Pfister Numbers Over Rigid Fields, Under Field

Total Page:16

File Type:pdf, Size:1020Kb

Pfister Numbers Over Rigid Fields, Under Field Pfister Numbers over Rigid Fields, under Field Extensions and Related Concepts over Formally Real Fields Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) Der Fakult¨at fur¨ Mathematik der Technischen Universit¨at Dortmund vorgelegt von Nico Lorenz im Juni 2020 Dissertation Pfister Numbers over Rigid Fields, under Field Extensions and Related Concepts over Formally Real Fields Fakult¨atf¨urMathematik Technische Universit¨atDortmund Erstgutachter: Prof. Dr. Detlev Hoffmann Zweitgutachter: Prof. Thomas Unger, Ph.D. Tag der m¨undlichen Pr¨ufung:01.09.2020 Contents 1. Preface1 2. Important Results in the Theory of Quadratic Forms3 2.1. Basic Notation and General Facts......................3 2.2. Pfister Forms and Function Fields......................5 2.3. The Fundamental Ideal and Related Objects...............9 2.4. Quadratic Forms over Complete Discrete Valuation Fields....... 11 2.5. Field Extensions................................ 15 3. Structural Results for the Powers of IF 20 3.1. Known Pfister Numbers............................ 20 3.2. Auxiliary Results for Forms in InF ..................... 25 3.3. Upper Bounds for Forms with Good Subforms.............. 28 3.4. Pfister Numbers of Complete Discrete Valuation Fields......... 31 3.5. Forms in InF of Dimension 2n + 2n−1 .................... 34 3.A. Appendix: Another approach to forms of dimension 2n + 2n−1 in In .. 37 4. Rigid Fields 39 4.1. Introduction to the Theory of Rigid Fields................ 39 4.2. 14-dimensional I3-forms and 8-dimensional I2-forms.......... 47 4.3. 16-dimensional I3-forms............................ 49 4.4. Forms in InF of Dimension 2n + 2n−1 .................... 56 4.5. Asymptotic Pfister Numbers......................... 60 4.6. Symbol Length in InF ~In+1F ........................ 64 5. Pfister Numbers under Field Extensions 67 5.1. General Facts and Reduction Techniques................. 67 5.2. Quadratic Extensions............................. 69 5.3. Odd Degree Extensions............................ 72 5.4. Transcendental Extensions.......................... 73 6. Supreme Torsion Forms 79 6.1. Introduction................................... 79 6.2. 2-real-maximality................................ 83 6.3. Construction of Examples........................... 88 6.4. Correlations with Invariants......................... 92 7. Signature Ideals 94 7.1. Compatibility with In and X-decomposition............... 94 7.2. Transfer of Known Results.......................... 104 7.3. Counterexamples................................ 110 A. Foundations of Related Areas 113 A.1. Extensions of Valuations........................... 113 A.2. Orderings of Fields............................... 116 Bibliography 121 1. Preface It seems that any deeper investigation of the algebraic theory of quadratic forms requires a thorough knowledge of the theory of Pfister forms. W. Scharlau, Quadratic and Hermitian Forms, page 142. The above quotation pretty much sums up the main motivation for the upcoming thesis in just one sentence. The main goal for an algebraist working in the theory of quadratic forms is to understand the Witt ring of a field. This seems to be a really tough task, since even nowadays, approximately 90 years after the invention of the Witt ring, there are a lot of people researching in the beautiful area of quadratic forms to solve many different interesting problems concerning the Witt ring. As it seems to be pretty hard to study that Witt ring of a field in all its completeness, many researchers started to investigate the filtration of the Witt ring given by the ideals InF that are generated by the so-called Pfister forms. To understand the complexity of these ideals, a common way is to take a form ' lying in this ideal and to look for the minimal number of Pfister forms that are actually needed to represent the Witt class of '. This minimal number is called the Pfister number of ' and the main object in this thesis. For n ∈ {1; 2}, the problem to determine Pfister numbers is completely solved. For n = 3, we only have results for forms of small dimension. For forms of dimension 16 in I3F and higher, only some few partial results are known and even these require some heavy tools from related areas such as algebraic geometry, algebraic groups or even category theory. For n ≥ 4, only a few very special cases can be handled so far. It is thus convenient to first consider some easy cases rather than trying to solve the problem in all its generality. This is where this thesis starts. We will consider fields that are easy enough to develop special calculation techniques so that we can determine Pfister numbers of forms over such fields. Based on this research, some related problems occurred that are also approached. We now would like to give a quick overview of the thesis. The upcoming chapter is used to fix notation and recapturing standard results from the algebraic theory of quadratic forms that will be essential in the sequel. In the third chapter, we give a short introduction to the current state of research concerning the main problem and give some first further results that are obtained by adapting known techniques. Chapter 4 is completely devoted to so-called rigid fields. When restricting to this interesting class of fields, we are able to exactly determine the Pfister numbers for low-dimensional forms lying in an arbitrary high power of the fundamental ideal. We further provide upper bounds for the Pfister number for any form of higher dimension. 1 We change our point of view to ask a modified question in the next chapter. Given a field extension E~F and some form in InE, what can we say about its Pfister number if we presume knowing the behaviour of Pfister numbers over F ? In fact, for several important types of field extensions, including quadratic extensions, we can express the Pfister numbers over the bigger field in terms of Pfister numbers over the base field. The starting point for Chapter 6 is Karim Becher's article [Bec04]. Here, he used so called supreme Pfister forms to bound invariants that are related to Pfister numbers. Also with the upcoming chapter in mind, we adapted this concept to formally real fields. Even though we cannot deduce some further facts on the Pfister numbers itself, the developed theory leads to some examples of fields with interesting properties that reoccur in the last chapter. In Chapter 7, we extend the usual question to real fields while considering signature ideals and further generalizations of the fundamental ideal. To do so, we restrict ourselves to Pfister forms that are compatible with a given set of orderings. We try to generalize known results and provide examples in those cases where the results cannot be transferred to our new setting. Finally, in the appendix, we provide some important results from related theories that we use as tools in the main text. Primarily, these are results that are easy but technical consequences of well-known theorems that are rather non-standard. I would like to express my gratitude to my advisor Prof. Dr. Detlev Hoffmann for creating a pleasant working atmosphere and giving helpful advice whenever needed. Further I would like to thank my colleagues, especially Marco Sobiech, for helpful dialogues, both mathematically and non-mathematically. In addition I would like to thank Prof. Dr. Karim Becher for his interest in my work and inspiring discussions. Finally, I would like to thank my friends and my family and particularly my wife for supporting me on my way. 2 2. Important Results in the Theory of Quadratic Forms 2.1. Basic Notation and General Facts In this chapter, we will introduce some basic notation and record some fundamental results that will be used later. The notation is rather standard and compatible with at least one of the main sources [Lam05], [EKM08] or [Sch85]. Further, we will give some side facts to provide a wider framework for the reader's convenience. We assume all fields to be of characteristic not 2. By a quadratic form over F or just form for short, we always mean a finite dimensional non-degenerate quadratic form. Such forms can be diagonalized. As usual, we write ⟨a1; : : : ; an⟩ with suitable ∗ a1; : : : ; an ∈ F for such a diagonalization. Orthogonal sum and tensor product of quadratic forms are as usually denoted by ⊥ respective ⊗. The n-fold orthogonal sum of a quadratic form ' for n ∈ N is denoted by n × ' ∶= ' ⊥ ::: ⊥ '. The Witt ring of F , whose elements are in 1-1 correspondence to the isometry classes of anisotropic forms over F , is denoted by WF . By abuse of notation, we will often use the same symbol for a quadratic form, its anisotropic part and its Witt class in situations where confusion is unlikely. Similarly, dim(') will either mean the dimension of the underlying vector space or the value dim(') mod 2, depending on what we are working with. We will use the symbol ≅ to denote isometry of quadratic forms, while the equality sign = is used to indicate equality in the Witt ring. When we would like to emphasize that we are working in the Witt ring, we also use the usual symbols +; − and ⋅ for addition, subtraction and multiplication respectively rather than the symbols for the appropriate operation for the forms itself. As usual, if is a subform of ', we will write ⊆ '. Since the determinant of a quadratic form is not an invariant of its Witt class, we will sometimes need its ∗ ∗2 signed version denoted by d± ∶ WF → F ~F . We write H for the hyperbolic plane. The Witt index of ', i.e. the number of hyperbolic planes occurring in a Witt decomposition, will be denoted as iW ('). For the Witt index of an orthogonal sum of two forms, we have the following estimate. Proposition 2.1.1 ([Lam05, Chapter I. Exercise 16 (2)]): Let '1;'2 be (regular) quadratic forms over some field F . Then, for the orthogonal sum, we have iW ('1 ⊥ '2) ≤ iW ('1) + dim('2): By applying the above, we can easily deduce a criterion for a form to be a subform of a given quadratic form.
Recommended publications
  • Differential Forms, Linked Fields and the $ U $-Invariant
    Differential Forms, Linked Fields and the u-Invariant Adam Chapman Department of Computer Science, Tel-Hai Academic College, Upper Galilee, 12208 Israel Andrew Dolphin Department of Mathematics, Ghent University, Ghent, Belgium Abstract We associate an Albert form to any pair of cyclic algebras of prime degree p over a field F with char(F) = p which coincides with the classical Albert form when p = 2. We prove that if every Albert form is isotropic then H4(F) = 0. As a result, we obtain that if F is a linked field with char(F) = 2 then its u-invariant is either 0, 2, 4or 8. Keywords: Differential Forms, Quadratic Forms, Linked Fields, u-Invariant, Fields of Finite Characteristic. 2010 MSC: 11E81 (primary); 11E04, 16K20 (secondary) 1. Introduction Given a field F, a quaternion algebra over F is a central simple F-algebra of degree 2. The maximal subfields of quaternion division algebras over F are quadratic field extensions of F. When char(F) , 2, all quadratic field extensions are separable. When char(F) = 2, there are two types of quadratic field extensions: the separable type which is of the form F[x : x2 + x = α] for some α F λ2 + λ : λ F , and the ∈ \ { 2 ∈ } inseparable type which is of the form F[ √α] for some α F× (F×) . In this case, any quaternion division algebra contains both types of field ext∈ ensions,\ which can be seen by its symbol presentation 2 2 1 [α, β)2,F = F x, y : x + x = α, y = β, yxy− = x + 1 . arXiv:1701.01367v2 [math.RA] 22 May 2017 h i If char(F) = p for some prime p > 0, we let ℘(F) denote the additive subgroup λp λ : λ F .
    [Show full text]
  • Garibaldi S. Cohomological Invariants.. Exceptional Groups And
    Cohomological Invariants: Exceptional Groups and Spin Groups This page intentionally left blank EMOIRS M of the American Mathematical Society Number 937 Cohomological Invariants: Exceptional Groups and Spin Groups Skip Garibaldi ­ÜÌ Ê>Ê««i`ÝÊLÞÊ iÌiÛÊ7°Êvv>® ÕÞÊÓääÊÊUÊÊ6ÕiÊÓääÊÊUÊÊ ÕLiÀÊÎÇÊ­ÃiV`ÊvÊÈÊÕLiÀîÊÊUÊÊ-- ÊääÈxÓÈÈ American Mathematical Society Providence, Rhode Island 2000 Mathematics Subject Classification. Primary 11E72; Secondary 12G05, 20G15, 17B25. Library of Congress Cataloging-in-Publication Data Garibaldi, Skip, 1972– Cohomological invariants : exceptional groups and spin groups / Skip Garibaldi ; with an appendix by Detlev W. Hoffmann. p. cm. — (Memoirs of the American Mathematical Society, ISSN 0065-9266 ; no. 937) “Volume 200, number 937 (second of 6 numbers).” Includes bibliographical references and index. ISBN 978-0-8218-4404-5 (alk. paper) 1. Galois cohomology. 2. Linear algebraic groups. 3. Invariants. I. Title. QA169.G367 2009 515.23—dc22 2009008059 Memoirs of the American Mathematical Society This journal is devoted entirely to research in pure and applied mathematics. Subscription information. The 2009 subscription begins with volume 197 and consists of six mailings, each containing one or more numbers. Subscription prices for 2009 are US$709 list, US$567 institutional member. A late charge of 10% of the subscription price will be imposed on orders received from nonmembers after January 1 of the subscription year. Subscribers outside the United States and India must pay a postage surcharge of US$65; subscribers in India must pay a postage surcharge of US$95. Expedited delivery to destinations in North America US$57; elsewhere US$160. Each number may be ordered separately; please specify number when ordering an individual number.
    [Show full text]
  • Generic Splitting Fields of Central Simple Algebras: Galois Cohomology and Non-Excellence
    GENERIC SPLITTING FIELDS OF CENTRAL SIMPLE ALGEBRAS: GALOIS COHOMOLOGY AND NON-EXCELLENCE OLEG T. IZHBOLDIN AND NIKITA A. KARPENKO Abstract. A field extension L=F is called excellent, if for any quadratic form ϕ over F the anisotropic part (ϕL)an of ϕ over L is defined over F ; L=F is called universally excellent, if L · E=E is excellent for any field ex- tension E=F . We study the excellence property for a generic splitting field of a central simple F -algebra. In particular, we show that it is universally excellent if and only if the Schur index of the algebra is not divisible by 4. We begin by studying the torsion in the second Chow group of products of Severi-Brauer varieties and its relationship with the relative Galois co- homology group H3(L=F ) for a generic (common) splitting field L of the corresponding central simple F -algebras. Let F be a field and let A1;:::;An be central simple F -algebras. A splitting field of this collection of algebras is a field extension L of F such that all the def algebras (Ai)L = Ai ⊗F L (i = 1; : : : ; n) are split. A splitting field L=F of 0 A1;:::;An is called generic (cf. [41, Def. C9]), if for any splitting field L =F 0 of A1;:::;An, there exists an F -place of L to L . Clearly, generic splitting field of A1;:::;An is not unique, however it is uniquely defined up to equivalence over F in the sense of [24, x3]. Therefore, working on problems (Q1) and (Q2) discussed below, we may choose any par- ticular generic splitting field L of the algebras A1;:::;An (cf.
    [Show full text]
  • Quadratic Forms and Their Applications
    Quadratic Forms and Their Applications Proceedings of the Conference on Quadratic Forms and Their Applications July 5{9, 1999 University College Dublin Eva Bayer-Fluckiger David Lewis Andrew Ranicki Editors Published as Contemporary Mathematics 272, A.M.S. (2000) vii Contents Preface ix Conference lectures x Conference participants xii Conference photo xiv Galois cohomology of the classical groups Eva Bayer-Fluckiger 1 Symplectic lattices Anne-Marie Berge¶ 9 Universal quadratic forms and the ¯fteen theorem J.H. Conway 23 On the Conway-Schneeberger ¯fteen theorem Manjul Bhargava 27 On trace forms and the Burnside ring Martin Epkenhans 39 Equivariant Brauer groups A. FrohlichÄ and C.T.C. Wall 57 Isotropy of quadratic forms and ¯eld invariants Detlev W. Hoffmann 73 Quadratic forms with absolutely maximal splitting Oleg Izhboldin and Alexander Vishik 103 2-regularity and reversibility of quadratic mappings Alexey F. Izmailov 127 Quadratic forms in knot theory C. Kearton 135 Biography of Ernst Witt (1911{1991) Ina Kersten 155 viii Generic splitting towers and generic splitting preparation of quadratic forms Manfred Knebusch and Ulf Rehmann 173 Local densities of hermitian forms Maurice Mischler 201 Notes towards a constructive proof of Hilbert's theorem on ternary quartics Victoria Powers and Bruce Reznick 209 On the history of the algebraic theory of quadratic forms Winfried Scharlau 229 Local fundamental classes derived from higher K-groups: III Victor P. Snaith 261 Hilbert's theorem on positive ternary quartics Richard G. Swan 287 Quadratic forms and normal surface singularities C.T.C. Wall 293 ix Preface These are the proceedings of the conference on \Quadratic Forms And Their Applications" which was held at University College Dublin from 5th to 9th July, 1999.
    [Show full text]
  • Witt Rings and Brauer Groups Under Multiquadratic Extensions. II DANIEL B
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 78, 58-90 (1982) Witt Rings and Brauer Groups under Multiquadratic Extensions. II DANIEL B. SHAPIRO* Department of Mathematics, Ohio State University, Columbus, Ohio 43210 JEAN-PIERRE TIGNOL Institut de MathPtnatiques Pure et AppliquPe, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium AND ADRIAN R. WADSWORTH* Department of Mathematics, University of California, San Diego, LaJolla, California 92093 Communicated by Richard G. Swan Received May 8, 1981 0. INTRODUCTION Let F be a field of characteristic not 2, and suppose M is a multiquadratic extension of F. That is, M/F is a finite abelian extension of exponent 2, so that M = F(@) for some finite subgroup G E F/F’, where $ = F - (0). In studying Brauer groups and products of quaternion algebras, the second author was led to consider the homology groups N,(M/F) of -a certain complex gM,F associated to the extension M/F. This complex appears in [ 11, (3.1); 301 and in (1.1) below. The purpose of the present work is to investigate the first homology group N,(M/F) and to exhibit its close connections with quadratic form theory. The higher homology groups are examined in [ 11,301. The field F is said to have property Pi(n) if N,(M/F) = 1 for every multi- quadratic extension M/F with [M:F] Q 2”. Properties P,(l) and P,(2) always hold, but there are examples [29] of fields F for which P,(3) fails.
    [Show full text]
  • View This Volume's Front and Back Matter
    http://dx.doi.org/10.1090/gsm/090 Basic Quadratic Forms This page intentionally left blank Basic Quadratic Forms Larr y J. Gerstei n Graduate Studies in Mathematics Volume 90 m"zzr&ie. American Mathematical Society Providence, Rhode Island Editorial Board David Cox (Chair) Walter Craig N. V. Ivanov Steven G. Krantz 2000 Mathematics Subject Classification. Primary llExx, 12Exx, 15-XX. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-90 Library of Congress Cataloging-in-Publication Data Gerstein, Larry J. Basic quadratic forms / Larry J. Gerstein. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 90) Includes bibliographical references and index. ISBN 978-0-8218-4465-6 (alk. paper) 1. Forms, Quadratic. 2. Equations, Quadratic. 3. Number theory. I. Title. QA243.G47 2008 512.7'4-dc22 2007062041 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. © 2008 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government.
    [Show full text]
  • On Hermitian Pfister Forms
    On hermitian Pfister forms N. Grenier-Boley, E. Lequeu, M. G. Mahmoudi September 12, 2007 Abstract Let K be a field of characteristic different from 2. It is known that a quadratic Pfister form over K is hyperbolic once it is isotropic. It is also known that the dimension of an anisotropic quadratic form over K belonging to a given power of the fundamental ideal of the Witt ring of K is lower bounded. In this paper, weak analogues of these two statements are proved for hermitian forms over a multiquaternion algebra with invo- lution. Consequences for Pfister involutions are also drawn. An invariant uα of K with respect to a non-zero pure quaternion of a quaternion di- vision algebra over K is defined. Upper bounds for this invariant are provided. In particular an analogue is obtained of a result of Elman and Lam concerning the u-invariant of a field of level at most 2. 1 Introduction Throughout this paper, the characteristic of the base field is supposed to be different from 2. Pfister forms play a fundamental role in the theory of quadratic forms. In the literature, efforts have been made to find analogues of these forms in the framework of central simple algebras with involution or of hermitian forms over such algebras. In the first case, a notion of Pfister involution has been defined by Shapiro (see Subsection 2.4): it is nothing but a central simple algebra endowed with an orthogonal involution which is a tensor product of quaternion algebras with involution. Shapiro has also stated a conjecture which predicts a close relation between Pfister involutions and quadratic Pfister forms (see Conjecture 2.8) which has recently been proved by Becher [2].
    [Show full text]
  • Minimal Forms for Function Fields of Pfister Forms
    THÉORIE DES NOMBRES Aimées 1994/95-1995/96 BESANÇON Minimal forms for function fields of Pfister forms D.W. HOFFMANN MINIMAL FORMS FOR FUNCTION FIELDS OF PFISTER FORMS Detlev W. Hoffmann Abstract. Let F be a field of characteristic ^ 2, {/>,} a set of Pfister forms over F and K = •?({/>«}) the iterated function field of the />,'s over F. We investigate tbe isotropy behaviour of quadratic forms over F under this field extension. Elman- Lam-Wadsworth have shown that if the Hasse number û of F is < 2n, n = 1,2, and if ail the />,• are of fold > n, then K/F is excellent and the Witt kernel W(K/F) is generated by {/>,}. We extend and generalize these résulta. We show, for example, that if û(F) < 6 or if F is linked and ail the p.-'s are of fold > 3, then K/F is excellent. More generally, if û(F) < 2" and ail the /J,'S are of fold > n + 1 (resp. > n), then K/F is excellent (resp. W(K/F) is generated by {p,}). We also investigate so-called if-minimal forms, i.e. anisotropic forms over F which become isotropic over K but no proper subform does. In two examples, one over R(<) and one over a formally real global field, we use the methods developed in this paper to compute the if-minimal forms explicitly. 1 Introduction Let F be a field of characteristic ^ 2. In this paper we want to investigate the behaviour of quadratic forms over F over extensions K/F where if is a function field of the form F({/>;}) of Pfister forms {/>,}.
    [Show full text]
  • Pfister Forms and Their Applications the Purpose of This Note Is to Present Results Which Follow from the Theory of Pfister Form
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF NUMBER THEORY 5, 367-378 (1973) Pfister Forms and Their Applications RICHARD ELMAN AND T. Y. LAM* Department of Mathematics, University of California, Berkeley, Carifornia 94720 PRESENTED AT THE QUADRATIC FORMS CONFERENCE, BATON ROUGE, LOUISIANA, MARCH 27-30, 1972, AND DEDICATED TO THE MEMORY OF LOUIS JOEL MORDELL This note investigates the properties of the 2”-dimensional quadratic forms @L, <I, a,>, called n-fold Ptister forms. Utilizing these properties, various applications are made to k-theory of fields, and field invariants. In particular, the set of orderings of a field and the maximum dimension of anisotropic forms with everywhere zero signature are investigated. Details will appear elsewhere. 1. INTRODUCTION AND TERMINOLOGY The purpose of this note is to present results which follow from the theory of Pfister forms. In particular, applications to various invariants are given. Sections 2 and 3 set up the basic machinery of Plister forms. Of central importance is the concept of “linkage,” investigation of which occupies the major part of Section 3. In Section 4, we give a few immediate applications toward answering a question of Milnor. Section 5 is concerned with studying the structure of formally real fields. We investigate separation properties of the set of orderings of such fields, and relate these separation properties to linkage of Pfister forms. Section 6 introduces the “general” u-invariant, u(F), a slightly modified version of the u-invariant in the literature. Extending a result of Kneser, we show that for any field F, u(F) < / F/F” I.
    [Show full text]
  • Algebraic Groups, Quadratic Forms and Related Topics
    Algebraic groups, quadratic forms and related topics Vladimir Chernousov (University of Alberta), Richard Elman (University of California, Los Angeles), Alexander Merkurjev (University of California, Los Angeles), Jan Minac (University of Western Ontario), Zinovy Reichstein (University of British Columbia) September 2–7, 2006 1 A brief historical introduction The origins of the theory of algebraic groups can be traced back to the work of the great French mathematician E. Picard in the mid-19th century. Picard assigned a “Galois group” to an ordinary differential equation of the form dnf dn−1f + p (z) + . + p (z)f(z) = 0 , dzn 1 dzn−1 n where p1,...,pn are polynomials. This group naturally acts on the n-dimensional complex vector space V of holomorphic (in the entire complex plane) solutions to this equation and is, in modern language, an algebraic subgroup of GL(V ). This construction was developed into a theory (now known under the name of “differential Galois theory”) by J. F. Ritt and E. R. Kolchin in the 1930s and 40s. Their work was a precursor to the modern theory of algebraic groups, founded by A. Borel, C. Chevalley and T. A. Springer, starting in the 1950s. From the modern point of view algebraic groups are algebraic varieties, with group operations given by algebraic morphisms. Linear algebraic groups can be embedded in GLn for some n, but such an embedding is no longer a part of their intrinsic structure. Borel, Chevalley and Springer used algebraic geometry to establish basic structural results in the theory of algebraic groups, such as conjugacy of maximal tori and Borel subgroups, and the classification of simple linear algebraic groups over an algebraically closed field.
    [Show full text]
  • Local-Global Principles for Quadratic Forms and Strong Linkage
    Local-global principles for quadratic forms and strong linkage Lokaal-globaal-principes voor kwadratische vormen en sterke koppeling Thesis for the degree of Doctor of Science: Mathematics at the University of Antwerp Thesis for the degree of Doctor of Natural Sciences at the University of Konstanz presented by Parul Gupta Promotors: Prof. Dr. Karim Johannes Becher Prof. Dr. Arno Fehm Antwerp, 2018 To my parents Rekha and Umesh Chand Gupta Table of Contents Acknowledgements i Introduction iii Nederlandse samenvatting xiii 1Discretevaluations 1 1.1 Valuations . 1 1.2 Gaussextensions ............................ 8 1.3 Rationalfunctionfields. 12 1.4 Algebraic function fields . 16 2Symbolsandramification 23 2.1 Milnor K-groups ............................ 23 2.2 Ramification .............................. 27 2.3 Symbolalgebras ............................ 31 2.4 The unramified Brauer group . 35 2.5 Quasi-finitefields ............................ 38 3Divisorsonsurfaces 47 3.1 Regularrings .............................. 47 3.2 Regular surfaces . 50 3.3 Divisorial valuations . 56 3.4 Ramification on surfaces . 59 3.5 Surfaces over henselian local domains . 60 4Stronglinkageforfunctionfields 65 4.1 Functionfieldswithfinitesupportproperty . 66 4.2 Function fields of surfaces . 69 5 Quadratic forms and the u-invariant 77 5.1 Basic concepts . 77 5.2 Quadraticformsandvaluations . 82 5.3 TheWittinvariant ........................... 85 5.4 The u-invariant............................. 89 5.5 Criteria for bounds on the u-invariant . 91 6Local-globalprinciplesforisotropy 99 6.1 Knownlocal-globalprinciples . 99 6.2 Rational function fields over global fields . 105 6.3 Hidden local anisotropy on an arithmetic surface . 110 7Formsoverfunctionfieldsofsurfaces 115 7.1 Forms over two-dimensional regular domains. 116 7.2 Fields of u-invarianteight ....................... 133 7.3 A refinement for four-dimensional forms .
    [Show full text]
  • Quadratic Forms and Linear Algebraic Groups
    Mathematisches Forschungsinstitut Oberwolfach Report No. 31/2013 DOI: 10.4171/OWR/2013/31 Quadratic Forms and Linear Algebraic Groups Organised by Detlev Hoffmann, Dortmund Alexander Merkurjev, Los Angeles Jean-Pierre Tignol, Louvain-la-Neuve 16 June – 22 June 2013 Abstract. Topics discussed at the workshop “Quadratic Forms and Linear Algebraic Groups” included besides the algebraic theory of quadratic and Hermitian forms and their Witt groups several aspects of the theory of lin- ear algebraic groups and homogeneous varieties, as well as some arithmetic aspects pertaining to the theory of quadratic forms over function fields or number fields. Mathematics Subject Classification (2010): 11Exx, 11R20, 12D15, 12Gxx, 14C15, 14C25, 14C35, 14E08, 14G20, 14L15, 14M17, 16K20, 16K50, 19Gxx, 20Gxx. Introduction by the Organisers The half-size workshop was organized by Detlev Hoffmann (Dortmund), Alexan- der Merkurjev (Los Angeles), and Jean-Pierre Tignol (Louvain-la-Neuve), and was attended by 26 participants. Funding from the Leibniz Association within the grant “Oberwolfach Leibniz Graduate Students” (OWLG) provided support toward the participation of one young researcher. Additionally, the “US Junior Oberwolfach Fellows” program of the US National Science Foundation funded travel expenses for one post doc from the USA. The workshop was the twelfth Oberwolfach meeting on the algebraic theory of quadratic forms and related structures, following a tradition initiated by Man- fred Knebusch, Albrecht Pfister, and Winfried Scharlau in 1975. Throughout the years, the theme of quadratic forms has consistently provided a meeting ground where methods from various areas of mathematics successfully cross-breed. Its scope now includes aspects of the theory of linear algebraic groups and their ho- mogeneous spaces over arbitrary fields, but the analysis of quadratic forms over 1820 Oberwolfach Report 31/2013 specific fields, such as function fields and fields of characteristic 2, was also the focus of discussions.
    [Show full text]