Local-Global Principles for Quadratic Forms and Strong Linkage

Total Page:16

File Type:pdf, Size:1020Kb

Local-Global Principles for Quadratic Forms and Strong Linkage Local-global principles for quadratic forms and strong linkage Lokaal-globaal-principes voor kwadratische vormen en sterke koppeling Thesis for the degree of Doctor of Science: Mathematics at the University of Antwerp Thesis for the degree of Doctor of Natural Sciences at the University of Konstanz presented by Parul Gupta Promotors: Prof. Dr. Karim Johannes Becher Prof. Dr. Arno Fehm Antwerp, 2018 To my parents Rekha and Umesh Chand Gupta Table of Contents Acknowledgements i Introduction iii Nederlandse samenvatting xiii 1Discretevaluations 1 1.1 Valuations . 1 1.2 Gaussextensions ............................ 8 1.3 Rationalfunctionfields. 12 1.4 Algebraic function fields . 16 2Symbolsandramification 23 2.1 Milnor K-groups ............................ 23 2.2 Ramification .............................. 27 2.3 Symbolalgebras ............................ 31 2.4 The unramified Brauer group . 35 2.5 Quasi-finitefields ............................ 38 3Divisorsonsurfaces 47 3.1 Regularrings .............................. 47 3.2 Regular surfaces . 50 3.3 Divisorial valuations . 56 3.4 Ramification on surfaces . 59 3.5 Surfaces over henselian local domains . 60 4Stronglinkageforfunctionfields 65 4.1 Functionfieldswithfinitesupportproperty . 66 4.2 Function fields of surfaces . 69 5 Quadratic forms and the u-invariant 77 5.1 Basic concepts . 77 5.2 Quadraticformsandvaluations . 82 5.3 TheWittinvariant ........................... 85 5.4 The u-invariant............................. 89 5.5 Criteria for bounds on the u-invariant . 91 6Local-globalprinciplesforisotropy 99 6.1 Knownlocal-globalprinciples . 99 6.2 Rational function fields over global fields . 105 6.3 Hidden local anisotropy on an arithmetic surface . 110 7Formsoverfunctionfieldsofsurfaces 115 7.1 Forms over two-dimensional regular domains. 116 7.2 Fields of u-invarianteight ....................... 133 7.3 A refinement for four-dimensional forms . 137 8Local-globalprinciplesoverrationalfunctionfields 145 8.1 Square-reflexivepolynomials. 145 8.2 Rational function fields over 2-special fields . 153 Bibliography 161 Index 167 Acknowledgements First and foremost, I wish to express my gratitude to my supervisors, Karim Johannes Becher and Arno Fehm, for their patience, encouragement and criticism. I thank Wendy Lowen, Freddy Van Oystaeyen, David Leep, Jean-Pierre Tignol and Suresh Venapally for having accepted to be members of the jury of my thesis and for all their comments and suggestions. I am grateful to Amit Kulshrestha for having introduced me to quadratic form theory. Over the years, my research has benefited enormously from the kind and pa- tient input and encouragement of David Leep, Raman Parimala, Suresh Venapally and David Grimm. I have further obtained valuable suggestions and comments from Jean-Louis Colliot-thélène, Annette Bachmayr, Yong Hu, Adam Chapman and Asher Auel. To Raman Parimala and Suresh Venapally I further am grateful for the invi- tation to Emory University and for their hospitality. Equally I wish to thank Eva Bayer-Fluckiger for her hospitality at EPFL. Over the years, a couple of institutions and dedicated staffmembers have shown crucial support in helping to deal with the requests of other institutions. I thank the Zukunftskolleg for a first invitation to Konstanz in 2012. The Welcome Center of the University of Konstanz and in particular Johannes Dingler have helped me enormously in getting started administratively at Kon- stanz. Similarly, the International StaffOffice of University of Antwerp, and in particular Erika Leunens, have helped me crucially in problems related to visa in Belgium and Germany during the last phase of my PhD. The last year of my PhD I spent at TU Dresden, where most of the writing of this thesis was done. I thank TU Dresden and in particular Christian Zschalig for administrative support. I am grateful to my colleagues from University of Konstanz, University of i Antwerp and TU Dresden. I especially thank Sten Veraa, Kader Bingöl, Gonzalo Manzano Flores and Nikolaas Verhulst for reading parts of the first draft of my thesis. I thank Julia Ramos González for many tips concerning the final phase of the thesis. I wish to thank my parents and my siblings for all their love, support and faith in me. Finally, I am grateful to my friends from India and friends whom I got to know in Konstanz, Antwerp and Dresden for being such good friends. Introduction A key problem in the study of quadratic forms is to determine whether a given quadratic form is isotropic i.e. whether it has a non-trivial zero. Initially, the problem was considered over the ring of integers Z and over the field of rational numbers Q. In 1890, Minkowski showed that a quadratic form over Q is isotropic if and only if it is indefinite and has, for every prime number p, a non-trivial zero modulo sufficiently large powers of p. The latter criterion can be formulated in a more elegant way using the fields of p-adic numbers Qp, which were introduced by Hensel in 1897. In 1924, Hasse generalized Minkowski’s result to arbitrary number fields: Theorem A (Hasse-Minkowski). A quadratic form over a number field F is isotropic if and only if it is isotropic over all completions of F . Here, completions are taken with respect to places of F , which are equivalence classes of absolute values. In fact, the proof of this theorem also works for algebraic function fields over finite fields. By an algebraic function fields we mean a finitely generated field extension of transcendence degree one. Number fields and algebraic function fields over finite fields are called global fields and their completions are called local fields. It is an easy task to determine the isotropy of a quadratic form over local fields, which makes the Hasse-Minkowski Theorem very useful to determine isotropy of quadratic fields over global fields. Theorems of this type are referred to as local-global principles or Hasse principles. In order to prove the theorem, Hasse introduced an invariant of quadratic forms over number fields, which can best be explained in terms of quaternion algebras. Quaternion algebras over an arbitrary field of characteristic different from two were introduced by Dickson in 1912. Let F in the sequel be a field with char F 2.Fora, b F ,thequater- p q‰ P ˆ nion algebra a, b is the four-dimensional F -algebra F Fi Fj Fij with p qF ‘ ‘ ‘ iii iv INTRODUCTION multiplication determined by the rules i2 a, j2 b and ij ji. “ “ “´ If a quaternion algebra over F is not a division algebra, then it is isomorphic to the matrix algebra M2 F . Dickson showed that a, b F M2 F if and only if p q p q – p q the quadratic form X2 aX2 bX2 is isotropic over F [Dic12]. 1 ´ 2 ´ 3 The Hasse invariant of a quadratic form over F takes values in the 2-torsion part of the Brauer group of F , and it is given as a certain product of quaternion algebras depending on the coefficients of the quadratic form. In particular, the Hasse invariant of a three-dimensional form is given by a quaternion algebra. For example the Hasse-invariant of the three-dimensional form X2 aX2 bX2 is 1 ´ 2 ´ 3 the algebra a, b . Dickson’s result then says that a three-dimensional quadratic p qF form over F is isotropic if and only if its Hasse invariant is trivial. Let ⌦ be a set of discrete valuations on F .Forv ⌦, we denote by Fv P the completion of F with respect to v. We say that quaternion algebras over F satisfy the Hasse principle with respect to ⌦ if any quaternion algebra over F which becomes isomorphic to M2 Fv by extending scalars to Fv for every v ⌦, p q P is indeed isomorphic to M2 F over F . Similarly, for a class of quadratic forms p q C over F ,wesaythatforms in satisfy the local-global principle for isotropy with C respect to ⌦ if any quadratic form in which is isotropic over Fv for every v ⌦ C P is isotropic over F . As a consequence of Dickson’s result, we obtain that, if quaternion algebras over F satisfy the Hasse principle with respect to ⌦, then three-dimensional quadratic forms over F also satisfy the local-global principle for isotropy with respect to ⌦. Moreover, if quaternion algebras defined over quadratic field ex- tensions of F also satisfy the Hasse principle with respect to the set of discrete valuations which are extensions of valuations in ⌦, then four-dimensional forms over F also satisfy the local-global principle for isotropy with respect to ⌦ (see Proposition 6.1.3). We now give some important examples of fields where quadratic forms of di- mension three and four satisfy the local-global principle for isotropy with respect to the set of all places. These examples play a crucial role in this thesis. Examples I. In each of the following cases, quaternion algebras over F satisfy the Hasse principle with respect to the set ⌦ of all Z-valuations on F .Inallthose v cases this follows from a more general Hasse-principle for central simple algebras, which we mention in parentheses. a F is a nonreal global field (Albert-Brauer-Hasse-Noether, see [Rei03, Theorem p q 32.11]). b F is an algebraic function field over a pseudo-algebraically closed (PAC) field p q (Efrat, see [Efr01, Corollary 3.2]). See Section 2.1 for the definition of a PAC- field. c F is the fraction field of a two-dimensional complete regular local domain with p q separably closed residue field of characteristic different from two, for example F C X, Y , the fraction field of the ring of power series in two variables “ pp qq over C (Colliot-Thélène-Ojanguren-Parimala, see [CTOP02, Corollary 1.10]). d F is an algebraic function field over a complete discretely valued field with p q separably closed residue field of characteristic different from two, for example F C t X , the rational function field in one variable over the Laurent “ pp qq p q series field in one variable over C.
Recommended publications
  • Minimal Weakly Isotropic Forms
    Minimal weakly isotropic forms Karim Johannes Becher Abstract In this article weakly isotropic quadratic forms over a (formally) real field are studied. Conditions on the field are given which imply that every weakly isotropic form over that field has a weakly isotropic sub- form of small dimension. Fields over which every quadratic form can be decomposed into an orthogonal sum of a strongly anisotropic form and a torsion form are characterized in different ways. Keywords: quadratic form, weakly isotropic, strongly anisotropic, real field, Pythagoras number, field invariants, SAP-field, local-global principle Classification (MSC 2000): 11E04, 11E81, 12D15 1 Introduction The concept of weak isotropy was introduced by Prestel in [11] and studied in the 1970ies, especially by Prestel and Br¨ocker. The main motivation for this concept is the failure of any kind of local-global principle for isotropy of quadratic forms in a general situation. It turned out that, over any (formally) real field, weakly isotropic forms can be characterized, on the one hand in terms of the semi-orderings (cf. [11]), on the other hand in terms of the real places of the field (cf. [11], [2]). Applications of weakly isotropic forms occur in real algebra and geometry (cf. [13]). The present article investigates weakly isotropic forms in view of the question what kind of subforms and orthogonal decompositions they admit. This leads to consider in particular those weakly isotropic forms which are minimal in the sense that they do not contain any proper subform which is weakly isotropic. The question of how large the dimension of such a form may be gives rise to a new field invariant.
    [Show full text]
  • Differential Forms, Linked Fields and the $ U $-Invariant
    Differential Forms, Linked Fields and the u-Invariant Adam Chapman Department of Computer Science, Tel-Hai Academic College, Upper Galilee, 12208 Israel Andrew Dolphin Department of Mathematics, Ghent University, Ghent, Belgium Abstract We associate an Albert form to any pair of cyclic algebras of prime degree p over a field F with char(F) = p which coincides with the classical Albert form when p = 2. We prove that if every Albert form is isotropic then H4(F) = 0. As a result, we obtain that if F is a linked field with char(F) = 2 then its u-invariant is either 0, 2, 4or 8. Keywords: Differential Forms, Quadratic Forms, Linked Fields, u-Invariant, Fields of Finite Characteristic. 2010 MSC: 11E81 (primary); 11E04, 16K20 (secondary) 1. Introduction Given a field F, a quaternion algebra over F is a central simple F-algebra of degree 2. The maximal subfields of quaternion division algebras over F are quadratic field extensions of F. When char(F) , 2, all quadratic field extensions are separable. When char(F) = 2, there are two types of quadratic field extensions: the separable type which is of the form F[x : x2 + x = α] for some α F λ2 + λ : λ F , and the ∈ \ { 2 ∈ } inseparable type which is of the form F[ √α] for some α F× (F×) . In this case, any quaternion division algebra contains both types of field ext∈ ensions,\ which can be seen by its symbol presentation 2 2 1 [α, β)2,F = F x, y : x + x = α, y = β, yxy− = x + 1 . arXiv:1701.01367v2 [math.RA] 22 May 2017 h i If char(F) = p for some prime p > 0, we let ℘(F) denote the additive subgroup λp λ : λ F .
    [Show full text]
  • 8 Complete Fields and Valuation Rings
    18.785 Number theory I Fall 2016 Lecture #8 10/04/2016 8 Complete fields and valuation rings In order to make further progress in our investigation of finite extensions L=K of the fraction field K of a Dedekind domain A, and in particular, to determine the primes p of K that ramify in L, we introduce a new tool that will allows us to \localize" fields. We have already seen how useful it can be to localize the ring A at a prime ideal p. This process transforms A into a discrete valuation ring Ap; the DVR Ap is a principal ideal domain and has exactly one nonzero prime ideal, which makes it much easier to study than A. By Proposition 2.7, the localizations of A at its prime ideals p collectively determine the ring A. Localizing A does not change its fraction field K. However, there is an operation we can perform on K that is analogous to localizing A: we can construct the completion of K with respect to one of its absolute values. When K is a global field, this process yields a local field (a term we will define in the next lecture), and we can recover essentially everything we might want to know about K by studying its completions. At first glance taking completions might seem to make things more complicated, but as with localization, it actually simplifies matters considerably. For those who have not seen this construction before, we briefly review some background material on completions, topological rings, and inverse limits.
    [Show full text]
  • Garibaldi S. Cohomological Invariants.. Exceptional Groups And
    Cohomological Invariants: Exceptional Groups and Spin Groups This page intentionally left blank EMOIRS M of the American Mathematical Society Number 937 Cohomological Invariants: Exceptional Groups and Spin Groups Skip Garibaldi ­ÜÌ Ê>Ê««i`ÝÊLÞÊ iÌiÛÊ7°Êvv>® ÕÞÊÓääÊÊUÊÊ6ÕiÊÓääÊÊUÊÊ ÕLiÀÊÎÇÊ­ÃiV`ÊvÊÈÊÕLiÀîÊÊUÊÊ-- ÊääÈxÓÈÈ American Mathematical Society Providence, Rhode Island 2000 Mathematics Subject Classification. Primary 11E72; Secondary 12G05, 20G15, 17B25. Library of Congress Cataloging-in-Publication Data Garibaldi, Skip, 1972– Cohomological invariants : exceptional groups and spin groups / Skip Garibaldi ; with an appendix by Detlev W. Hoffmann. p. cm. — (Memoirs of the American Mathematical Society, ISSN 0065-9266 ; no. 937) “Volume 200, number 937 (second of 6 numbers).” Includes bibliographical references and index. ISBN 978-0-8218-4404-5 (alk. paper) 1. Galois cohomology. 2. Linear algebraic groups. 3. Invariants. I. Title. QA169.G367 2009 515.23—dc22 2009008059 Memoirs of the American Mathematical Society This journal is devoted entirely to research in pure and applied mathematics. Subscription information. The 2009 subscription begins with volume 197 and consists of six mailings, each containing one or more numbers. Subscription prices for 2009 are US$709 list, US$567 institutional member. A late charge of 10% of the subscription price will be imposed on orders received from nonmembers after January 1 of the subscription year. Subscribers outside the United States and India must pay a postage surcharge of US$65; subscribers in India must pay a postage surcharge of US$95. Expedited delivery to destinations in North America US$57; elsewhere US$160. Each number may be ordered separately; please specify number when ordering an individual number.
    [Show full text]
  • Little Survey on Large Fields – Old & New –
    Little survey on large fields { Old & New { Florian Pop ∗ Abstract. The large fields were introduced by the author in [59] and subsequently acquired several other names. This little survey includes earlier and new developments, and at the end of each section we mention a few open questions. 2010 Mathematics Subject Classification. Primary 12E, 12F, 12G, 12J. Secondary 12E30, 12F10, 12G99. Keywords. Large fields, ultraproducts, PAC, pseudo closed fields, Henselian pairs, elementary equivalence, algebraic varieties, rational points, function fields, (inverse) Galois theory, embedding problems, model theory, rational connectedness, extremal fields. Introduction The notion of large field was introduced in Pop [59] and proved to be the \right class" of fields over which one can do a lot of interesting mathematics, like (inverse) Galois theory, see Colliot-Th´el`ene[7], Moret-Bailly [45], Pop [59], [61], the survey article Harbater [30], study torsors of finite groups Moret- Bailly [46], study rationally connected varieties Koll´ar[37], study the elementary theory of function fields Koenigsmann [35], Poonen{Pop [55], characterize extremal valued fields as introduced by Ershov [12], see Azgin{Kuhlmann{Pop [1], etc. Maybe that is why the \large fields” acquired several other names |google it: ´epais,fertile, weite K¨orper, ample, anti-Mordellic. Last but not least, see Jarden's book [34] for more about large fields (which he calls \ample fields” in his book [34]), and Kuhlmann [41] for relations between large fields and local uniformization (`ala Zariski). Definition. A field k is called a large field, if for every irreducible k-curve C the following holds: If C has a k-rational smooth point, then C has infinitely many k-rational points.
    [Show full text]
  • Local-Global Methods in Algebraic Number Theory
    LOCAL-GLOBAL METHODS IN ALGEBRAIC NUMBER THEORY ZACHARY KIRSCHE Abstract. This paper seeks to develop the key ideas behind some local-global methods in algebraic number theory. To this end, we first develop the theory of local fields associated to an algebraic number field. We then describe the Hilbert reciprocity law and show how it can be used to develop a proof of the classical Hasse-Minkowski theorem about quadratic forms over algebraic number fields. We also discuss the ramification theory of places and develop the theory of quaternion algebras to show how local-global methods can also be applied in this case. Contents 1. Local fields 1 1.1. Absolute values and completions 2 1.2. Classifying absolute values 3 1.3. Global fields 4 2. The p-adic numbers 5 2.1. The Chevalley-Warning theorem 5 2.2. The p-adic integers 6 2.3. Hensel's lemma 7 3. The Hasse-Minkowski theorem 8 3.1. The Hilbert symbol 8 3.2. The Hasse-Minkowski theorem 9 3.3. Applications and further results 9 4. Other local-global principles 10 4.1. The ramification theory of places 10 4.2. Quaternion algebras 12 Acknowledgments 13 References 13 1. Local fields In this section, we will develop the theory of local fields. We will first introduce local fields in the special case of algebraic number fields. This special case will be the main focus of the remainder of the paper, though at the end of this section we will include some remarks about more general global fields and connections to algebraic geometry.
    [Show full text]
  • Branching Laws for Classical Groups: the Non-Tempered Case
    BRANCHING LAWS FOR CLASSICAL GROUPS: THE NON-TEMPERED CASE WEE TECK GAN, BENEDICT H. GROSS AND DIPENDRA PRASAD August 18, 2020 ABSTRACT. This paper generalizes the GGP conjectures which were earlier formulated for tempered or more generally generic L-packets to Arthur packets, especially for the nongeneric L-packets arising from Arthur parameters. The paper introduces the key no- tionof a relevant pair of A-parameters which governs the branching laws for GLn and all classical groups overboth local fields and global fields. It plays a role for all the branching problems studied in [GGP] including Bessel models and Fourier-Jacobi models. CONTENTS 1. Introduction 1 2. Notation and Preliminaries 8 3. Relevant Pair of A-Parameters 10 4. Correlator 12 5. Local Conjecture for GLn 15 6. Local Conjecture for Classical Groups 23 7. A Conjecture for A-packets 25 8. A Special Case of the Conjecture 31 9. Global Conjecture 34 10. Revisiting the Global Conjecture 43 11. Low Rank Examples 46 12. Automorphic Descent 55 13. L-functions: GL case 59 14. L-functions: Classical Groups 63 References 67 arXiv:1911.02783v2 [math.RT] 17 Aug 2020 1. INTRODUCTION This paper is a sequel to our earlier work [GP1, GP2, GGP, GGP2], which discussed several restriction (or branching) problems in the representation theory of classical groups. In the local case, the conjectural answer was given in terms of symplectic root numbers 1991 Mathematics Subject Classification. Primary 11F70; Secondary 22E55. WTG is partially supported by an MOE Tier 2 grant R146-000-233-112. DP thanks Science and En- gineering research board of the Department of Science and Technology, India for its support through the JC Bose National Fellowship of the Govt.
    [Show full text]
  • Historical Background
    Chapter 0 Historical Background The theory of composition of quadratic forms over fields had its start in the 19th century with the search for n-square identities of the type 2 + 2 +···+ 2 · 2 + 2 +···+ 2 = 2 + 2 +···+ 2 (x1 x2 xn) (y1 y2 yn) z1 z2 zn where X = (x1,x2,...,xn) and Y = (y1,y2,...,yn) are systems of indeterminates and each zk = zk(X, Y ) is a bilinear form in X and Y . For example when n = 2 there is the ancient identity 2 + 2 · 2 + 2 = + 2 + − 2 (x1 x2 ) (y1 y2 ) (x1y1 x2y2) (x1y2 x2y1) . In this example z1 = x1y1 + x2y2 and z2 = x1y2 − x2y1 are bilinear forms in X, Y with integer coefficients. This formula for n = 2 can be interpreted as the “law of moduli” for complex numbers: |α|·|β|=|αβ| where α = x1 −ix2 and β = y1 +iy2. A similar 4-square identity was found by Euler (1748) in his attempt to prove Fermat’s conjecture that every positive integer is a sum of four integer squares. This identity is often attributed to Lagrange, who used it (1770) in his proof of that conjec- ture of Fermat. Here is Euler’s formula, in our notation: 2 + 2 + 2 + 2 · 2 + 2 + 2 + 2 = 2 + 2 + 2 + 2 (x1 x2 x3 x4 ) (y1 y2 y3 y4 ) z1 z2 z3 z4 where z1 = x1y1 + x2y2 + x3y3 + x4y4 z2 = x1y2 − x2y1 + x3y4 − x4y3 z3 = x1y3 − x2y4 − x3y1 + x4y2 z4 = x1y4 + x2y3 − x3y2 − x4y1. After Hamilton’s discovery of the quaternions (1843) this 4-square formula was interpreted as the law of moduli for quaternions.
    [Show full text]
  • Number Theory
    Number Theory Alexander Paulin October 25, 2010 Lecture 1 What is Number Theory Number Theory is one of the oldest and deepest Mathematical disciplines. In the broadest possible sense Number Theory is the study of the arithmetic properties of Z, the integers. Z is the canonical ring. It structure as a group under addition is very simple: it is the infinite cyclic group. The mystery of Z is its structure as a monoid under multiplication and the way these two structure coalesce. As a monoid we can reduce the study of Z to that of understanding prime numbers via the following 2000 year old theorem. Theorem. Every positive integer can be written as a product of prime numbers. Moreover this product is unique up to ordering. This is 2000 year old theorem is the Fundamental Theorem of Arithmetic. In modern language this is the statement that Z is a unique factorization domain (UFD). Another deep fact, due to Euclid, is that there are infinitely many primes. As a monoid therefore Z is fairly easy to understand - the free commutative monoid with countably infinitely many generators cross the cyclic group of order 2. The point is that in isolation addition and multiplication are easy, but together when have vast hidden depth. At this point we are faced with two potential avenues of study: analytic versus algebraic. By analytic I questions like trying to understand the distribution of the primes throughout Z. By algebraic I mean understanding the structure of Z as a monoid and as an abelian group and how they interact.
    [Show full text]
  • Generic Splitting Fields of Central Simple Algebras: Galois Cohomology and Non-Excellence
    GENERIC SPLITTING FIELDS OF CENTRAL SIMPLE ALGEBRAS: GALOIS COHOMOLOGY AND NON-EXCELLENCE OLEG T. IZHBOLDIN AND NIKITA A. KARPENKO Abstract. A field extension L=F is called excellent, if for any quadratic form ϕ over F the anisotropic part (ϕL)an of ϕ over L is defined over F ; L=F is called universally excellent, if L · E=E is excellent for any field ex- tension E=F . We study the excellence property for a generic splitting field of a central simple F -algebra. In particular, we show that it is universally excellent if and only if the Schur index of the algebra is not divisible by 4. We begin by studying the torsion in the second Chow group of products of Severi-Brauer varieties and its relationship with the relative Galois co- homology group H3(L=F ) for a generic (common) splitting field L of the corresponding central simple F -algebras. Let F be a field and let A1;:::;An be central simple F -algebras. A splitting field of this collection of algebras is a field extension L of F such that all the def algebras (Ai)L = Ai ⊗F L (i = 1; : : : ; n) are split. A splitting field L=F of 0 A1;:::;An is called generic (cf. [41, Def. C9]), if for any splitting field L =F 0 of A1;:::;An, there exists an F -place of L to L . Clearly, generic splitting field of A1;:::;An is not unique, however it is uniquely defined up to equivalence over F in the sense of [24, x3]. Therefore, working on problems (Q1) and (Q2) discussed below, we may choose any par- ticular generic splitting field L of the algebras A1;:::;An (cf.
    [Show full text]
  • Isotropy of Quadratic Spaces in Finite and Infinite Dimension
    Documenta Math. 473 Isotropy of Quadratic Spaces in Finite and Infinite Dimension Karim Johannes Becher, Detlev W. Hoffmann Received: October 6, 2006 Revised: September 13, 2007 Communicated by Alexander Merkurjev Abstract. In the late 1970s, Herbert Gross asked whether there exist fields admitting anisotropic quadratic spaces of arbitrarily large finite dimensions but none of infinite dimension. We construct exam- ples of such fields and also discuss related problems in the theory of central simple algebras and in Milnor K-theory. 2000 Mathematics Subject Classification: 11E04, 11E81, 12D15, 12E15, 12F20, 12G05, 12G10, 16K20, 19D45 Keywords and Phrases: quadratic form, isotropy, infinite-dimensional quadratic space, u-invariant, function field of a quadric, totally indef- inite form, real field, division algebra, quaternion algebra, symbol al- gebra, Galois cohomology, cohomological dimension, Milnor K-theory 1 Introduction A quadratic space over a field F is a pair (V, q) of a vector space V over F together with a map q : V F such that −→ q(λx) = λ2q(x) for all λ F , x V , and • ∈ ∈ the map bq : V V F defined by bq(x,y) = q(x + y) q(x) q(y) • (x,y V ) is F -bilinear.× −→ − − ∈ If dim V = n < , one may identify (after fixing a basis of V ) the quadratic space (V, q) with∞ a form (a homogeneous polynomial) of degree 2 in n variables. Via this identification, a finite-dimensional quadratic space over F will also be referred to as quadratic form over F . Recall that a quadratic space (V, q) is Documenta Mathematica 12 (2007) 473–504 474 Karim Johannes Becher, Detlev W.
    [Show full text]
  • Quadratic Form - Wikipedia, the Free Encyclopedia
    Quadratic form - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Quadratic_form Quadratic form From Wikipedia, the free encyclopedia In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example, is a quadratic form in the variables x and y. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry (Riemannian metric), differential topology (intersection forms of four-manifolds), and Lie theory (the Killing form). Contents 1 Introduction 2 History 3 Real quadratic forms 4 Definitions 4.1 Quadratic spaces 4.2 Further definitions 5 Equivalence of forms 6 Geometric meaning 7 Integral quadratic forms 7.1 Historical use 7.2 Universal quadratic forms 8 See also 9 Notes 10 References 11 External links Introduction Quadratic forms are homogeneous quadratic polynomials in n variables. In the cases of one, two, and three variables they are called unary, binary, and ternary and have the following explicit form: where a,…,f are the coefficients.[1] Note that quadratic functions, such as ax2 + bx + c in the one variable case, are not quadratic forms, as they are typically not homogeneous (unless b and c are both 0). The theory of quadratic forms and methods used in their study depend in a large measure on the nature of the 1 of 8 27/03/2013 12:41 Quadratic form - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Quadratic_form coefficients, which may be real or complex numbers, rational numbers, or integers. In linear algebra, analytic geometry, and in the majority of applications of quadratic forms, the coefficients are real or complex numbers.
    [Show full text]