1587.Full-Text.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

1587.Full-Text.Pdf Published OnlineFirst February 23, 2010; DOI: 10.1158/1078-0432.CCR-09-3108 Clinical Imaging, Diagnosis, Prognosis Cancer Research Development of Immunohistochemistry Assays to Assess GALNT14 and FUT3/6 in Clinical Trials of Dulanermin and Drozitumab Howard M. Stern1, Mary Padilla4, Klaus Wagner2,5, Lukas Amler2, and Avi Ashkenazi3 Abstract Purpose: In vitro sensitivity to the proapoptotic receptor agonists dulanermin (rhApo2L/TRAIL) and drozitumab (DR5-agonist antibody) is strongly predicted by the expression of the O-glycosylation en- zymes GALNT14 in non–small cell lung cancer (NSCLC) cell lines (among others) and of FUT3/6 in colorectal cancer (CRC) cell lines. We developed immunohistochemistry (IHC) assays that measure GALNT14 and FUT3/6 levels in archival formalin-fixed, paraffin-embedded human tumor tissue to de- termine marker prevalence in NSCLC and CRC tissue and to enable the future examination of these markers in clinical trials. Experimental Design: GALNT14 or FUT3/6 ELISA-positive hybridoma clones were screened through IHC on cell pellets with known mRNA levels. The specificity of staining was examined in cell lines, normal tissue, and tumor tissue. Results: GALNT14 and FUT3/6 IHC exhibited a golgi staining pattern and correlated with GALNT14 and FUT3/6 (but not GALNT2 and FUT4) mRNA expression levels in cell lines and normal tissues, suggesting specificity. GALNT14 and FUT3/6 H-scores were significantly higher in cell lines sensitive to dulanermin (P = 0.01 and P = 0.0004, respectively) and drozitumab (P = 0.03 and P < 0.0001, respec- tively) versus resistant cell lines. GALNT14 and FUT3/6 H-scores varied widely, with ∼45% of NSCLC samples exhibiting weak to moderate GALNT14 staining (H-score of at least 25) and 70% of CRC samples exhibiting moderate to strong FUT3/6 staining (H-score of at least 125). Conclusions: GALNT14 and FUT3/6 expression can be assessed in human tumors using sensitive and specific IHC assays. Both assays are being deployed in ongoing clinical trials of dulanermin and drozitumab to assess potential utility for patient selection. Clin Cancer Res; 16(5); 1587–96. ©2010 AACR. Developing oncology drugs that have significant effect drugs with patients who have a high probability of clinical for patients has proven to be challenging for many rea- benefit. Accomplishing this task during drug development sons. One contributing factor is the diversity, at the molec- involves early efforts to identify potential biomarkers in ular level, of tumors that are classified similarly on the preclinical models and the development of appropriately basis of histology. As a consequence, most oncology che- validated diagnostic assays that can test these biomarkers motherapeutics do not impart a clinically meaningful ben- in early-stage clinical trials. efit in all treated patients. One strategy for addressing this Agents that target apoptosis are currently the subject deficit is the identification of molecular correlates of re- of intense investigation and stand to benefit from the sponse (or resistance) to specific therapies to better match development of diagnostic biomarkers. Most cells with cancer-initiating potential are eliminated from the body Authors' Affiliations: Departments of 1Research Pathology, by apoptosis, but some cells harbor mutations that enable 2Development Oncology Diagnostics, and 3Molecular Oncology, them to escape apoptosis, resulting in cell survival and the Genentech, Inc., South San Francisco, California; 4Ventana Medical Systems, Inc., Tucson, Arizona; and 5M.D. Anderson Cancer Center, development of malignant tumors (2, 3). As our under- Houston, Texas standing of the molecular basis of apoptosis has increased, Note: Supplementary data for this article are available at Clinical Cancer so too has research in the development of proapoptotic Research Online (http://clincancerres.aacrjournals.org/). agents that tip the balance toward tumor cell death. The Corresponding Authors: Howard M. Stern, Department of Research Pa- complex signaling cascade that leads to apoptosis is initi- thology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080. ated either intracellularly through the intrinsic pathway or Phone: 650-467-8194; Fax: 650-225-8989; E-mail: [email protected] and Avi Ashkenazi, Department of Molecular Oncology, Genentech, as a result of extracellular signals that trigger the extrinsic Inc.,1DNAWay,SouthSanFrancisco,CA94080.Phone:650-225- pathway (2, 3). Manipulation of the extrinsic pathway has 1853; Fax: 650-467-8195; E-mail: [email protected]. been a major focus of drug discovery. Stimulation of this doi: 10.1158/1078-0432.CCR-09-3108 pathway begins with the binding of a proapoptotic ligand ©2010 American Association for Cancer Research. such as apoptosis ligand 2/tumor necrosis factor–related www.aacrjournals.org 1587 Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2010 American Association for Cancer Research. Published OnlineFirst February 23, 2010; DOI: 10.1158/1078-0432.CCR-09-3108 Stern et al. cancer, non–small cell lung cancer (NSCLC), and melano- Translational Relevance ma cell lines, with up to 30% of tissue samples from a va- riety of human cancers having relative GALNT14 mRNA The use of predictive diagnostic biomarkers to expression at levels comparable with those seen in dula- identify patients who may best respond to a particular nermin-sensitive cell lines (1). In CRC cell lines, GALNT3 type of cancer treatment is emerging as a crucial para- rather than GALNT14 mRNA levels were correlated with digm in the development of novel cancer therapies. sensitivity (P = 0.026), as were levels of FUT3 and FUT6 Previous work (1) reported the identification of the mRNA. In fact, high FUT3 and FUT6 levels were better pre- O-glycosylation enzymes GALNT14 and FUT3/6 as po- dictors of sensitivity than was GALNT3 (P = 0.01 for FUT3 tential diagnostic biomarkers for predicting response and P =0.0013forFUT6).Notably,FUT3andFUT6 to proapoptotic death receptor agonists. We have de- mRNA expression levels were highly correlated with each veloped and validated immunohistochemistry assays other in these cell lines, suggesting that regulation of to detect GALNT14 and FUT3/6 in human tissue and expression of these genes is coordinated. Overall, the high – describe the prevelance of expression in non small cell expression of GALNT14, GALNT3, FUT3, and FUT6 could lung cancer and colorectal cancer. These assays will en- predict responsiveness to dulanermin in 61% of cell lines able the examination of GALNT14 and FUT3/6 in clin- (positive predictive value) and a lack of sensitivity in 88% ical trials of proapoptotic death receptor agonists. of cell lines (negative predictive value; ref. 1). Wagner et al. (1) also showed a functional link between death receptor O-glycosylation and apoptotic signaling. Both pharmacologic inhibition of glycosylation and apoptosis-inducing ligand to proapoptotic “death re- enzyme knockdown through small interfering RNAs ceptors” such as DR4 and DR5. Ligand-binding facilitates targeting GALNT14-, GALNT3-, and FUT6 reduced receptor clustering and the formation of a death-inducing dulanermin-induced apoptosis. Furthermore, GALNT14 signaling complex through the recruitment of the Fas- overexpression in pancreatic cancer cells substantially in- associated death domain adaptor protein. Fas-associated creased death-inducing signaling complex formation and death domain helps activate the downstream initiator caspase-8 and caspase-3 processing, whereas the prog- and effector caspases, which mediate apoptotic cell ressive mutation of DR5 at sites of O-glycosylation death (4–8). weakened apoptotic signaling. In addition, GALNT14 Several agents that trigger the extrinsic apoptosis knockdown in pancreatic cancer cells and FUT6 knock- pathway through the activation of the proapoptotic death down in colon cancer cells reduced caspase-8 processing, receptors are currently in development (2, 3). These “pro- but did not appreciably alter DR4 or DR5 levels (1), apoptotic receptor agonists” include the recombinant supporting the conclusion that the glycosylation status of human apoptosis ligand 2 tumor necrosis factor–related DR4/5 can affect apoptotic signaling independent apoptosis-inducing ligand (dulanermin), which targets from DR4/5 levels. Biochemical analysis further revealed both DR4 and DR5 (2, 3, 9–11), and monoclonal anti- that O-glycosylation facilitates ligand-induced clustering bodies that activate either DR4 (mapatumumab) or DR5 of DR4 and DR5, an event required for the efficient recruit- (drozitumab, lexatumumab, conatumumab, tigatuzumab, ment and activation of caspase-8 (1). and LBY-135; refs. 2, 3, 12–15). Preclinical studies using More recently, this body of work has been expanded certain cell lines and in vivo xenograft models have shown to the examination of sensitivity to the DR5-agonist anti- promising results with these agents in a wide range of body, drozitumab. As observed for dulanermin, drozitu- tumor types, both alone and in combination with tradi- mab sensitivity correlates with the expression of GALNT3, tional chemotherapies and molecularly targeted agents GALNT14, and FUT3/6 expression in several tumor cell (2, 16). However, in keeping with most oncology drugs, types (19). In pancreatic cancer and NSCLC cell lines, proapoptotic receptor agonists are not universally effective statistically significant correlations were observed between in all tumor cell lines, resulting in efforts to identify mo- GALNT14 levels and drozitumab
Recommended publications
  • Molecular Imaging of Death Receptor 5 Occupancy and Saturation Kinetics in Vivo by Humanized Monoclonal Antibody CS-1008
    Published OnlineFirst September 17, 2013; DOI: 10.1158/1078-0432.CCR-12-3104 Clinical Cancer Imaging, Diagnosis, Prognosis Research Molecular Imaging of Death Receptor 5 Occupancy and Saturation Kinetics In Vivo by Humanized Monoclonal Antibody CS-1008 Ingrid J.G. Burvenich1, Fook T. Lee1, Glenn A. Cartwright1, Graeme J. O'Keefe3, Dahna Makris1, Diana Cao1, Sylvia Gong3, Anderly C. Chueh2, John M. Mariadason2, Martin W. Brechbiel4, Robert A. Beckman5, Kosaku Fujiwara6, Reinhard von Roemeling5, and Andrew M. Scott1,3 Abstract Purpose: CS-1008 (tigatuzumab; phase I/II), an antihuman death receptor 5 (DR5) agonist, induces apoptosis and has cytotoxic activity against human cancer cell lines. This study reports on the preclinical validation of 111In-labeled anti-DR5 humanized antibody CS-1008 as a diagnostic tool to study the DR5 occupancy in patients with cancer and establish dose ranges for receptor saturation kinetics in vivo. Experimental Design: CS-1008 was radiolabeled and characterized for DR5 binding and labeling efficiency on TRAIL-sensitive DR5–positive colorectal cancer cells (COLO 205 and WiDr). Pharmacokinetic and biodistribution studies were conducted in BALB/c nu/nu mice bearing COLO 205, WiDr, or DR5- negative CT26 colon tumors. Planar gamma camera imaging and computerized tomography (CT) images were obtained to study receptor occupancy in vivo. 111 Results: Scatchard analysis showed high and specific binding affinity (Kd, 1.05 Æ 0.12 nmol/L) of In- labeled CS-1008. 111In-labeled CS-1008 was specifically taken up in mice bearing COLO 205 and WiDr tumors with prolonged tumor retention (26.25 Æ 2.85%ID/g vs.
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Activating Death Receptor DR5 As a Therapeutic Strategy for Rhabdomyosarcoma
    International Scholarly Research Network ISRN Oncology Volume 2012, Article ID 395952, 10 pages doi:10.5402/2012/395952 Review Article Activating Death Receptor DR5 as a Therapeutic Strategy for Rhabdomyosarcoma Zhigang Kang,1, 2 Shi-Yong Sun,3 and Liang Cao1 1 Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 2 Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702, USA 3 Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Correspondence should be addressed to Liang Cao, [email protected] Received 4 January 2012; Accepted 24 January 2012 Academic Editors: E. Boven and S. Mandruzzato Copyright © 2012 Zhigang Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. It is believed to arise from skeletal muscle progenitors, preserving the expression of genes critical for embryonic myogenic development such as MYOD1 and myogenin. RMS is classified as embryonal, which is more common in younger children, or alveolar, which is more prevalent in elder children and adults. Despite aggressive management including surgery, radiation, and chemotherapy, the outcome for children with metastatic RMS is dismal, and the prognosis has remained unchanged for decades. Apoptosis is a highly regulated process critical for embryonic development and tissue and organ homeostasis. Like other types of cancers, RMS develops by evading intrinsic apoptosis via mutations in the p53 tumor suppressor gene.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
    United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Pancreatic Cancer Stem Cells in Patient Pancreatic Xenografts Are Sensitive to Drozitumab, an Agonistic Antibody Against DR5 Jason W.-L
    Eng et al. Journal for ImmunoTherapy of Cancer (2016) 4:33 J Immunother Cancer: first published as 10.1186/s40425-016-0136-y on 21 June 2016. Downloaded from DOI 10.1186/s40425-016-0136-y RESEARCHARTICLE Open Access Pancreatic cancer stem cells in patient pancreatic xenografts are sensitive to drozitumab, an agonistic antibody against DR5 Jason W.-L. Eng1†, Thomas A. Mace1,2†, Rohit Sharma3,4, Danielle Y. F. Twum1, Peng Peng1, John F. Gibbs3,5, Rosemarie Pitoniak1, Chelsey B. Reed1, Scott I. Abrams1, Elizabeth A. Repasky1 and Bonnie L. Hylander1* Abstract Background: Therapeutic resistance and tumor recurrence are two major hurdles in the treatment of pancreatic ductal adenocarcinoma. Recent findings suggest that both of these attributes are associated with a small subset of pancreatic tumor initiating cancer stem cells (CSCs). Here, we demonstrate that drozitumab, a human agonistic monoclonal antibody which binds the death receptor DR5, selectively eliminates CSCs, resulting in tumor growth inhibition and even regression of pancreatic tumors. Methods: To examine the efficacy of drozitumab against pancreatic CSCs, we treated patient-derived pancreatic tumor xenografts (PDX) in immunocompromised SCID mice and evaluated tumor control. To assess apoptosis following drozitumab treatment, we identified the CSCs as CD24+, CD44+, and EpCAM+ by FACS analysis, and measured in vivo and in vitro levels of cleaved caspase-3. Lastly, in vitro evaluation of DR5 re-expression was performed using isolated patient pancreatic cancer xenograft cells along with the cell line, Panc-1. After treatment with drozitumab, the remaining DR5- cells were assessed by FACS analysis for DR5 expression at the cell surface at 8, 24 and 48 h post-treatment.
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • NSCLC Therapeutics in Asia-Pacific Markets to 2019 Personalized Therapies Focus on Untapped Segment of Squamous Cell Carcinoma to Expand Treatment Pool
    NSCLC Therapeutics in Asia-Pacific Markets to 2019 Personalized Therapies Focus on Untapped Segment of Squamous Cell Carcinoma to Expand Treatment Pool GBI Research Report Guidance GBI Research Report Guidance Chapter two provides an overview of the disease, its symptoms, etiology, pathophysiology, diagnosis, classification, epidemiology, prognosis, staging and treatment options. Chapter three provides a detailed profiling and comparative heat map analysis in terms of safety and efficacy for currently marketed products in the NSCLC market. Chapter four presents a detailed pipeline analysis for the disease, including individual product profiles, a comparative efficacy and safety profile heat map analysis of the most promising pipeline products as well as analyses on the distribution of molecule types across the NSCLC developmental pipeline, the molecular targets of pipeline mAbs and the developmental program types. In addition, detailed analyses of the clinical trial failure rates, the clinical trial durations by phase and clinical trial sizes, by participant numbers. Chapter five provides market forecasts for countries across the globe, with special attention given to the APAC countries: India, Australia, China and Japan. The multiple scenario forecasts take into account a range of factors that are likely to vary and provide a clear perspective on the level of the potential degree of variance in the market sizes. Chapter six covers the major deals that have taken place in the disease market in recent years. Coverage includes co-development deals and licensing agreements, which are segmented on the basis of geography and total value. A concomitant analysis of the licensing deal values for products by molecule types and molecular targets is also provided.
    [Show full text]
  • WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A01N 43/00 (2006.01) A61K 31/33 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US2016/028383 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 20 April 2016 (20.04.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/154,426 29 April 2015 (29.04.2015) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: KARDIATONOS, INC. [US/US]; 4909 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Lapeer Road, Metamora, Michigan 48455 (US).
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    INN Working Document 05.179 Update 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Ep 3321281 A1
    (19) TZZ¥¥ _ __T (11) EP 3 321 281 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 16.05.2018 Bulletin 2018/20 C07K 14/79 (2006.01) A61K 38/40 (2006.01) A61K 38/00 (2006.01) A61K 38/17 (2006.01) (2006.01) (2006.01) (21) Application number: 17192980.5 A61K 39/395 A61K 39/44 C07K 16/18 (2006.01) (22) Date of filing: 03.08.2012 (84) Designated Contracting States: • TIAN, Mei Mei AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Coquitlam, BC V3J 7E6 (CA) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • VITALIS, Timothy PL PT RO RS SE SI SK SM TR Vancouver, BC V6Z 2N1 (CA) (30) Priority: 05.08.2011 US 201161515792 P (74) Representative: Gowshall, Jonathan Vallance Forresters IP LLP (62) Document number(s) of the earlier application(s) in Skygarden accordance with Art. 76 EPC: Erika-Mann-Strasse 11 12746240.6 / 2 739 649 80636 München (DE) (71) Applicant: biOasis Technologies Inc Remarks: Richmond BC V6X 2W8 (CA) •This application was filed on 25.09.2017 as a divisional application to the application mentioned (72) Inventors: under INID code 62. • JEFFERIES, Wilfred •Claims filed after the date of receipt of the divisional South Surrey, BC V4A 2V5 (CA) application (Rule 68(4) EPC). (54) P97 FRAGMENTS WITH TRANSFER ACTIVITY (57) The present invention is related to fragments of duction of the melanotransferrin fragment conjugated to human melanotransferrin (p97). In particular, this inven- a therapeutic or diagnostic agent to a subject.
    [Show full text]
  • Focus on Approved and In-Clinical-Trial Monoclonal Antibodies
    Journal name: Drug Design, Development and Therapy Article Designation: Review Year: 2017 Volume: 11 Drug Design, Development and Therapy Dovepress Running head verso: Françoso and Simioni Running head recto: Monoclonal antibodies to colorectal tumors open access to scientific and medical research DOI: http://dx.doi.org/10.2147/DDDT.S119036 Open Access Full Text Article REVIEW Immunotherapy for the treatment of colorectal tumors: focus on approved and in-clinical-trial monoclonal antibodies Alex Françoso1 Abstract: Colorectal cancer is considered a disease of the elderly population. Since the number Patricia Ucelli Simioni1–3 of geriatric patients continues to rise, monoclonal antibody therapy is the most promising therapy in the recent research. Presently, the monoclonal antibodies most frequently used in the 1Department of Biomedical Science, Faculty of Americana, Americana, treatment of colorectal tumors are bevacizumab, cetuximab, panitumumab, and ramucirumab. 2Department of Genetics, Evolution Bevacizumab is a monoclonal antibody that acts on VEGF. Cetuximab and panitumumab act and Bioagents, Institute of Biology, University of Campinas, Campinas, on EGFR. Ramucirumab binds directly to the ligand-binding pocket of VEGFR-2 to block 3Department of Biochemistry and the binding of VEGF-A, VEGF-C, and VEGF-D. These monoclonal antibodies, alone or in Microbiology, Institute of Biosciences, association with radiotherapy or chemotherapy, are presenting good results and are increasing Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil patient survival, despite the side effects. Due to the limited number of molecules available, For personal use only. several studies are trying to develop new monoclonal antibodies for the treatment of colorec- tal tumors. Among those being studied, some recent molecules are in phase I and/or II trials and are yielding advantageous results, such as anti-DR5, anti-Fn14, anti-IGF-1R, anti-EGFR, anti-NRP1, and anti-A33 antibodies.
    [Show full text]