The Mitochondrial Environment Is Required for Activity of the Cholesterol Side-Chain Cleavage Enzyme' Cytochrome P450scc STEPHEN M

Total Page:16

File Type:pdf, Size:1020Kb

The Mitochondrial Environment Is Required for Activity of the Cholesterol Side-Chain Cleavage Enzyme' Cytochrome P450scc STEPHEN M Proc. Natl. Acad. Sci. USA Vol. 91, pp. 7247-7251, July 1994 Cell Biology The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme' cytochrome P450scc STEPHEN M. BLACK, JENNIFER A. HARIKRISHNA, GRAZYNA D. SZKLARZ, AND WALTER L. MILLER* Department of Pediatrics and the Metabolic Research Unit, University of California, San Francisco, CA 94143-0978 Communicated by Seymour Lieberman, April 8, 1994 (receivedfor review April 15, 1993) ABSTRACT Sterodogen Is ni t by the conversion translocated to the inner membrane in a process that requires of colesterol to p egnel by mit il cytocome ATP but is not yet fully understood (10-12). The leader P4esocc [cholesterol, ruced-adrenal-ferredoxdnooxygen oxklo- peptides are removed by a specific peptidase found in the reductase (id ving); EC 1.14.15.6]. Several subsw mitochondrial matrix, and the mature P450scc, Adx, and quent steroidal coner occur In the endo c rc AdRed proteins then assume their normal location in the (ER), but the last step In the p in ofil and inner mitochondrial membrane (13). Mature mitochondrial mineralocorticolds again occurs In the nitochnr. Althop P450 proteins lack the highly hydrophobic membrane anchor cellua compa t i ofsteroldog enzynes appears sequences found in the N termini of the microsomal forms; to be a feature of all steroldogenic pathways, some reports thus it is not clear what mediates the correct association ofa hidIcate that cholesterol can be converted to preg e P450 with the inner mitochondrial membrane. outside the mit dr. To invesigte whether P4s can After pregnenolone is produced in mitochondria, conver- uction outside the mtohon, we cotrd vectors pro- sion to glucocorticoid and mineralocorticoid hormones re- ducing P45Oscc and various enzymes of P4Sbucc with quires both extramitochondrial and intramitochondrial en- electron-transport proteins and directed their expresion to zymes. Forexample, inthe synthesis ofcortisol, pregnenolone either the ER or the mtochondria. Whether tar to mito- must exit from the mitochondria to undergo conversions by chondri or to the ER, paid vectors e ing P450scc and 3p-hydroxysteroid dehydrogenase (a non-P450 microsomal fusion proteins ofP45Oscc with either rial or mcroso- enzyme) and by microsomal P450c17 and P450c21. The re- mal dectron-transport ins produced iunodee sulting product, 11-deoxycortisol, must then reenter the mi- protein. When expressed in cri, all ofthese construc- tochondria for conversion to cortisol by P450cll (for review, tin converted 22-hdroxy ol to penene, but see ref. 4). It is not clear how the steroidal intermediates are when exprsed i the ER noneofthem produced pR e. shuttled to the various cellular components, whether these These results show that P4&scc can fn only in the components are closely aggregated in space, or whether these mitochondrka. Furthermore, it appears to be the m honal specific subcellular locations are required for the functioning environment that is requred, rather than the spec mitocho- of the steroidogenic pathways (for review, see ref. 5). How- drial electron- tes. ever, the subcellular localization of enzymes has important consequences: the conversion ofcholesterol to pregnenolone by mitochondrial P450scc appears to be the rate-limiting The first and rate-limiting step in steroid hormone biosyn- reaction in steroidogenesis because transport of cholesterol thesis is the conversion ofcholesterol to pregnenolone (1-5). substrate into the mitochondria is slow, ratherthan because of This step involves three reactions: 20a-hydroxylation, 22- inherent inefficiency of P450scc (14-16). Experiments to hydroxylation, and scission of the C20-22 bond, all occur- transfer this three-component system to the ER to test the ring on the single active site of cytochrome P450scc [choles- requirements of subcellular localization have not yet been terol, reduced-adrenal-ferredoxin:oxygen oxidoreductase attempted because of the technical difficulty in ensuring that (side-chain-cleaving); EC 1.14.15.6] (6). This process re- all three components are each accurately expressed and tar- quires three pairs of electrons, one for each of the three geted to the ER in appropriate andreproducible quantities. We reactions, donated by NADPH. The electrons first pass to a have cloned the cDNAs for the three components of the flavoprotein (adrenodoxin reductase, AdRed), then to an human cholesterol side-chain cleavage system: P450scc (17), iron-sulfur protein (adrenodoxin, Adx), and finally to Adx (18), and AdRed (19), and we recently showed that these P450scc. P450scc is a typical mitochondrial P450 enzyme, all three components could be engineered into a single polypep- of which use the same electron-transfer proteins. However that a most cytochrome P450 enzymes, such as those involved in tide chain has enhanced enzymatic activity (20). Use of the metabolism ofxenobiotics, are found in the endoplasmic covalently linked, single-chain P450scc system facilitates reticulum (ER) (7). These enzymes receive electrons from studying its activity outside the mitochondrion. We have now NADPH via P450 oxidoreductase (OR), a flavoprotein that built a series of vectors that express P450scc fusion proteins differs from AdRed and that does not use an intermediate in the ER. By using soluble 22-hydroxycholesterol as a sub- iron-sulfur protein (7, 8). These microsomal forms of cy- strate, we can circumvent the mechanisms that transport tochrome P450 contain N-terminal sequences that encode an cholesterol to the mitochondria and thus test the requirements insertion/halt-transfer sequence (9) that targets the nascent for the electron donors to P450scc and the requirement for the polypeptide chain to the membranes of the ER and prevents mitochondrial environment for P45Oscc activity. its translocation into the lumen. By contrast, the mitochon- MATERIALS AND METHODS drial P450 enzymes have an amphipathic N-terminal leader sequence that allows the preprotein to bind to the mitochon- CostructionoERTargeting Psnids. The construction of drial surface at points where the inner and outer membranes the plasmids expressing Adx (21), P450scc (21), and AdRed are in close proximity (10). Mitochondrial proteins are then Abbreviations: AdRed, adrenodoxin reductase; Adx, adrenodoxin; OR, oxidoreductase; ER, endoplasmic reticulum. The publication costs ofthis article were defrayed in part by page charge *To whom reprint requests should be addressed at: Department of payment. This article must therefore be hereby marked "advertisement" Pediatrics, Building MR-IV, Room 209, University of California, in accordance with 18 U.S.C. §1734 solely to indicate this fact. San Francisco, CA 94143-0978. 7247 Downloaded by guest on September 29, 2021 7248 Cell Biology: Black et al. Proc. Nadl. Acad. Sci. USA 91 (1994) (30) and ofthose encoding the fusion proteins F1-F3 (20) has supplemented with 5 x 10-6 M (22R)-hydroxycholesterol. been described. To construct fusion protein F4 (H2N- Twenty-four hours later, cells were harvested for luciferase P450scc-OR-COOH), the P450scc moiety was first prepared activity measurement, and pregnenolone in the medium was exactly as described for F1-F3 (20). The NADPH-dependent measured by immunoassay (27). P450 OR cDNA (8) was modified by PCR to remove the RNA and Protein Analysis. Forty-eight hours after trans- microsomal leader sequence, which consists of the first 56 fection, cells were washed twice in phosphate-buffered saline amino acids (22). A 418-bp segment from the 5' end ofthe OR and harvested with either 8 M guanidinium chloride for RNA cDNA was amplified by using primers 11 (5'-GACTAGTAT- preparation or into sucrose buffer (0.25 M sucrose/50 mM TCAGACATTGACCTCC-3') and 12 (5'-CAACCCCAGCT- ethanolamine/10 mM Tris-HCl, pH 7.4/1 mM EDTA) for CAAAGATGC-3'). Use of primer 11 removes the leader protein analysis. Northern analysis of RNA was done using sequence, adds an Spe I site for cloning, and encodes the Mops-formaldehyde denaturing gels and 32P-labeled human hinge sequence Thr-Asp-Gly-Thr-Ser to allow translation cDNAs for P450scc (17), Adx (18), AdRed (19), and OR (8) through both the P450scc and OR moieties to produce a as probe. fusion enzyme. The downstream primer 12 was chosen at a COS-1 cells were sonicated and fractionated into cytosol, naturally occurring Nar I site, allowing ligation to the re- mitochondria, and ER, as described (28). Total protein con- mainder of the OR cDNA. tent was determined after cell disruption with two 5-sec For the plasmids designated F4-F8, the mitochondrial bursts using a sonicator (Artek, Farmingdale, NY) atasetting targeting sequence of P450scc (amino acids 1-39) was re- of 20 and an equal volume of 2x loading buffer [50 mM placed by the ER insertion/halt-transfer sequence of rat Tris HCl, pH 6.8/2% SDS/5% 2-mercaptoetanol/1096 (vol/ P45011B1 (23). This was done using upstream oligonucleotide 13 (5'-GGGTACCATGGAGCCCAGTATCTTG-3') and vol) glycerol/0.005% bromophenol blue] was added. Samples downstream oligonucleotide 14 (S'-GACTAAGAGTAA- were boiled for 5 min and then separated by electrophoresis CAAGAAGCC-3') to prepare a 69-bp fragment encoding the on SDS/4-209o acrylamide gradient gels. The proteins were ER-targeting sequence (the first 23 residues) ofrat P450IIB1. then electrotransferred to nitrocellulose in Tris-HCl, pH Primer 13 adds a Kpn I site for cloning, and primer 14 8.4/193 mM glycine/20%o methanol for 1 hr at 4°C, and generates a blunt-ended site. A similar method was used to immunoblotting was done by using antisera specific to human remove the mitochondrial-targeting sequence from P450scc P450scc (27), Adx (27), AdRed (27), P450c17 (29), and OR to yield ablunt-ended fragment. Upstream oligonucleotide 15 (from C. R. Wolf, University of Edinburgh), as described (5'-ATCTCCACCCGCAGTCCTCGC-3') generated a blunt- (27). ended cDNA fragment beginning at the codon for amino acid 40 of P450scc (i.e., the first residue of the processed mature RESULTS intramitochondrial protein), and downstream oligonucleotide 16 (5'-TTGGGGCCCTCGGACTTAAAG-3') extended to Design and Construction of ER Targeting Psn.
Recommended publications
  • 32-3824: FDX1 Recombinant Protein Description Product Info
    ABGENEX Pvt. Ltd., E-5, Infocity, KIIT Post Office, Tel : +91-674-2720712, +91-9437550560 Email : [email protected] Bhubaneswar, Odisha - 751024, INDIA 32-3824: FDX1 Recombinant Protein Alternative Name : Adrenodoxin mitochondrial,Adrenal ferredoxin,Ferredoxin-1,Hepatoredoxin,FDX1,ADX. Description Source : Escherichia Coli. FDX1 Human Recombinant fused with a 15 amino acid T7 tag at N-terminus produced in E.Coli is a single, non-glycosylated, polypeptide chain containing 139 amino acids (61-184 a.a.) and having a molecular mass of 15.0kDa.The FDX1 is purified by proprietary chromatographic techniques. Ferredoxin-1 is a small iron-sulfur protein who transfers electrons from NADPH through ferredoxin reductase to a terminal cytochrome P450. This specific oxidation/reduction system is located in steroidogenic tissues, and is involved with the synthesis of bile acid and vitamin D. FDX1 takes part in the synthesis of thyroid hormones and transfers electrons from adrenodoxin reductase to the cholesterol side chain cleavage cytochrome P450. FDX1 supports reactions catalyzed by human microsomal P450s- full length CYP17, truncated CYP17, and truncated CYP21. In addition to the FDX1 at the 11q22chromosomal locus, there are pseudogenes located on chromosomes 20 and 21. Product Info Amount : 25 µg Purification : Greater than 90.0% as determined by SDS-PAGE. Content : The FDX1 solution contains 20mM Tris-HCl buffer (pH8.0) and 10% Glycerol. Store at 4°C if entire vial will be used within 2-4 weeks. Store, frozen at -20°C for longer periods of Storage condition : time. For long term storage it is recommended to add a carrier protein (0.1% HSA or BSA).Avoid multiple freeze-thaw cycles.
    [Show full text]
  • Anti-FDX1 / Ferredoxin Antibody (ARG58670)
    Product datasheet [email protected] ARG58670 Package: 100 μl anti-FDX1 / Ferredoxin antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes FDX1 / Ferredoxin Tested Reactivity Hu, Ms, Rat Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name FDX1 / Ferredoxin Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 1-184 of Human FDX1 (NP_004100.1). Conjugation Un-conjugated Alternate Names LOH11CR1D; Hepatoredoxin; ADX; Adrenal ferredoxin; FDX; Ferredoxin-1; Adrenodoxin, mitochondrial Application Instructions Application table Application Dilution IHC-P 1:50 - 1:200 WB 1:200 - 1:500 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control K562 Calculated Mw 19 kDa Observed Size 14 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol FDX1 Gene Full Name ferredoxin 1 Background This gene encodes a small iron-sulfur protein that transfers electrons from NADPH through ferredoxin reductase to mitochondrial cytochrome P450, involved in steroid, vitamin D, and bile acid metabolism.
    [Show full text]
  • Bestimmung Des Interaktionsbereiches Sowie Der Struktur Des
    Bestimmung des Interaktionsbereiches sowie der Struktur des Adrenodoxins im Komplex mit der Adrenodoxin-Reduktase mit Hilfe der paramagnetischen NMR-Spektroskopie Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Frau Dipl. Chem. Berna Mersinli Saarbrücken 2010 Tag des Kolloquiums: 12. Oktober 2010 Dekan: Prof. Dr. Stefan Diebels Berichterstatter: Prof. Dr. Rita Bernhardt Prof. Dr. Marcellus Ubbink Vorsitz: Prof. Dr. Uli Müller Akademischer Mitarbeiter: Dr. Gert-Wieland Kohring Inhaltsverzeichnis Abkürzungsverzeichnis 4 Zusammenfassung 7 Summary 8 1 Einleitung 10 1.1 Cytochrome P450 . 10 1.2 Ferredoxin-NADPH Reduktasen . 16 1.3 Ferredoxine . 19 1.4 Interaktion des Adx mit AdR und CYP11A1 . 24 1.5 NMR-Spektroskopie . 26 1.6 Ziel der Arbeit . 34 2 Material und Methoden 36 2.1 Materialien . 36 2.2 Molekularbiologische Methoden . 39 2.3 Heterologe Proteinexpression und Reinigung . 42 2.4 Biochemische und biophysikalische Methoden . 46 2.5 NMR-Untersuchungen . 52 3 Ergebnisse 60 3.1 Herstellung der AdR-Mutanten . 61 3.2 Charakterisierung der AdR-Mutanten . 72 3.3 Paramagnetische NMR-Experimente . 84 4 Diskussion und Ausblick 110 4.1 Heterologe Expression und Reinigung der AdR-Formen . 111 4.2 Charakterisierung der AdR-Mutanten . 118 4.3 Paramagnetische NMR-Messungen . 123 3 Inhaltsverzeichnis 5 Veröffentlichungen 143 Literaturverzeichnis 143 Anhang 164 4 Abkürzungsverzeichnis Abkürzungen
    [Show full text]
  • Model Name: "Jamshidi2007
    SBML Model Report Model name: “Jamshidi2007 - Genome-scale metabolic network of Mycobacterium tuberculosis (iNJ661)” 2LATEX July 28, 2015 1 General Overview This is a document in SBML Level 3 Version 1 format. Table1 shows an overview of the quantities of all components of this model. Table 1: Number of components in this model, which are described in the following sections. Element Quantity Element Quantity compartment types 0 compartments 2 species types 0 species 826 events 0 constraints 0 reactions 1025 function definitions 0 global parameters 19 unit definitions 1 rules 0 initial assignments 0 Model Notes Jamshidi2007 - Genome-scale metabolic networkof Mycobacterium tuberculosis (iNJ661) This model is described in the article:Investigating the metabolic capabilities of Mycobac- terium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug tar- gets.Jamshidi N, Palsson B.BMC Syst Biol 2007; 1: 26 Abstract: Produced by SBML2LATEX 1 BACKGROUND: Mycobacterium tuberculosis continues to be a major pathogen in the third world, killing almost 2 million people a year by the most recent estimates. Even in industrialized countries, the emergence of multi-drug resistant (MDR) strains of tuberculosis hails the need to develop additional medications for treatment. Many of the drugs used for treatment of tuber- culosis target metabolic enzymes. Genome-scale models can be used for analysis, discovery, and as hypothesis generating tools, which will hopefully assist the rational drug development process. These models need to be able to assimilate data from large datasets and analyze them. RESULTS: We completed a bottom up reconstruction of the metabolic network of Mycobac- terium tuberculosis H37Rv.
    [Show full text]
  • The Biosynthesis of Adrenal C11-Oxy C21 Steroids, Implicated in 21-Hydroxylase Deficiency – 21-Desoxycortisol and 21-Desoxycortisone and Their Downstream Metabolism
    THE BIOSYNTHESIS OF ADRENAL C11-OXY C21 STEROIDS, IMPLICATED IN 21-HYDROXYLASE DEFICIENCY – 21-DESOXYCORTISOL AND 21-DESOXYCORTISONE AND THEIR DOWNSTREAM METABOLISM by Lise Barnard Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Faculty of Science at Stellenbosch University Supervisor: Prof A.C. Swart March 2017 The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Lise Barnard March 2017 Copyright © 2017 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za ABSTRACT Adrenal C19 steroids are often implicated in numerous androgen dependent disease conditions. Androgen excess is the hallmark of 21-hydroxylase deficiency (21OHD) fuelled by an increase in the production of adrenal androgens and androgen precursors. In addition, increased levels of progesterone (P4) and 17α-hydroxyprogesterone (17OHP4), the substrates of the defective cytochrome P450 steroid 21-hydroxylase, have also been reported. Adrenal steroids are secreted into circulation, for further downstream metabolism. Conversion of adrenal steroids to active androgens in peripheral target tissue is dependent on the tissue specific expression of key enzymes, which significantly influence steroid profiles at cellular level, ultimately influencing homeostasis in androgen responsive tissue.
    [Show full text]
  • Supplementary Tables S1-S3
    Supplementary Table S1: Real time RT-PCR primers COX-2 Forward 5’- CCACTTCAAGGGAGTCTGGA -3’ Reverse 5’- AAGGGCCCTGGTGTAGTAGG -3’ Wnt5a Forward 5’- TGAATAACCCTGTTCAGATGTCA -3’ Reverse 5’- TGTACTGCATGTGGTCCTGA -3’ Spp1 Forward 5'- GACCCATCTCAGAAGCAGAA -3' Reverse 5'- TTCGTCAGATTCATCCGAGT -3' CUGBP2 Forward 5’- ATGCAACAGCTCAACACTGC -3’ Reverse 5’- CAGCGTTGCCAGATTCTGTA -3’ Supplementary Table S2: Genes synergistically regulated by oncogenic Ras and TGF-β AU-rich probe_id Gene Name Gene Symbol element Fold change RasV12 + TGF-β RasV12 TGF-β 1368519_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 42.22 5.53 75.28 1373000_at sushi-repeat-containing protein, X-linked 2 (predicted) Srpx2 19.24 25.59 73.63 1383486_at Transcribed locus --- ARE 5.93 27.94 52.85 1367581_a_at secreted phosphoprotein 1 Spp1 2.46 19.28 49.76 1368359_a_at VGF nerve growth factor inducible Vgf 3.11 4.61 48.10 1392618_at Transcribed locus --- ARE 3.48 24.30 45.76 1398302_at prolactin-like protein F Prlpf ARE 1.39 3.29 45.23 1392264_s_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 24.92 3.67 40.09 1391022_at laminin, beta 3 Lamb3 2.13 3.31 38.15 1384605_at Transcribed locus --- 2.94 14.57 37.91 1367973_at chemokine (C-C motif) ligand 2 Ccl2 ARE 5.47 17.28 37.90 1369249_at progressive ankylosis homolog (mouse) Ank ARE 3.12 8.33 33.58 1398479_at ryanodine receptor 3 Ryr3 ARE 1.42 9.28 29.65 1371194_at tumor necrosis factor alpha induced protein 6 Tnfaip6 ARE 2.95 7.90 29.24 1386344_at Progressive ankylosis homolog (mouse)
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0053498A1 Bejanin Et Al
    US 20060053498A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0053498A1 Bejanin et al. (43) Pub. Date: Mar. 9, 2006 (54) FULL-LENGTH HUMAN CDNAS ENCODING Publication Classification POTENTIALLY SECRETED PROTEINS (51) Int. Cl. (76) Inventors: Stephane Bejanin, Rochechouart (FR); AOIK 67/00 (2006.01) Jean-Baptiste Dumas Milne Edwards, C07K I4/47 (2006.01) CI2O I/68 (2006.01) Paris (FR); Jean-Yves Giordano, Paris C07H 21/04 (2006.01) (FR); Severin Jobert, Paris (FR); CI2P 21/06 (2006.01) Hiroaki Tanaka, Antony (FR) (52) U.S. Cl. ............ 800/8; 435/6; 435/69.1; 435/320.1; Correspondence Address: 435/325; 530/350, 536/23.5 SALIWANCHIK LLOYD & SALWANCHIK (57) ABSTRACT A PROFESSIONAL ASSOCATION PO BOX 142950 The invention concerns GENSET polynucleotides and GAINESVILLE, FL 32614-2950 (US) polypeptides. Such GENSET products may be used as reagents in forensic analyses, as chromosome markers, as (21) Appl. No.: 10/475,075 tissue/cell/organelle-Specific markers, in the production of expression vectors. In addition, they may be used in Screen (22) PCT Filed: Apr. 18, 2001 ing and diagnosis assays for abnormal GENSET expression and/or biological activity and for Screening compounds that (86) PCT No.: PCT/IB01/00914 may be used in the treatment of GENSET-related disorders. Patent Application Publication Mar. 9, 2006 Sheet 1 of 4 US 2006/0053498A1 D 125A 125B 125C E." 1OO COMPUTER SYSTEM PROCESSOR MEMORY 120 DATA RETRIEMNG DISPLAY DEVICE Figure 1 Patent Application Publication Mar. 9, 2006 Sheet 2 of 4 US 2006/0053498A1 2O2 STORE NEW SEQUENCE TO A MEMORY 204 OPEN DATABASE OF SEQUENCES 2O6 READ FIRST SECUENCE IN DATABASE 21 O PERFORM COMPARISON OF NEW SEQUENCE AND 224 STORED SEQUENCE GO TO NEXT 212 SEQUENCE IN DATABASE YES MORE SEQUENCESN DATABASE? Patent Application Publication Mar.
    [Show full text]
  • Microrna Modulation of Aldosterone Production in the Adrenal Gland Nur
    Ab Razak, Nur Izah (2016) MicroRNA modulation of aldosterone production in the adrenal gland. PhD thesis. https://theses.gla.ac.uk/7719/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] MicroRNA modulation of aldosterone production in the adrenal gland Nur Izah Ab Razak (MBBS Malaya) Thesis submitted for the degree of Doctor of Philosophy to the University of Glasgow Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary and Life Sciences University of Glasgow April 2016 © Nur Izah Ab Razak 2016 1 Abstract Hypertension is the major risk factor for coronary disease worldwide. Primary hypertension is idiopathic in origin but is thought to arise from multiple risk factors including genetic, lifestyle and environmental influences. Secondary hypertension has a more definite aetiology; its major single cause is primary aldosteronism (PA), the greatest proportion of which is caused by aldosterone- producing adenoma (APA), where aldosterone is synthesized at high levels by an adenoma of the adrenal gland. There is strong evidence to show that high aldosterone levels cause adverse effects on cardiovascular, cerebrovascular, renal and other systems.
    [Show full text]
  • Mirnas Documented to Play a Role in Hematopoietic Cell Lineage. Our
    Table S1: miRNAs documented to play a role in hematopoietic cell lineage. Our review of the literature summarizing miRNAs known to be involved in the development and proliferation of the hematopoietic lineage cells. miRNA Expression/function/target/regulator References miR-150 Elevated during developmental stages of B and T cell maturation. 16-19 Controls B cell differentiation, present in mature, resting T and B cells but decreased upon activation of naïve T or B cells. Plays a role in establishing lymphocyte identity. Very little is known about function in T cells. Regulators: Foxp3 Target: C-Myb miR-146a/b Upregulated in macropgahe inflammatory response. Differentially 17, 20 upregulated in murine Th1 subset but abolished in Th2 subset. Upregulated in response to TCRs stimulation, as well as by IL-1 and TNF. Highly expressed in murine T-regs and could play a role in establishing lymphocyte identity. Modulates activation induced cell death in activated T cells. Negative regulator of TLR and cytokine signaling pathway. Endotoxin tolerance. Antiviral role. Targets: IRAK1, IRAK2, TRAF6, FAF1 miR-16-1 Promote apoptosis by targeting Bcl2 expression, act as tumor 22 cluster suppressor RNAs. May block differentiation of later stage hematopoietic progenitor cells to mature cells. Downregulated in CLL. Target: BCL2. miR-155 Regulator of T and B cell maturation and innate immune response. 23-29 Expressed in primary mediastinal B-cell lymphoma, T and B cells, macrophages and DCs. Upregulated during B cell activation. Involved in T cell differentiation and indicated as a positive regulator of cytokine production. Activated by stimulating TLR3 and INFab receptors in bone derived macrophages (regulation of antimicrobial defense).
    [Show full text]
  • EUROPEAN PATENT OFFICE, VIENNA Thousand Oaks, CA 91320 (US) SUB-OFFICE
    Europäisches Patentamt *EP001033405A2* (19) European Patent Office Office européen des brevets (11) EP 1 033 405 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C12N 15/29, C12N 15/82, 06.09.2000 Bulletin 2000/36 C07K 14/415, C12Q 1/68, A01H 5/00 (21) Application number: 00301439.6 (22) Date of filing: 25.02.2000 (84) Designated Contracting States: • Brover, Vyacheslav AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Calabasas, CA 91302 (US) MC NL PT SE • Chen, Xianfeng Designated Extension States: Los Angeles, CA 90025 (US) AL LT LV MK RO SI • Subramanian, Gopalakrishnan Moorpark, CA 93021 (US) (30) Priority: 25.02.1999 US 121825 P • Troukhan, Maxim E. 27.07.1999 US 145918 P South Pasadena, CA 91030 (US) 28.07.1999 US 145951 P • Zheng, Liansheng 02.08.1999 US 146388 P Creve Coeur, MO 63141 (US) 02.08.1999 US 146389 P • Dumas, J. 02.08.1999 US 146386 P , (US) 03.08.1999 US 147038 P 04.08.1999 US 147302 P (74) Representative: 04.08.1999 US 147204 P Bannerman, David Gardner et al More priorities on the following pages Withers & Rogers, Goldings House, (83) Declaration under Rule 28(4) EPC (expert 2 Hays Lane solution) London SE1 2HW (GB) (71) Applicant: Ceres Incorporated Remarks: Malibu, CA 90265 (US) THE COMPLETE DOCUMENT INCLUDING REFERENCE TABLES AND THE SEQUENCE (72) Inventors: LISTING IS AVAILABLE ON CD-ROM FROM THE • Alexandrov, Nickolai EUROPEAN PATENT OFFICE, VIENNA Thousand Oaks, CA 91320 (US) SUB-OFFICE.
    [Show full text]
  • 3Na0 Lichtarge Lab 2006
    Pages 1–11 3na0 Evolutionary trace report by report maker September 13, 2010 4.3.1 Alistat 10 4.3.2 CE 10 4.3.3 DSSP 10 4.3.4 HSSP 11 4.3.5 LaTex 11 4.3.6 Muscle 11 4.3.7 Pymol 11 4.4 Note about ET Viewer 11 4.5 Citing this work 11 4.6 About report maker 11 4.7 Attachments 11 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 3na0): Title: Crystal structure of human cyp11a1 in complex with 20,22- dihydroxycholesterol Compound: Mol id: 1; molecule: cholesterol side-chain cleavage enzyme, mitochond chain: a, b; fragment: unp residues 44-514; syn- onym: cytochrome p450 11a1, cypxia1, cytochrome p450(scc chole- sterol desmolase; ec: 1.14.15.6; engineered: yes; mol id: 2; molecule: CONTENTS adrenodoxin, mitochondrial; chain: c, d; fragment: unp residues 88-155; synonym: adrenal ferredoxin, ferredoxin-1, hepatoredoxin; 1 Introduction 1 engineered: yes Organism, scientific name: Homo Sapiens; 2 Chain 3na0A 1 3na0 contains a single unique chain 3na0A (470 residues long) and 2.1 Q8N1A7 overview 1 its homologue 3na0B. Not enough homologous sequences could be 2.2 Multiple sequence alignment for 3na0A 1 found to permit analysis for chain 3na0C. 2.3 Residue ranking in 3na0A 1 2.4 Top ranking residues in 3na0A and their position on the structure 2 2 CHAIN 3NA0A 2.4.1 Clustering of residues at 25% coverage. 2 2.4.2 Overlap with known functional surfaces at 2.1 Q8N1A7 overview 25% coverage. 2 From SwissProt, id Q8N1A7, 100% identical to 3na0A: 2.4.3 Possible novel functional surfaces at 25% Description: Cytochrome P450, subfamily XIA,.
    [Show full text]
  • Download Author Version (PDF)
    RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 34 RSC Advances Color graphic The figure displayed the flow chart of the study. Manuscript Accepted Text Eight breath biomarkers of T2DM were discovered by a newly SPME-GC-MS based metabolic profiling tool. Advances RSC RSC Advances Page 2 of 34 Discovery of potential biomarkers in exhaled breath for diagnosis of type 2 diabetes mellitus based on GC-MS with metabolomics Yanyue Yan 1, Qihui Wang 1, Wenwen Li 1, Zhongjun Zhao 2, Xin Yuan 2, Yanping Huang 2, and Yixiang Duan 3* 1Research Center of Analytical Instrumentation, Analytical & Testing Center, Sichuan University, Chengdu, P.
    [Show full text]