A Hierarchical Classification of Wildland Fire Fuels for Australian
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Cape Town
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Some consequences of woody plant encroachment in a mesic South African savanna Emma Fiona Gray Town Cape of Submitted in fulfilment of the requirements for a Master of Science Degree Supervisor UniversityProfessor William Bond Botany Department University of Cape Town Rondebosch 7701 March 2011 Acknowledgements My most sincere thanks go to my supervisor, Professor William Bond. There is no doubt that without his guidance, belief and support over the last two years I would still be sitting in front of a blank screen. Thanks for the passion, the inspiration and all the amazing opportunities. Thanks to Ezemvelo KZN Wildlife for allowing me to conduct my research in their park. Particular thanks go to Dr Dave Druce, for welcoming me into his research centre and giving me the staff and freedom I needed during my fieldwork. I am also extremely grateful to Geoff Clinning for his patience and willingness to help with all my data and GIS needs. Thanks to the Zululand Tree Project for logistical support during my field work. To my field assistants, Njabulo, Bheki and Ncobile, for their uncomplaining hard work in the most trying conditions. Without them I would have no data. -
Shrub Encroachment of Temperate Grasslands: Effects on Plant
SHRUB ENCROACHMENT OF TEMPERATE GRASSLANDS: EFFECTS ON PLANT BIODIVERSITY AND HERBAGE PRODUCTION DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR AGRARWISSENSCHAFTEN DER GEORG -AUGUST -UNIVERSITÄT GÖTTINGEN VORGELEGT VON STEFAN KESTING GEBOREN IN ILMENAU GÖTTINGEN, DEN 01. OKTOBER 2009 ______________________________________________________________________ D7 1. Referent: Prof. Dr. J. Isselstein 2. Korreferent: Prof. Dr. W. Schmidt Tag der mündlichen Prüfung: 19. November 2009 Table of contents 1 General Introduction................................................................................................. 6 1.1 References......................................................................................................... 7 2 Plant species richness in calcareous grasslands under different stages of shrub encroachment ............................................................................................................ 9 2.1 Abstract............................................................................................................. 9 2.2 Introduction....................................................................................................... 9 2.3 Methods........................................................................................................... 10 2.3.1 Study area ............................................................................................... 10 2.3.2 Experimental design and measurements ................................................. 10 2.3.3 Data analysis -
Extinction, Transoceanic Dispersal, Adaptation and Rediversification
Turnover of southern cypresses in the post-Gondwanan world: Title extinction, transoceanic dispersal, adaptation and rediversification Crisp, Michael D.; Cook, Lyn G.; Bowman, David M. J. S.; Author(s) Cosgrove, Meredith; Isagi, Yuji; Sakaguchi, Shota Citation The New phytologist (2019), 221(4): 2308-2319 Issue Date 2019-03 URL http://hdl.handle.net/2433/244041 © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust; This is an open access article under the terms Right of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University Research Turnover of southern cypresses in the post-Gondwanan world: extinction, transoceanic dispersal, adaptation and rediversification Michael D. Crisp1 , Lyn G. Cook2 , David M. J. S. Bowman3 , Meredith Cosgrove1, Yuji Isagi4 and Shota Sakaguchi5 1Research School of Biology, The Australian National University, RN Robertson Building, 46 Sullivans Creek Road, Acton (Canberra), ACT 2601, Australia; 2School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia; 3School of Natural Sciences, The University of Tasmania, Private Bag 55, Hobart, Tas 7001, Australia; 4Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; 5Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan Summary Author for correspondence: Cupressaceae subfamily Callitroideae has been an important exemplar for vicariance bio- Michael D. Crisp geography, but its history is more than just disjunctions resulting from continental drift. We Tel: +61 2 6125 2882 combine fossil and molecular data to better assess its extinction and, sometimes, rediversifica- Email: [email protected] tion after past global change. -
The Coastal Scrub and Chaparral Bird Conservation Plan
The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego). -
Callitris Forests and Woodlands
NVIS Fact sheet MVG 7 – Callitris forests and woodlands Australia’s native vegetation is a rich and fundamental Overview element of our natural heritage. It binds and nourishes our ancient soils; shelters and sustains wildlife, protects Typically, vegetation areas classified under MVG 7 – streams, wetlands, estuaries, and coastlines; and absorbs Callitris forests and woodlands: carbon dioxide while emitting oxygen. The National • comprise pure stands of Callitris that are restricted and Vegetation Information System (NVIS) has been developed generally occur in the semi-arid regions of Australia and maintained by all Australian governments to provide • in most cases Callitris species are a co-dominant a national picture that captures and explains the broad or occasional species in other vegetation groups, diversity of our native vegetation. particularly eucalypt woodlands and forests in temperate This is part of a series of fact sheets which the Australian semi-arid and sub-humid climates. After disturbance, Government developed based on NVIS Version 4.2 data to Callitris may regenerate in high densities and become provide detailed descriptions of the major vegetation groups a dominant member of a mixed canopy layer. Some of (MVGs) and other MVG types. The series is comprised of these modified communities are mapped asCallitris a fact sheet for each of the 25 MVGs to inform their use by forests or woodlands planners and policy makers. An additional eight MVGs are • are generally dominated by a herbaceous understorey available outlining other MVG types. with only a few shrubs • in New South Wales Callitris has been an important For more information on these fact sheets, including forestry timber and large monocultures have been its limitations and caveats related to its use, please see: encouraged for this purpose ‘Introduction to the Major Vegetation Group (MVG) fact sheets’. -
7. Shrubland and Young Forest Habitat Management
7. SHRUBLAND AND YOUNG FOREST HABITAT MANAGEMENT hrublands” and “Young Forest” are terms that apply to areas Shrubland habitat and that are transitioning to mature forest and are dominated by young forest differ in “Sseedlings, saplings, and shrubs with interspersed grasses and forbs (herbaceous plants). While some sites such as wetlands, sandy sites vegetation types and and ledge areas can support a relatively stable shrub cover, most shrub communities in the northeast are successional and change rapidly to food and cover they mature forest if left unmanaged. Shrub and young forest habitats in Vermont provide important habitat provide, as well as functions for a variety of wildlife including shrubland birds, butterflies and bees, black bear, deer, moose, snowshoe hare, bobcat, as well as a where and how they variety of reptiles and amphibians. Many shrubland species are in decline due to loss of habitat. Shrubland bird species in Vermont include common are maintained on the species such as chestnut-sided warbler, white-throated sparrow, ruffed grouse, Eastern towhee, American woodcock, brown thrasher, Nashville landscape. warbler, and rarer species such as prairie warbler and golden-winged warbler. These habitat types are used by 29 Vermont Species of Greatest Conservation Need. While small areas of shrub and young forest habitat can be important to some wildlife, managing large patches of 5 acres or more provides much greater benefit to the wildlife that rely on the associated habitat conditions to meet their life requirements. Birds such as the chestnut- sided warbler will use smaller areas of young forest, but less common species such as golden-winged warbler require areas of 25 acres or more. -
Grassland to Shrubland State Transitions Enhance Carbon Sequestration in the Northern Chihuahuan Desert
Global Change Biology Global Change Biology (2015) 21, 1226–1235, doi: 10.1111/gcb.12743 Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert M. D. PETRIE1 ,S.L.COLLINS1 ,A.M.SWANN2 ,P.L.FORD3 andM.E. LITVAK1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA, 2Department of Biology, Sevilleta LTER, University of New Mexico, Albuquerque, New Mexico, USA, 3USDA Forest Service, Rocky Mountain Research Station, Albuquerque, New Mexico, USA Abstract The replacement of native C4-dominated grassland by C3-dominated shrubland is considered an ecological state tran- sition where different ecological communities can exist under similar environmental conditions. These state transi- tions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan À2 À1 Desert, we found established shrubland to sequester 49 g C m yr on average, while nearby native C4 grassland À À was a net source of 31 g C m 2 yr 1 over this same period. Differences in C exchange between these ecosystems were pronounced – grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosys- tem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. -
60 APPENDIX I. Plant Species Recorded During The
APPENDIX I. Plant species recorded during the Delny / Delmore Downs Survey • * indicates introduced species Trees • The old name is indicated in brackets as this may be the name used on the site sheets Dogwood Acacia coriacea Club-leaf wattle Acacia hemignosta River Cooba Acacia stenophylla Whitewood Atalaya hemiglauca Northern wild orange Capparis umbonata Ghost gum Corymbia aparrerinja (Eucalyptus papuana) Rough leaved range gum Corymbia aspera (Eucalyptus aspera) Bloodwood Corymbia terminalis (Eucalyptus terminalis) Rough leaf bloodwood Corymbia setosa (Eucalyptus setosa) Northern grey box Eucalyptus chlorophylla (Eucalyptus argillacea) Snappy Gum Eucalyptus brevifolia River Red Gum Eucalyptus camaldulensis Rough leaf cabbage gum Eucalyptus confertiflora Variable-barked bloodwood Eucalyptus dicromophloia Migum Eucalyptus leucophloia Coolibah Eucalyptus microtheca Sturt Creek mallee Eucalyptus odontocarpa Silver box Eucalyptus pruinosa Guttapercha Exoecaria parvifolia Helicopter tree Gyrocarpus americanus Common hakea Hakea arborescens Long-leaf corkwood Hakea suberea Broad-leaf paperbark Melaleuca viridiflora - Terminalia aridicola Nutwood Terminalia arostrata - Terminalia canescens Wild plum Terminalia platyphylla Supplejack Ventilago viminalis Shrubs Hall’s Creek wattle Acacia cowleana Sandhill wattle Acacia dictyophleba Mimosa bush Acacia farnesiana Candelabra wattle Acacia halosericea - Acacia hilliana Umbrella bush Acacia ligulata Turpentine Acacia lysiphloia - Acacia monticola Scrub wattle Acacia stipuligera Acacia bush Acacia -
Conservation Issues: California Chaparral
Author's personal copy Conservation Issues: California Chaparral RW Halsey, California Chaparral Institute, Escondido, CA, United States JE Keeley, U.S. Geological Survey, Three Rivers, CA, United States ã 2016 Elsevier Inc. All rights reserved. What Is Chaparral? 1 California Chaparral Biodiversity 1 Chaparral Community Types 1 Measuring Chaparral Biodiversity 4 Diversity Within Individual Plant Taxa 5 Faunal Diversity 5 Influence of Geology 7 Influence of Climate 7 Influence of Fire 8 Impact of Climate Change 10 Preserving Chaparral Biodiversity 10 References 10 What Is Chaparral? Chaparral is a diverse, sclerophyllous shrub-dominated plant community shaped by a Mediterranean-type climate (hot, dry summers and mild, wet winters), a complex mixture of relatively young soils (Specht and Moll, 1983), and large, infrequent, high-intensity fires (30–150 year fire return interval) (Keeley and Zedler, 2009; Keeley et al., 2004; Lombardo et al., 2009). Large expanses of dense chaparral vegetation cover coastal mesas, canyons, foothills, and mountain slopes throughout the California Floristic Province (Figure 1), southward into Baja California, and extending north into the Rogue River Valley of southwest Oregon. Disjunct patches of chaparral can also be found in central and southeastern Arizona and northern Mexico (Keeley, 2000). Along with the four other Mediterranean-type climate regions of the world with similar shrubland vegetation (Central Chile, Mediterranean Basin, South Africa, and southwestern Australia) (Table 1), California has been designated a biodiversity hot spot (Myers et al., 2000). Twenty-five designated locations in all, these hot spots have exceptional concentrations of endemic species that are undergoing exceptional loss of habitat (Myers et al., 2000; Rundel, 2004). -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Woodlands of the Savanna Lands No
Tropical Topics An interpretive newsletter for the tourism industry Woodlands of the savanna lands No. 71 December 2001 Conserving moisture Notes from the Life is tough for plants living in the seasonally dry tropics. Soils arepoorandforhalftheyearthelandisparchedandproneto Editor fireswhilefortheotherhalfitisinundatedwithwater.Only Millions of years ago, much of the plantswhichhavebeenabletoadapttothispunishingregime Australian continent was covered cangrowhere,havingdevelopedcertaincharacteristicsto with rainforest. However, as the makethispossible. climate changed and the continent became more arid, a new type of While trees in the rainforest tend to It seems that these vegetation evolved consisting of have spreading surface roots to make trees are simply using plants which adapted themselves the most of nutrients available on the different survival to the new harsh conditions – forest floor, those in savanna lands strategies. It is as if they notably eucalypts, acacias, generally have deep root systems, to make the choice between melaleucas, grevilleas and reach deep reserves of water. Some investing energy into producing a banksias. trees concentrate their resources in the strong, long-lasting product or early stages of growth on developing numerous poor-quality disposable These types of trees now occupy a deep and massive tap root. ones. Studies have shown that the much of the savanna lands. This ‘construction costs’ to a tree for Tropical Topics cannot, of course, Once obtained, water must be used production of deciduous leaves are describe them all but looks at economically. The thick bark on many lower than the costs of producing strategies for living in an tropical woodland trees, apart from evergreen leaves. inhospitable environment, giving protection from fire, can help to characteristics of the main groups conserve moisture. -
Learning the Boys' Eyes Widened and They Began to New Things, and the Colorful Pair of Socks One Ask Lots of Questions
THE CHAPARRALIAN November 16, 2009 Volume 6, Issue 3 The Chaparralian #32 Contents 3 NASCENT THOUGHTS 6 The Chaparral Habitat For Young Chaparralians Richard W. Halsey 12 Poetry of a Kindred Spirit Nancy Jordan 14 The Walking Toothbrush The Chaparralian is the quarterly journal of the California Chaparral Institute, a non-profit organization that is Bill Howell dedicated to the preservation of native shrubland ecosystems and promoting an appreciation for the natural 16 UNFOLDINGS environment through science and education. To join the Institute and receive The Chaparralian, please fill out and Cover photograph: Two boys near the mail in the slip below or join on our website. We Monkey Temple, Kathmandu, Nepal. Inside welcome unsolicited submissions to The Chaparralian. Please send to [email protected] or via post to cover photo (above left), Jaipur, India. the address below. You can find us on the web at www.californiachaparral.org All photos by Richard W. Halsey unless indicated otherwise. Editor and Publisher.......................Richard W. Halsey Please Join the California Chaparral Institute and support our research and educational efforts to help promote a better understanding of and appreciation for the remarkable biodiversity found in shrubland ecosystems, especially the chaparral! ______$35 Citizen Naturalist: The Chaparralian plus one additional benefit (check preference below). ______$55 Chaparralian: The Chaparralian plus two benefits (check preferences below). ______$100 California Grizzly Bear: The Chaparralian plus all three benefits below. _____ Signed Book: “Fire, Chaparral and Survival in Southern California” _____ DVD of the KPBS/Huell Howser’s California’s Green “Secrets of the Chaparral” show _____ Special Chaparral edition of the California Native Plant Society’s journal, Fremontia.