Season of Burn Effects in Southern California Chaparral

Total Page:16

File Type:pdf, Size:1020Kb

Season of Burn Effects in Southern California Chaparral Paper presented at 2nd Interface Between Ecology and Land Development in California conference, 18-19 April 1997, Occidental College, Los Angeles, CA; Jon E. Keeley, coordinator. Season of Burn Effects in Southern California Chaparral Jan L. Beyers and Carla D. Wakeman Pacific Southwest Research Station, USDA Forest Service, Riverside, CA 92507 Tel. (909) 680-1527; Fax (909) 680-1501 E-mail: [email protected] Abstract. Prescribed burning for fuel reduction is most safely implemented during the wet season or early summer in southern California chaparral. Previous studies suggest that wet season burns result in poor germination of fire-dependent species and that growing season burns may reduce sprouting vigor of shrubs. We examined vegetation recovery after March, June, and November prescribed fires at different sites, and after spring and fall wildfires in a single area. At all sites, good germination of obligate-seeding Ceanothus was observed, and herbaceous species with both heat- and charate-stimulated germination were found. Shrub sprouting percentage tended to be lower after the late spring burn than the fall burns. Fire intensity and postfire weather patterns may also affect chaparral regeneration response. Keywords: Adenostoma fasciculatum, Ceanothus, chamise, fire effects, fire-followers, fire intensity, prescribed fire Introduction Chaparral is the fire-prone, shrub-dominated vegetation type abundant in the foothills adjacent to many southern California cities. Shrubs are typically 1 to 4 m (3 to 12 ft) tall with evergreen, sclerophyllous leaves (Cooper 1922, Keeley and Keeley 1988). California’s Mediterranean-type climate is characterized by mild, wet winters and hot, dry summers (Barbour and Major 1988). By late summer and early fall chaparral shrubs have developed low tissue water content and conditions are ideal for stand-replacement fires (Green 1981). The natural fire return interval in chaparral is estimated to be 20 to 70 years (Keeley et al. 1989, Minnich 1995). Under extreme conditions of hot, dry “Santa Ana” winds, chaparral fires may rapidly burn thousands of hectares. As a result of the extensive wildland-urban interface that has developed as more people have moved into chaparral areas seeking a semi-rural lifestyle, homes may be consumed by flames as well. To protect human communities intermixed in chaparral and reduce the likelihood of very large fires, agencies such as the USDA Forest Service and the California Department of Forestry and Fire Protection use prescribed fire to convert old stands of chaparral to less flammable new growth and break up fuel continuity (Riggan et al. 1986). Prescribed burning is usually conducted in the cooler seasons, between November and June, when soil moisture and live fuel moisture are relatively high and fires are easier to control (Green 1981). The conditions in which prescribed fires burn, and the resultant fire intensity and fire effects, may be very different from those experienced by chaparral plant and animal communities Beyers, J.L. and Wakeman, C.D. -- 2 Table 1. Chaparral species with seeds that are stimulated to germinate by heat (Keeley 1991). Shrubs and Sub-shrubs Herbaceous Annuals and Perennials Ceanothus (many species) (California lilac) Apiastrum angustifolium (wild celery) Fremontodendron californicum (flannel bush) Calyptridium monandrum (pussypaws) Helianthemum scoparium (rockrose) Calystegia macrostegia (wild morning glory) Lotus scoparius (deerweed) Camissonia hirtella (suncup) Malacothamnus fasciculatus (bush mallow) Lotus salsuginosus (coastal lotus) Malosma laurina (laurel sumac) Lotus strigosus (strigose lotus) Rhus integrifolia (lemonadeberry) Lupinus excubitus Rhus ovata (sugarbush) Salvia apiana (white sage) Beyers, J.L. and Wakeman, C.D. -- 3 with a natural summer or fall fire (Parker 1990). There is concern that cool season burning may adversely affect postfire plant community recovery (Parker 1987). The literature on chaparral growth and fire response is extensive, but few studies have examined the impacts of season of burn directly. This paper will review what is known or can be hypothesized about burn season effects in California chaparral, then examine data on vegetation recovery after burns from two case studies in southern California. Literature Review In a recent review on chaparral fire effects, Borchert and Odion (1995) define “fire intensity” as the relative strength of the fire, which is usually based on observations of fire behavior. This is related to but distinct from “fireline intensity,” which is the measured rate of heat release per unit ground surface area (proportional to flame height and rate of spread) (Wells et al. 1979). The term “fire severity” has been used to describe the effects of fire on the biophysical environment, particularly soil charring and fuel consumption, and DeBano (1990) has described the general relationship between fire intensity and fire severity in chaparral. The terms “intensity” and “severity” are often used interchangeably in the chaparral literature. Chaparral wildfires typically occur during the dry seasons: summer (June - August) and fall (September - November). Summer fires may be started by lightning or by human activity. In southern California, virtually all fall fires are anthropogenic (both accidental and intentional), although historically they may have originated from smoldering of summer fires (Minnich 1987, 1989). During these seasons, soils are dry and fuel moisture is typically low (more so in fall). The combination of high daytime air temperatures and low relative humidity usually produce high fire intensity (Green 1981). Combustion of plant material is fairly complete, and upper soil layers can reach high temperatures (DeBano et al. 1979). The most intense fires tend to be fall fires started under conditions of hot, dry "Santa Ana" winds, and these fires produce the most severe fire effects in terms of soil heating and fuel and litter consumption. By late summer, most chaparral shrubs have completed annual growth and have low tissue water potentials (Oechel et al. 1981, Poole et al. 1981). Winter and spring burning conditions are quite different. Soil moisture may be high at the time of the fire. Particularly during spring, fuel moisture is fairly high and air temperature moderate, so fires generally burn with lower intensity. The effects of fire are less severe: soil heating will be minimized, and fuel consumption may not be complete. Chaparral shrubs typically begin growth after initial winter rains and are physiologically active at the time of the fire, which may affect regeneration potential (Radosevich and Conard 1980). Many species bloom in winter and spring as well (Mooney and Miller 1985). Chaparral species are well adapted to regenerate after fire. Keeley (1977) identified three major modes of postfire reproduction among chaparral shrubs: obligate seeders, in which mature plants are killed by fire and populations regenerate from seedlings that germinate the following winter or spring; sprouters, in which shrubs are top-killed by fire but resprout vigorously from underground storage organs, and seedlings are seldom found; and sprouter/seeders, in which both resprouts and seedlings are produced after fire. Reproductive modes among herbaceous plants include fire followers, which are annual and perennial herbaceous species that are abundant during the first year or two after fire and decline as shrub cover increases (Horton and Kraebel 1955, Sweeney 1956, Keeley and Keeley 1988), and opportunistic annuals, which appear most abundantly the second year after fire and are also Beyers, J.L. and Wakeman, C.D. -- 4 Table 2. Chaparral species with seeds that are stimulated to germinate by charate (leachate from charred wood) (Keeley 1991). Shrubs and Sub-shrubs Herbaceous Annuals and Perennials Adenostoma fasciculatum (chamise) Antirrhinum coulterianum (white snapdragon) Arctostaphylos spp. (manzanita) A. kelloggii (twining snapdragon) Artemisia californica (coastal sagebrush) Camissonia californica (false mustard) Fremontodendron californicum (flannel bush) Chaenactis artemisiaefolia (white pincushion) Garrya flavescens (silk tassel) Clarkia (several species) Rhus trilobata (squawbush) Cryptantha intermedia (popcorn flower) Romneya coulteri (matilija poppy) Emmenanthe penduliflora (whispering bells) Salvia mellifera (black sage) Gilia australis (southern gilia) Toxicodendron diversifolia (poison oak) Gnaphalium californicum (California everlasting) Papaver californicum (wind poppy) Phacelia (several species) Rafinesquia californica (chicory) Stephanomeria virgata (wand chicory) many others Beyers, J.L. and Wakeman, C.D. -- 5 found under canopy gaps between fires (Keeley et al. 1985, Keeley 1991). Plants in these functional groups may respond differently to changes in fire seasonality. Obligate seeders and fire followers -- species that regenerate after fire only from seed -- frequently have refractory seeds, which require either heat or leachate from charred wood (charate) to stimulate germination (Sampson 1944, Sweeney 1956, Keeley 1984, Keeley 1987, Keeley and Keeley 1987). Seeds remain dormant during the long period between fires. Although most species with refractory seeds produce some that are capable of germination without exposure to heat or charate, the most successful regeneration of these species occurs after fire (Keeley 1991). Environmental conditions during wet season and dry season burns will affect the two predominant groups of plants with refractory seeds
Recommended publications
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Conservation Issues: California Chaparral
    Author's personal copy Conservation Issues: California Chaparral RW Halsey, California Chaparral Institute, Escondido, CA, United States JE Keeley, U.S. Geological Survey, Three Rivers, CA, United States ã 2016 Elsevier Inc. All rights reserved. What Is Chaparral? 1 California Chaparral Biodiversity 1 Chaparral Community Types 1 Measuring Chaparral Biodiversity 4 Diversity Within Individual Plant Taxa 5 Faunal Diversity 5 Influence of Geology 7 Influence of Climate 7 Influence of Fire 8 Impact of Climate Change 10 Preserving Chaparral Biodiversity 10 References 10 What Is Chaparral? Chaparral is a diverse, sclerophyllous shrub-dominated plant community shaped by a Mediterranean-type climate (hot, dry summers and mild, wet winters), a complex mixture of relatively young soils (Specht and Moll, 1983), and large, infrequent, high-intensity fires (30–150 year fire return interval) (Keeley and Zedler, 2009; Keeley et al., 2004; Lombardo et al., 2009). Large expanses of dense chaparral vegetation cover coastal mesas, canyons, foothills, and mountain slopes throughout the California Floristic Province (Figure 1), southward into Baja California, and extending north into the Rogue River Valley of southwest Oregon. Disjunct patches of chaparral can also be found in central and southeastern Arizona and northern Mexico (Keeley, 2000). Along with the four other Mediterranean-type climate regions of the world with similar shrubland vegetation (Central Chile, Mediterranean Basin, South Africa, and southwestern Australia) (Table 1), California has been designated a biodiversity hot spot (Myers et al., 2000). Twenty-five designated locations in all, these hot spots have exceptional concentrations of endemic species that are undergoing exceptional loss of habitat (Myers et al., 2000; Rundel, 2004).
    [Show full text]
  • Woodlands of the Savanna Lands No
    Tropical Topics An interpretive newsletter for the tourism industry Woodlands of the savanna lands No. 71 December 2001 Conserving moisture Notes from the Life is tough for plants living in the seasonally dry tropics. Soils arepoorandforhalftheyearthelandisparchedandproneto Editor fireswhilefortheotherhalfitisinundatedwithwater.Only Millions of years ago, much of the plantswhichhavebeenabletoadapttothispunishingregime Australian continent was covered cangrowhere,havingdevelopedcertaincharacteristicsto with rainforest. However, as the makethispossible. climate changed and the continent became more arid, a new type of While trees in the rainforest tend to It seems that these vegetation evolved consisting of have spreading surface roots to make trees are simply using plants which adapted themselves the most of nutrients available on the different survival to the new harsh conditions – forest floor, those in savanna lands strategies. It is as if they notably eucalypts, acacias, generally have deep root systems, to make the choice between melaleucas, grevilleas and reach deep reserves of water. Some investing energy into producing a banksias. trees concentrate their resources in the strong, long-lasting product or early stages of growth on developing numerous poor-quality disposable These types of trees now occupy a deep and massive tap root. ones. Studies have shown that the much of the savanna lands. This ‘construction costs’ to a tree for Tropical Topics cannot, of course, Once obtained, water must be used production of deciduous leaves are describe them all but looks at economically. The thick bark on many lower than the costs of producing strategies for living in an tropical woodland trees, apart from evergreen leaves. inhospitable environment, giving protection from fire, can help to characteristics of the main groups conserve moisture.
    [Show full text]
  • Sierra Azul Wildflower Guide
    WILDFLOWER SURVEY 100 most common species 1 2/25/2020 COMMON WILDFLOWER GUIDE 2019 This common wildflower guide is for use during the annual wildflower survey at Sierra Azul Preserve. Featured are the 100 most common species seen during the wildflower surveys and only includes flowering species. Commonness is based on previous surveys during April for species seen every year and at most areas around Sierra Azul OSP. The guide is a simple color photograph guide with two selected features showcasing the species—usually flower and whole plant or leaf. The plants in this guide are listed by Color. Information provided includes the Latin name, common name, family, and Habit, CNPS Inventory of Rare and Endangered Plants rank or CAL-IPC invasive species rating. Latin names are current with the Jepson Manual: Vascular Plants of California, 2012. This guide was compiled by Cleopatra Tuday for Midpen. Images are used under creative commons licenses or used with permission from the photographer. All image rights belong to respective owners. Taking Good Photos for ID: How to use this guide: Take pictures of: Flower top and side; Leaves top and bottom; Stem or branches; Whole plant. llama squash Cucurbitus llamadensis LLAMADACEAE Latin name 4.2 Shrub Common name CNPS rare plant rank or native status Family name Typical bisexual flower stigma pistil style stamen anther Leaf placement filament petal (corolla) sepal (calyx) alternate opposite whorled pedicel receptacle Monocots radial symmetry Parts in 3’s, parallel veins Typical composite flower of the Liliy, orchid, iris, grass Asteraceae (sunflower) family 3 ray flowers disk flowers Dicots Parts in 4’s or 5’s, lattice veins 4 Sunflowers, primrose, pea, mustard, mint, violets phyllaries bilateral symmetry peduncle © 2017 Cleopatra Tuday 2 2/25/2020 BLUE/PURPLE ©2013 Jeb Bjerke ©2013 Keir Morse ©2014 Philip Bouchard ©2010 Scott Loarie Jim brush Ceanothus oliganthus Blue blossom Ceanothus thyrsiflorus RHAMNACEAE Shrub RHAMNACEAE Shrub ©2003 Barry Breckling © 2009 Keir Morse Many-stemmed gilia Gilia achilleifolia ssp.
    [Show full text]
  • The Chaparral Vegetation in Mexico Under Nonmediterranean Climate: the Convergence and Madrean-Tethyan Hypotheses Reconsidered1
    American Journal of Botany 85(10): 1398±1408. 1998. THE CHAPARRAL VEGETATION IN MEXICO UNDER NONMEDITERRANEAN CLIMATE: THE CONVERGENCE AND MADREAN-TETHYAN HYPOTHESES RECONSIDERED1 ALFONSO VALIENTE-BANUET,2,4 NOEÂ FLORES-HERNAÂ NDEZ,2 MIGUEL VERDUÂ ,3 AND PATRICIA DAÂ VILA3 2Instituto de EcologõÂa, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 70±275, UNAM, 04510 MeÂxico, D.F.; and 3UBIPRO, ENEP-Iztacala, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 314, MeÂxico, 54090, Tlalnepantla, MeÂxico A comparative study between an unburned evergreen sclerophyllous vegetation located in south-central Mexico under a wet-summer climate, with mediterranean regions was conducted in order to re-analyze vegetation and plant characters claimed to converge under mediterranean climates. The comparison considered ¯oristic composition, plant-community struc- ture, and plant characters as adaptations to mediterranean climates and analyzed them by means of a correspondence analysis, considering a tropical spiny shrubland as the external group. We made a species register of the number of species that resprouted after a ®re occurred in 1995 and a distribution map of the evergreen sclerophyllous vegetation in Mexico (mexical) under nonmediterranean climates. The TehuacaÂn mexical does not differ from the evergreen sclerophyllous areas of Chile, California, Australia, and the Mediterranean Basin, according to a correspondence analysis, which ordinated the TehuacaÂn mexical closer to the mediter- ranean areas than to the external group. All the vegetation and ¯oristic characteristics of the mexical, as well as its distribution along the rain-shadowed mountain parts of Mexico, support its origin in the Madrean-Tethyan hypothesis of Axelrod. Therefore, these results allow to expand the convergence paradigm of the chaparral under an integrative view, in which a general trend to aridity might explain ¯oristic and adaptive patterns detected in these environments.
    [Show full text]
  • The Three Mediterranean Climates
    Middle States Geographer, 2005, 38:52-60 THREE CONFLATED DEFINITIONS OF MEDITERRANEAN CLIMATES Mark A. Blumler Department of Geography SUNY Binghamton Binghamton, NY 13902-6000 ABSTRACT: "Mediterranean climate" has in effect three different definitions: 1) climate of the Mediterranean Sea and bordering land areas; 2) climate that favors broad-leaved, evergreen, sclerophyllous shrubs and trees; 3) winter-wet, summer-dry climate. These three definitions frequently are conflated, giving rise to considerable confusion and misstatement in the literature on biomes, vegetation-environment relationships, and climate change. Portions of the Mediterranean region do not have winter-wet, summer-dry climate, while parts that do, may not have evergreen sclerophylls. Places away from the Mediterranean Sea, such as the Zagros foothills, have more mediterranean climate than anywhere around the Sea under the third definition. Broad-leaved evergreen sclerophylls dominate some regions with non-mediterranean climates, typically with summer precipitation maximum as well as winter rain, and short droughts in spring and fall. Thus, such plants may be said to characteristize subtropical semi-arid regions. On the other hand, where summer drought is most severe, i.e., the most mediterranean climate under definition 3, broad-leaved evergreen sclerophylls are rare to absent. Rather than correlating with sclerophyll dominance, regions of extreme winter-wet, summer-dry climate characteristically support a predominance of annuals, the life form best adapted to seasonal rainfall regimes. Given the importance of useful forecasting of vegetation and climate change under greenhouse warming, it is imperative that biome maps begin to reflect the complexities of vegetation-climate relationships. INTRODUCTION literature also is replete with inaccurate statements about mediterranean regions.
    [Show full text]
  • Study of Plants Used Against Infections by California Native
    STUDY OF PLANTS USED AGAINST INFECTIONS BY CALIFORNIA NATIVE AMERICAN TRIBES A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Biological Sciences by Maria Rojas December 2020 © 2020 Maria Jose Rojas Soto ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Study of Plants Used Against Infections by California Native American Tribes AUTHOR: Maria Jose Rojas Soto DATE SUBMITTED: December 2020 COMMITTEE CHAIR: Alejandra Yep, Ph.D. Associate Professor Biological Sciences Department COMMITTEE MEMBER: Jenn Yost, Ph.D. Associate Professor Biological Sciences Department COMMITTEE MEMBER: Jennifer Carroll, Ph.D. Professor Chemistry & Biochemistry Department iii ABSTRACT Study of Plants Used Against Infections by California Native American Tribes Maria Jose Rojas Soto The objectives of this research were to evaluate the antibacterial activity and to determine the chemical composition of a list of medicinal plants used by Native Americans in California. Artemisia californica, Mimulus aurantiacus, Equisetum telmateia, Equisetum hyemale, and Marah fabacea were selected from a list of plants reported as having been used for ailments related to infections by tribes located in California. The extracts obtained through steam distillation from E. telmateia, E. hyemale and M. fabacea were assayed for in vitro antibacterial activity against 16 Gram-negative and 6 Gram-positive bacteria using disk diffusion assays and measuring the diameters of inhibition zones. E. telmateia showed the most promising antibacterial activity. The extracts from A. californica, M. aurantiacus and E. telmateia were analyZed for chemical composition, finding eucalyptol, thujone, eugenol, caryophyllene, germacrene D, and propanal as some of the secondary metabolites identified using GC-MS.
    [Show full text]
  • A Multi-Scale, Multi- Proxy Assessment of the Resilience of Cool Temperate Rainforest to Fire in Victoria’S Central Highlands
    18 Fire on the mountain: A multi-scale, multi- proxy assessment of the resilience of cool temperate rainforest to fire in Victoria’s Central Highlands Patrick J. Baker School of Biological Sciences, Monash University, Clayton, Victoria [email protected] Rohan Simkin Monash University, Clayton, Victoria Nina Pappas Monash University, Clayton, Victoria Alex McLeod Monash University, Clayton, Victoria Merna McKenzie Monash University, Clayton, Victoria Introduction A common feature of many Australian landscapes is the interdigitation of eucalypt- dominated sclerophyll forest with rainforest. In most instances, the eucalypt forests dominate the landscape, with rainforest restricted to relatively small fragments and strips that are often (but not always) associated with topographic features such as riparian zones or southeastern- facing slopes. However, these patterns reflect the current state of a dynamic system. Over several terra australis 34 376 Patrick J. Baker et al. hundreds of thousands of years, the relative dominance of the rainforests and eucalypt forests has waxed and waned across these landscapes in near synchrony (Kershaw et al. 2002; Sniderman et al. 2009). During periods of relatively warm, dry conditions, the eucalypt- dominated vegetation has expanded and the rainforest contracted across the landscape. When the climate has been relatively cool and moist, the rainforests have expanded and the eucalypt forest contracted. This is, in part, thought to be a direct consequence of the ambient environmental conditions and their impact on regeneration success. However, the indirect influence of climate, in particular as a driver of fire regimes, may be as important, if not more important, in defining the structure, composition and relative abundance of rainforest and eucalypt taxa at the landscape scale.
    [Show full text]
  • Appendix E - Plants and Wildlife
    Appendix E - Plants and Wildlife Blue Ridge NWR Plant Lists Table E-15. Blue Ridge NWR – Plants Scientific Name Common Name Family Abies concolor white fir Pinaceae Adenostoma fasciculatum chamise Rosaceae Amsinckia sp. fiddleneck Boraginaceae Arctostaphylos patula greenleaf manzanita Ericaceae Arctostaphylos viscida viscid manzanita Ericaceae Asclepias californica California milkweed Apocynaceae Asclepias fascicularis narrow-leaf milkweed Apocynaceae Bromus diandrus ripgut grass Poaceae Bromus hordeaceus soft chess Poaceae Bromus madritensis subsp. rubens red brome Poaceae Calocedrus decurrens California incense-cedar Cupressaceae Ceanothus leucodermis chaparral whitethorn Rhamnaceae Cercocarpus betuloides birch-leaved cercocarpus Rosaceae Chamaebatia foliolosa mountain misery Rosaceae Chlorogalum pomeridianum wavy-leaved soap-plant Agavaceae Cirsium sp. thistle Asteraceae Clarkia sp. clarkia Onagraceae Cynosurus echinatus bristly dogtail grass Poaceae Dendromecon rigida bush poppy Papaveraceae Dudleya sp. dudleya Crassulaceae Boraginaceae Eriodictyon californicum California yerba santa [Hydrophyllaceae] Eriogonum sp. wild buckwheat Polygonaceae Frangula californica subsp. cuspidata California coffee-berry Rhamnaceae Juncus sp. rush Juncaceae Lonicera sp. honeysuckle Caprifoliaceae Marah fabacea California man-root Cucurbitaceae Phrymaceae Mimulus viscidus viscid monkeyflower [Scrophulariaceae] Orobanche sp. broomrape Orobanchaceae Pinus lambertiana sugar pine Pinaceae Pinus ponderosa ponderosa pine Pinaceae Populus fremontii Fremont’s
    [Show full text]
  • Classification and Description of World Formation Types
    United States Department of Agriculture Classification and Description of World Formation Types Don Faber-Langendoen, Todd Keeler-Wolf, Del Meidinger, Carmen Josse, Alan Weakley, David Tart, Gonzalo Navarro, Bruce Hoagland, Serguei Ponomarenko, Gene Fults, Eileen Helmer Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-346 August 2016 Faber-Langendoen, D.; Keeler-Wolf, T.; Meidinger, D.; Josse, C.; Weakley, A.; Tart, D.; Navarro, G.; Hoagland, B.; Ponomarenko, S.; Fults, G.; Helmer, E. 2016. Classification and description of world formation types. Gen. Tech. Rep. RMRS-GTR-346. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 222 p. Abstract An ecological vegetation classification approach has been developed in which a combi- nation of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types. This approach can help support international, national, and subnational classifica- tion efforts. The classification structure was largely developed by the Hierarchy Revisions Working Group (HRWG), which contained members from across the Americas. The HRWG was authorized by the U.S. Federal Geographic Data Committee (FGDC) to devel- op a revised global vegetation classification to replace the earlier versions of the structure that guided the U.S. National Vegetation Classification and International Vegetation Classification, which formerly relied on the UNESCO (1973) global classification (see FGDC 1997; Grossman and others 1998). This document summarizes the develop- ment of the upper formation levels. We first describe the history of the Hierarchy Revisions Working Group and discuss the three main parameters that guide the clas- sification—it focuses on vegetated parts of the globe, on existing vegetation, and includes (but distinguishes) both cultural and natural vegetation for which parallel hierarchies are provided.
    [Show full text]
  • Eucalypt Open Forest
    NVIS Fact sheet MVG 3 – Eucalypt open forest Australia’s native vegetation is a rich and fundamental Overview element of our natural heritage. It binds and nourishes our ancient soils; shelters and sustains wildlife, protects Typically, vegetation areas classified under streams, wetlands, estuaries, and coastlines; and absorbs MVG 3 – Eucalypt open forest: carbon dioxide while emitting oxygen. The National • correspond well with ‘dry sclerophyll forests’, but may Vegetation Information System (NVIS) has been developed include some wet sclerophyll forests (mostly classified and maintained by all Australian governments to provide within MVG 2) that do not exceed 30 m in height a national picture that captures and explains the broad • are distributed widely in monsoonal, tropical, diversity of our native vegetation. subtropical and temperate latitudes on soils of low to This is part of a series of fact sheets which the Australian moderate fertility Government developed based on NVIS Version 4.2 data to • dominant trees vary from 10 to 30 m tall and with provide detailed descriptions of the major vegetation groups crown cover 50 – 80 per cent (foliage projective cover of (MVGs) and other MVG types. The series is comprised of 30 – 70 per cent) depending on soil characteristics, local a fact sheet for each of the 25 MVGs to inform their use by moisture and rainfall planners and policy makers. An additional eight MVGs are • are dominated by a variety of eucalypts from the available outlining other MVG types. genera Corymbia, Angophora and Eucalyptus subgenus Eucalyptus, occasionally with Eucalyptus species from For more information on these fact sheets, including other subgenera, notably Symphyomyrtus its limitations and caveats related to its use, please see: ‘Introduction to the Major Vegetation Group • comprise understoreys typically dominated by shrubs, (MVG) fact sheets’.
    [Show full text]