processes Article Microbial Communities and Sulfate-Reducing Microorganisms Abundance and Diversity in Municipal Anaerobic Sewage Sludge Digesters from a Wastewater Treatment Plant (Marrakech, Morocco) 1,2, , 1 1 Abdelaziz El Houari * y , Magali Ranchou-Peyruse , Anthony Ranchou-Peyruse , Rhizlane Bennisse 2, Radia Bouterfas 2, Maria Soledad Goni Urriza 1, Abdel-Ilah Qatibi 2 and Rémy Guyoneaud 1 1 Environmental Microbiology, Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000 Pau, France;
[email protected] (M.R.-P.);
[email protected] (A.R.-P.);
[email protected] (M.S.G.U.);
[email protected] (R.G.) 2 Water Biodiversity and Climate Change Laboratory, Semlalia-Sciences Faculty, Cadi Ayyad University, 40 000 Marrakech, Morocco;
[email protected] (R.B.);
[email protected] (R.B.);
[email protected] (A.-I.Q.) * Correspondence:
[email protected]; Tel.: +44-757-091-7348 Present address: College of Environmental Sciences and Engineering School of Natural Sciences, y Environment Centre Wales (ECW), Molecular Ecology Group, Bangor University, Deiniol Road, Bangor LL57 2UW, Gwynedd, Wales, UK. Received: 15 August 2020; Accepted: 12 October 2020; Published: 14 October 2020 Abstract: Both molecular analyses and culture-dependent isolation were combined to investigate the diversity of sulfate-reducing prokaryotes and explore their role in sulfides production in full-scale anaerobic digesters (Marrakech, Morocco). At global scale, using 16S rRNA gene sequencing, Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Synergistetes, and Euryarchaeota were the most dominant phyla. The abundance of Archaea (3.1–5.7%) was linked with temperature.