Experiment 1 P. de Bernardis", G. De Troia , M. Giacometti", A. Iacoangeli", 1 S. Masi", A. Melchiorri", F. Nati , F. Piacentini", G. Polenta", 2 S. Ricciardi", P. A. R. Ade , P. D. Mauskopf", A. Balbi3 , P. Cabella3 , 4 5 G. De Gasperis'', P. Natoli'', N. Vittorio'', J. J. Bock , J. R. Bond , C. R. Contaldi'', J. Borrill", A. Boscaleri", E. Pascale7,14 , W. C. Jones", A. E. Lange", P. Mason", V. V. Hristov", B. P. CriU8,9 , A. De-Oliveira 11 11 Costal", M. Tegmark!", K. Ganga , E. Hivon , T. Montroyl", T. Kisnerl", J E. Ruh112 , A. H. Jaffe l 3 , C. MacTavish14 , C. B. Netterfield'", D. Pogosyanl", S. Prunet'", and G. Romeo 17 1 Dipartimento di Fisica, Universita' La Sapienza, Roma, Italy 2 Dept. of Physics and Astronomy, Cardiff University, Wales, UK 3 Dipartimento di Fisica, Universita' di Tor Vergata, Roma, Italy 4 Jet Propulsion Laboratory, Pasadena, CA, USA 5 CITA, University of Toronto, Canada 6 NERSC, LBNL, Berkeley, CA, USA 7 IFAC-CNR, Firenze, Italy 8 California Institute of Technology, Pasadena, CA, USA 9 CSU Dominguez Hills, Carson, CA, USA 10 Phys. Dept. University of Pennsylvanya, Philadelphia, PA, USA 11 IPAC, CalTech, Pasadena, CA, USA 12 Physics Department, CWRU, Cleveland, OH, USA 13 Astrophysics Group, Imperial College, London, UK 14 Depts. of Physics and Astronomy, University of Toronto, Canada 15 Physics Dept., University of Alberta, Alberta, Canada 16 Institut d'Astrophysique, Paris, France 17 Istituto Nazionale di Geofisica, Roma, Italy Abstract. -
Pixel-Wise Motion Deblurring of Thermal Videos
Pixel-Wise Motion Deblurring of Thermal Videos Manikandasriram S.R.1, Zixu Zhang1, Ram Vasudevan2, and Matthew Johnson-Roberson3 Robotics Institute1, Mechanical Engineering2, Naval Architecture and Marine Engineering3 University of Michigan, Ann Arbor, Michigan, USA 48109. fsrmani, zixu, ramv, [email protected] https://fcav.engin.umich.edu/papers/pixelwise-deblurring Abstract—Uncooled microbolometers can enable robots to see in the absence of visible illumination by imaging the “heat” radiated from the scene. Despite this ability to see in the dark, these sensors suffer from significant motion blur. This has limited their application on robotic systems. As described in this paper, this motion blur arises due to the thermal inertia of each pixel. This has meant that traditional motion deblurring techniques, which rely on identifying an appropriate spatial blur kernel to perform spatial deconvolution, are unable to reliably perform motion deblurring on thermal camera images. To address this problem, this paper formulates reversing the effect of thermal inertia at a single pixel as a Least Absolute Shrinkage and Selection Operator (LASSO) problem which we can solve rapidly using a quadratic programming solver. By leveraging sparsity and a high frame rate, this pixel-wise LASSO formulation is able to recover motion deblurred frames of thermal videos without using any spatial information. To compare its quality against state-of- Fig. 1: An illustration of the proposed motion deblurring algorithm for the-art visible camera based deblurring methods, this paper eval- microbolometers. The top image shows a visible image captured at 30fps with uated the performance of a family of pre-trained object detectors auto exposure. -
The Theory of Anisotropies in the Cosmic Microwave Background
TACMB-1: The Theory of Anisotropies in the Cosmic Microwave Background: Martin White and J.D. Cohn Dept. of Astronomy 601 Campbell Hall UC Berkeley Berkeley, CA 94720-3411 USA Abstract This Resource Letter provides a guide to the literature on the theory of anisotropies in the cosmic microwave background. Journal articles, web pages, and books are cited for the following topics: discovery, cosmological origin, early work, recombination, general CMB anisotropy references, primary CMB anisotropies (numerical, analytical work), secondary effects, Sunyaev-Zel’dovich effect(s), lensing, reionization, polarization, gravity waves, defects, topology, origin of fluctuations, development of fluctuations, inflation and other ties to particle physics, parameter estimation, recent constraints, web resources, foregrounds, observations and observational issues, and gaussianity. Introduction The cosmic microwave background (CMB) radiation is a relic of a time when the universe was hot and dense, and as such it encodes a wealth of information about the early universe and the formation of the large-scale structure we see in the universe today. The very existence of the CMB is one of the four pillars of the hot big bang cosmology. That the spectrum [7, 8, 9] is the best measured black body spectrum in nature provides stringent constraints on its origin and on any injection of energy at early times [14]. Perhaps the most exciting and active area of CMB research, however, is the study of its anisotropies: the small fluctuations in intensity from point to point across the sky. As we shall discuss below, these anisotropies provide us with a snapshot of the conditions in the universe about 300, 000 years after the big bang, when the universe was a simpler place. -
The WMAP Results and Cosmology
The WMAP results and cosmology Rachel Bean Cornell University SLAC Summer Institute July 19th 2006 Rachel Bean : SSI July 29th 2006 1/44 Plan o Overview o Introduction to CMB temperature and polarization o The maps and spectra o Cosmological implications Rachel Bean : SSI July 29th 2006 2/44 What is WMAP? o Satellite detecting primordial photons “cosmic microwave background” Rachel Bean : SSI July 29th 2006 3/44 Science Team C. Barnes (Princeton) N. Odegard (GSFC) R. Bean (Cornell) L. Page (Princeton) C. Bennett (JHU) D. Spergel (Princeton) O. Dore (CITA) G. Tucker (Brown) M. Halpern (UBC) L. Verde (Penn) R. Hill (GSFC) J. Weiland (GSFC) G. Hinshaw (GSFC) E. Wollack (GSFC) N. Jarosik (Princeton) A. Kogut (GSFC) E. Komatsu (Texas) M. Limon (GSFC) S. Meyer (Chicago) H. Peiris (Chicago) M. Nolta (CITA) Rachel Bean : SSI July 29th 2006 4/44 Plan o Overview o Introduction to CMB temperature and polarization o The maps and spectra o Cosmological implications Rachel Bean : SSI July 29th 2006 5/44 CMB is a near perfect primordial blackbody spectrum Universe expanding and cooling over time… Kinney 1) Optically opaque plasma photons scattering off electrons 3) ‘Free Streaming’ CMB Thermalized (blackbody) photons at 2) The ‘last scattering’ of photons ~6000K diluted and redshifted by ~300,000 years after the Big Bang, universe’s expansion -> ~2.726K neutral atoms form and photons stop background we measure today. interacting with them. Rachel Bean : SSI July 29th 2006 6/44 The oldest fossil from the early universe Recombination CMB Nucleosynthesis Processes during opaque era imprint in CMB fluctuations Inflation and Grand Unification? Quantum Gravity/ Trans-Planckian effects…. -
Radio Astronomy & Radio Telescopes
Radio Astronomy & Radio Telescopes Tasso Tzioumis ([email protected]) Australia Telescope National Facility (ATNF) sms2020, Stellenbosch 2-6 March 2020 CSIRO ASTRONOMY AND SPACE SCIENCE Radio Astronomy – ITU definition 1.13 radio astronomy: Astronomy based on the reception of radio waves of cosmic origin. 1.5 radio waves or hertzian waves: Electromagnetic waves of frequencies arbitrarily lower than 3 000 GHz, propagated in space without artificial guide. • Astronomy covers the whole electromagnetic spectrum • Radio astronomy is the “low energy” part of the spectrum é 3 000 GHz Radioastronomy & Radio telescopes | Tasso Tzioumis Radio Astronomy “special” characteristics Technical challenges • Very faint signals – measured in 10-26 W/m2/Hz (-260 dBW) • “Power collected by all radiotelescopes since the start of radio astronomy would light a 1W bulb for less than 1 second” • à Need “sensitivity” i.e. large antennas and/or arrays of many antennas • à Very susceptible to intereference • Celestial structures at all scales: from very large to very small • à Need “spatial resolution” i.e. ability to see the details at all scales • à Need large antennas and/or arrays of many antennas • Astronomical events at all timescales(from < 1ms to > millions years) & and at all spectral resolutions (from < 1 Hz to GHz) • à Need very high time and frequency resolution • à Sensitive telescopes and arrays & extreme technical challenges Radioastronomy & Radio telescopes | Tasso Tzioumis Radio Astronomy “special” characteristics Scientific challenges • Radio -
First Year Wilkinson Microwave Anisotropy Probe (WMAP ) Observations: Determination of Cosmological Parameters
Accepted by the Astrophysical Journal First Year Wilkinson Microwave Anisotropy Probe (WMAP ) Observations: Determination of Cosmological Parameters D. N. Spergel 2, L. Verde 2 3, H. V. Peiris 2, E. Komatsu 2, M. R. Nolta 4, C. L. Bennett 5, M. Halpern 6, G. Hinshaw 5, N. Jarosik 4, A. Kogut 5, M. Limon 5 7, S. S. Meyer 8, L. Page 4, G. S. Tucker 5 7 9, J. L. Weiland 10, E. Wollack 5, & E. L. Wright 11 [email protected] ABSTRACT WMAP precision data enables accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat ¡ −dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data 2 2 £ ¢ ¤ ¢ £ ¢ ¤ ¢ £ ¢ only, the best fit parameters are h = 0 ¢ 72 0 05, bh = 0 024 0 001, mh = 0 14 0 02, ¥ +0 ¦ 076 ¢ £ ¢ § ¢ £ ¢ = 0 ¢ 166− , n = 0 99 0 04, and = 0 9 0 1. With parameters fixed only by WMAP 0 ¦ 071 s 8 data, we can fit finer scale CMB measurements and measurements of large scale structure (galaxy surveys and the Lyman ¨ forest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stel- lar ages, the baryon/photon ratio is consistent with measurements of the [D]/[H] ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experi- ments (ACBAR and CBI), 2dFGRS measurements and Lyman ¨ forest data to find the model’s 1WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. -
The Atacama Cosmology Telescope: Extragalactic Sources at 148 Ghz in the 2008 Survey
Haverford College Haverford Scholarship Faculty Publications Astronomy 2011 The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey Tobias A. Marriage Jean-Baptise Juin Yen-Ting Lin Bruce Partridge Haverford College, [email protected] Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey Marriage, Tobias A.; Baptiste Juin, Jean; Lin, Yen-Ting; Marsden, Danica; Nolta, Michael R.; Partridge, Bruce; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Bertrand Doriese, W.; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Handel Hughes, David; Hughes, John P.; Infante, Leopoldo; Irwin, Kent D.; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M.; Limon, Michele; Lupton, Robert H.; Martocci, Krista; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B.; Niemack, Michael .;D Page, Lyman A.; Parker, Lucas; Quintana, Hernan; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jon; Spergel, David N.; Staggs, Suzanne T.; Swetz, Daniel S.; Switzer, Eric R.; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wilson, Grant; Wollack, Ed; Zhao, Yue The Astrophysical Journal, Volume 731, Issue 2, article id. 100, 15 pp. (2011). This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. -
CMB Beam Systematics: Impact on Lensing Parameter Estimation
CMB Beam Systematics: Impact on Lensing Parameter Estimation N.J. Miller, M. Shimon, B.G. Keating Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0424 (Dated: January 26) The cosmic microwave background (CMB) is a rich source of cosmological information. Thanks to the simplicity and linearity of the theory of cosmological perturbations, observations of the CMB’s polarization and temperature anisotropy can reveal the parameters which describe the contents, structure, and evolution of the cosmos. Temperature anisotropy is necessary but not sufficient to fully mine the CMB of its cosmological information as it is plagued with various parameter degenera- cies. Fortunately, CMB polarization breaks many of these degeneracies and adds new information and increased precision. Of particular interest is the CMB’s B-mode polarization which provides a handle on several cosmological parameters most notably the tensor-to-scalar ratio, r, and is sen- sitive to parameters which govern the growth of large scale structure (LSS) and evolution of the gravitational potential. These imprint CMB temperature anisotropy and cause E-to-B-mode po- larization conversion via gravitational lensing. However, both primordial gravitational-wave- and secondary lensing-induced B-mode signals are very weak and therefore prone to various foregrounds and systematics. In this work we use Fisher-matrix-based estimations and apply, for the first time, Monte-Carlo Markov Chain (MCMC) simulations to determine -
A Measurement of the Cosmic Microwave Background B-Mode Polarization with Polarbear
Publications of the Korean Astronomical Society pISSN: 1225-1534 30: 625 ∼ 628, 2015 September eISSN: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/PKAS.2015.30.2.625 A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION WITH POLARBEAR The Polarbear collaboration: P.A.R. Ade29, Y. Akiba33, A.E. Anthony2,5, K. Arnold14, M. Atlas14, D. Barron14, D. Boettger14, J. Borrill3,32, S. Chapman9, Y. Chinone17,13, M. Dobbs25, T. Elleflot14, J. Errard32,3, G. Fabbian1,18, C. Feng14, D. Flanigan13,10, A. Gilbert25, W. Grainger28, N.W. Halverson2,5,15, M. Hasegawa17,33, K. Hattori17, M. Hazumi17,33,20, W.L. Holzapfel13, Y. Hori17, J. Howard13,16, P. Hyland24, Y. Inoue33, G.C. Jaehnig2,15, A.H. Jaffe11, B. Keating14, Z. Kermish12, R. Keskitalo3, T. Kisner3,32, M. Le Jeune1, A.T. Lee13,27, E.M. Leitch4,19, E. Linder27, M. Lungu13,8, F. Matsuda14, T. Matsumura17, X. Meng13, N.J. Miller22, H. Morii17, S. Moyerman14, M.J. Myers13, M. Navaroli14, H. Nishino20, A. Orlando14, H. Paar14, J. Peloton1, D. Poletti1, E. Quealy13,26, G. Rebeiz6, C.L. Reichardt13, P.L. Richards13,31, C. Ross9, I. Schanning14, D.E. Schenck2,5, B.D. Sherwin13,21, A. Shimizu33, C. Shimmin13,7, M. Shimon30,14, P. Siritanasak14, G. Smecher34, H. Spieler27, N. Stebor14, B. Steinbach13, R. Stompor1, A. Suzuki13, S. Takakura23,17, T. Tomaru17, B. Wilson14, A. Yadav14, O. Zahn27 1AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cit´e,France 2Center for Astrophysics and Space -
Companion Q&A Fact Sheet: What Mars Reveals About Life in Our
What Mars Reveals about Life in Our Universe Companion Q&A Fact Sheet Educators from the Smithsonian’s Air and Space and Natural History Museums assembled this collection of commonly asked questions about Mars to complement the Smithsonian Science How webinar broadcast on March 3, 2021, “What Mars Reveals about Life in our Universe.” Continue to explore Mars and your own curiosities with these facts and additional resources: • NASA: Mars Overview • NASA: Mars Robotic Missions • National Air and Space Museum on the Smithsonian Learning Lab: “Wondering About Astronomy Together” Guide • National Museum of Natural History: A collection of resources for teaching about Antarctic Meteorites and Mars 1 • Smithsonian Science How: “What Mars Reveals about Life in our Universe” with experts Cari Corrigan, L. Miché Aaron, and Mariah Baker (aired March 3, 2021) Mars Overview How long is Mars’ day? Mars takes 24 hours and 38 minutes to spin around once, so its day is very similar to Earth’s. How long is Mars’ year? Mars takes 687 days, almost two Earth years, to complete one orbit around the Sun. How far is Mars from Earth? The distance between Earth and Mars changes as both planets move around the Sun in their orbits. At its closest, Mars is just 34 million miles from the Earth; that’s about one third of Earth’s distance from the Sun. On the day of this program, March 3, 2021, Mars was about 135 million miles away, or four times its closest distance. How far is Mars from the Sun? Mars orbits an average of 141 million miles from the Sun, which is about one-and-a-half times as far as the Earth is from the Sun.