Dixdc1 Is a Critical Regulator of DISC1 and Embryonic Cortical Development The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Singh, Karun K., Xuecai Ge, Yingwei Mao, Laurel Drane, Konstantinos Meletis, Benjamin A. Samuels, and Li-Huei Tsai. “Dixdc1 Is a Critical Regulator of DISC1 and Embryonic Cortical Development.” Neuron 67, no. 1 (July 15, 2010): 33–48. © 2010 Elsevier Inc. As Published http://dx.doi.org/10.1016/j.neuron.2010.06.002 Publisher Elsevier Version Final published version Citable link http://hdl.handle.net/1721.1/96067 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Neuron Article Dixdc1 Is a Critical Regulator of DISC1 and Embryonic Cortical Development Karun K. Singh,1,2,3 Xuecai Ge,1,2 Yingwei Mao,1,2,3 Laurel Drane,1,2,3 Konstantinos Meletis,1,2,3 Benjamin A. Samuels,1,2,4 and Li-Huei Tsai1,2,3,* 1Howard Hughes Medical Institute 2Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02139, USA 4Department of Psychiatry and Neuroscience, Columbia University, New York, NY 10032, USA *Correspondence:
[email protected] DOI 10.1016/j.neuron.2010.06.002 SUMMARY mechanisms by which it contributes to risk for psychiatric disor- ders. Studies have demonstrated that DISC1 regulates embry- The psychiatric illness risk gene Disrupted in Schizo- onic neurogenesis, neuronal migration, axon differentiation, phrenia-1 (DISC1) plays an important role in brain and synapse formation, while in the adult brain, DISC1 modu- development; however, it is unclear how DISC1 is lates the genesis and circuit integration of new neurons (Brad- regulated during cortical development.