Purple Bacteria and Their Relatives”

Total Page:16

File Type:pdf, Size:1020Kb

Purple Bacteria and Their Relatives” INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1988, p. 321-325 Vol. 38, No. 3 0020-7713/88/03032 1-05$02.OOtO Copyright 0 1988, International Union of Microbiological Societies Proteobacteria classis nov. a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives” E. STACKEBRANDT,l R. G. E. MURRAY,2* AND H. G. TRUPER3 Lehrstuhl fur Allgemeine Mikrobiologie, Biologiezentrum, Christian-Albrechts Universitat, 2300 Kid, Federal Republic of Germany’; Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12; and Institut fur Mikrobiulogie, Universitat Bonn, 5300 Bonn I, Federal Republic of Germany3 Proteobacteria classis nov. is suggested as the name for a new higher taxon to circumscribe the a, p, y, and 6 groups that are included among the phylogenetic relatives of the purple photosynthetic bacteria and as a suitable collective name for reference to that group. The group names (alpha, etc.) remain as vernacular terms at the level of subclass pending further studies and nomenclatural proposals. Phylogenetic interpretations derived from the study of the interim while the phylogenetic data are being integrated ribosomal ribonucleic acid (rRNA) sequences and oligonu- into formal bacterial taxonomy. It does not appear to be cleotide catalogs provide an important factual base for inappropriate or confusing to use the protean prefix because arrangements of higher taxa of bacteria (25, 26). A recent of the genus Proteus among the Proteobacteria; the reasons workshop organized by the International Committee on for use are clear enough. Systematic Bacteriology recognized that a particularly di- This new class is so far only definable in phylogenetic verse but related group of gram-negative bacteria, including terms. Above all, it is shown by the evolutionary distance phototrophic and heterotrophic bacteria, needed a formal matrix generated from homologies of complete 16s rRNAs, collective name (22). These organisms are often referred to from which a phylogenetic tree is derived. According to as “purple bacteria and their relatives,” and this is not Woese (25) a corresponding tree given by maximum parsi- appropriate because most of them are not purple or photo- mony of sequence selection recognizing unique nucleotides synthetic. We believe that they should be named at the level at specific sites results in a very similar topography. Few of class. class-specific signature nucleotides of the 16s rRNA are This group has evolved relatively rapidly to generate a determinable compared with those found in other major lines number of branches, including organisms of great biological of descent of the Gracilicutes (25). There is a preference for significance but startlingly different physiological attributes . adenine at position 906 and for cytosine at position 1520 (a These relationships invalidate the proposal for an interim set guanine residue is the eubacterial consensus composition at of higher taxa proposed in Bergey’s Munual of Systematic these positions). In terms of ribonuclease T,-resistant oligo- Bacteriology (14) separating the classes Scotobacteria (for nucleotides, catalogs of Proteobncteria can be characterized nonphotosynthetic true bacteria, which now prove to be by the following signatures (positions and distribution in relatives of purple bacteria) and Anoxyphotobacteria (en- parentheses): CUAAUACCG (170; alpha-delta), YCAC compassing the photosynthetic bacteria having photosystem AYYG (315; alpha-delta; Y = pyrimidine), AAUUUUG or I alone, including the purple bacteria). The remaining class, AAUUUUC (365; alpha-delta), CUAACUYYG (510; alpha, Oxyphotobacteria, can be retained as a phylogenetically gamma, delta), and UCACACCAUG (1410; alpha-delta). valid circumscription of the bacteria having both photosys- The alpha, beta, and gamma groups correspond to rRNA tems I and 11. These and the other gram-negative bacteria superfamilies IV, 111, and I+II, respectively, as defined by forming the major phylogenetic group derived from the main De Ley and co-workers (3-6, 9, 11, 15, 16) on the basis of stem of bacterial evolution can still be conveniently classi- rRNA similarities (members of the delta subclass have not fied as members of the division Gracilicutes until further yet been included in such studies). The groups within the phylogenetic studies clarify some of the orders of branching Proteobacteria are termed “subdivisions” by Woese et al., or the need for status at the level of division. The gram- (26) or “subphyla” by Woese (25). Only a comparison of full positive bacteria form a more clearly structured phyloge- 16s rRNA sequences can be expected to convincingly netic group and can remain, as recommended (22), assem- determine the common origin of the four subclasses; other bled in the division Firmicutes. methods, such as deoxyribonucleic acid-rRNA pairing, com- The outstanding attribute of the major phylogenetic parison of 5s rRNA sequences, and 16s rRNA cataloging, branches (a,p, y, and 6) within the purple bacteria and their are not capable of discrimination at that level. relatives is the diversity of shape and physiology. Therefore, Table 1 lists those taxa which have been found to be we propose that these organisms be designated Proteobac- members of each of the individual groups, and the methods teria classis nov. (Prot.e.0.bac.ter’i.a. Gr. n. Proteus, a that determine their phylogenetic positions are indicated in Greek god of the sea, capable of assuming many different the references cited; the names used are included without shapes; Gr. dim. n. bakterion, a small rod; Proteobacteria prejudice. At this time we do not have a formal nomencla- protean group of bacteria of diverse properties despite a tural proposal for any new ranks between class and genus common ancestry). It seems appropriate to use the suffix because thorough study will be required to establish stable -bacteria at this hierarchical level because it is consistent taxonomic arrangements and phenotypic markers for those with an extant proposal of higher taxa (14) that is useful in ranks (22). The groups corresponding to the immediate separations within the Proteobncteria should be at the subclass rank and are so shown in Table 1; however, to * Corresponding author. emphasize that these group names have no formal status in 321 322 NOTES INT. J. SYST.BACTERIOL. TABLE 1. Genera recognized as members of the class Proteobacteria“ References Subclass Taxonb 16s rRNA 16s rRNA-23s rRNA 5s rRNA sequences hybridization sequences “Alpha” Rhodohacter 25 9 Rhodomicrobium 25 Rhodopseudomonas 25 9 Rhodopila 25 Rhodospirillum 25 9 13 Acetobacter 9 Acidiphilium 13 Agrobacteriurn 25 9 Ancalornicrobium N P” Aquaspirillum 25 9 Azospirillurn 25 9 Beijerinckia NP 9 Blastobacter 17 Brady rh izo bium 8 9 Caulobacter NP Erythrobacter 25 Filornicrobium 17a Gemmobacter 17 Gluconohacter 9 Hyp homic ro biurn 17a 17a Hyphornonas 17a Me thy lobacteriurn NP My coplana Nitrobacter 25 17a Paracoccus 25 13 Pedornicrobium 17a Phy llobacterium Phenylobacterium 25 Prosthecornicrobium NP Rhizohium 25 Rochalimaea 25 Stella 17a NP Xanthobacter NP Zymornonas 9 “Beta” R hodocyclus 25 13 Achromohacter 11 Alcaligenaceae 4 Alcaligenes 25 15 Bordetella 15 Aquaspirillum 25 Chrornobacteriurn 25 5 Comamonas 25 6 Derxia NP 5 Janthinobacterium 25 5 King ella 16 Leptothrix 19 Methylomonas Clara 28 Methanolomonas 28 Methanomonas 28 Neisseria 25 16 Nitrosococcus 25 Nitrosolobus 25 Nitrosospira 25 Nitrosovibrio 25 Oligella 15 Pseudornonas acidovorans complex 25 5 Pseudornonas solanacearum complex 25 5 13 Sirnonsiella NP Sphaerotilus 25 Spirill urn 25 Tuy lorella 15 Thiobucillusd 25 19 Vitreoscilla 25 19 Xylophilus 24 Continued on following page VOL. 38, 1988 NOTES 323 TABLE 1-Continued References Subclass Taxonb 16s rRNA 16s rRNA-23s rRNA 5s rRNA sequences hybridization sequences "Gamma" Chrornatiaceae 25 Amoehohacter 7 Chrornatiurn 25 13 Larnprocystis 25 Thiocapsa 25 Thiocystis 25 Thiodictyon 25 Thiosp irill urn 25 Ectothiorhodospiraceae 25 Eciothiorhodospira 25 Acinetobacter 25 16 Aeromonadaceae 3 Aerornonas 27 3 Alterornonas 27 3 13 Alysiella NP Azornonas 5 Azotobacter 5 Beggiatoa 25 19 Branhamella 16 Deleya NP 5 Enterohacteriaceae 27 3 Budvicia (1) Buttiauxella' Cedecea" Citrobacter" Edwardsiella' Enterohacter 27 Erwinia' Es ch e ric h ia 27 3 Hafnia' Klebsiella' Kluyvera' Leclercia (21) Leminorella' Moellerella' Morganella' Obesurnbacterium' Proteus 27 Providencia' Rahnella' Salmonella'' Serratia 27 Shigella" Taturnella' Yersinia 27 Yokenella (= Koserella) (12) Xenorhabdus 6a Frateuria 5 Halornonas 27 Legionella 27 Leucothrix 27 Lysohacter 27 Marinornonas 5 Moraxella 16 Oceanospirillurn 25 Pasteurellaceue 3 Pasteurella 25 3 Plesiornonas 3 Pseudomonas juorescens complex 25 5 13 Psychrobacter (10) Ruminobacter 18, 25 Serpens 25 Thiorn icrospira 19 Thiothrix 19 Continued on following page 324 NOTES INT. J. SYST.BACTERIOL. TABLE 1-Con tin lied References Subclass Taxon” 16s rRNA 16.5 rRNA-23s rRNA 5s rRNA sequences hybridization sequences Vibrion acea e 3 3 Enhydrobacter (20) Listonella Vibrio 27 Photobacterium 27 3 Skewanella Xanthomonas 25 5 Xy lella 23 ‘‘Delta’ ’ Bdellovibrio 25 Desulfobucter 25 Desulfobulbus 25 Desulfococcus 25 Desulfonema 25 Desulfovibrio 25 Desulfuromonas 25 Myxococcuceae 2s Chondromyces NP Cystobacter 25 Myxococcits 25 Nannocystis 25 Sorangium 25 Stigmatella 25 Pelobacter NP ‘’ Genera of phototrophic bacteria head the list of taxa and are followed by other taxa in alphabetical order. Only phylogenetically
Recommended publications
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Is It Essential to Sequence the Entire 16S Rrna Gene for Bacterial
    » INSTRUMENTATION » Is it Essential to Sequence Introduction Bacterial Identification in the biopharmaceutical industry, especially in the Entire 16S rRNA Gene manufacturing facilities, is very important because an occurrence of a problematic microorganism in the final product could be harmful for the end user and detrimental to a company’s finances and reputation. for Bacterial Identification? Environmental Monitoring (EM) programs are the cornerstone of understanding the microbial ecology in a manufacturing facility and have become a regulatory requirement for most manufacturers. The EM program is a biological surveillance system which enables companies to quickly identify organisms which are transient or resident in their facilities before these organisms have an opportunity to contaminate a product. A properly executed EM program provides an early warning of potential contamination problems due to Sunhee Hong, PhD and equipment failure, inadequate cleaning, or deficiencies in staff hygiene Christine E. Farrance, PhD training, for example, so that problems can be corrected to prevent Charles River adulteration of the end product. The Food and Drug Administration (FDA) has published guidelines for the production of sterile drugs by aseptic processing which includes a section on EM programs, and the USP general information chapter “Microbiological Control and Monitoring of Aseptic Processing Environments” also contains detailed information regarding EM programs1. The EM program is only effective if the organisms recovered from the facility are accurately identified, so the information gathered can be used to understand the microbial control through tracking and trending and dictate appropriate remediation activities. There are several different options available for bacterial identification; however, the use of 16S rRNA gene sequences has been considered the most powerful and accurate tool, while conventional phenotypic methods often show major weaknesses2-5.
    [Show full text]
  • Azorhizobium Doebereinerae Sp. Nov
    ARTICLE IN PRESS Systematic and Applied Microbiology 29 (2006) 197–206 www.elsevier.de/syapm Azorhizobium doebereinerae sp. Nov. Microsymbiont of Sesbania virgata (Caz.) Pers.$ Fa´tima Maria de Souza Moreiraa,Ã, Leonardo Cruzb,Se´rgio Miana de Fariac, Terence Marshd, Esperanza Martı´nez-Romeroe,Fa´bio de Oliveira Pedrosab, Rosa Maria Pitardc, J. Peter W. Youngf aDepto. Cieˆncia do solo, Universidade Federal de Lavras, C.P. 3037 , 37 200–000, Lavras, MG, Brazil bUniversidade Federal do Parana´, C.P. 19046, 81513-990, PR, Brazil cEmbrapa Agrobiologia, antiga estrada Rio, Sa˜o Paulo km 47, 23 851-970, Serope´dica, RJ, Brazil dCenter for Microbial Ecology, Michigan State University, MI 48824, USA eCentro de Investigacio´n sobre Fijacio´n de Nitro´geno, Universidad Nacional Auto´noma de Mexico, Apdo Postal 565-A, Cuernavaca, Mor, Me´xico fDepartment of Biology, University of York, PO Box 373, York YO10 5YW, UK Received 18 August 2005 Abstract Thirty-four rhizobium strains were isolated from root nodules of the fast-growing woody native species Sesbania virgata in different regions of southeast Brazil (Minas Gerais and Rio de Janeiro States). These isolates had cultural characteristics on YMA quite similar to Azorhizobium caulinodans (alkalinization, scant extracellular polysaccharide production, fast or intermediate growth rate). They exhibited a high similarity of phenotypic and genotypic characteristics among themselves and to a lesser extent with A. caulinodans. DNA:DNA hybridization and 16SrRNA sequences support their inclusion in the genus Azorhizobium, but not in the species A. caulinodans. The name A. doebereinerae is proposed, with isolate UFLA1-100 ( ¼ BR5401, ¼ LMG9993 ¼ SEMIA 6401) as the type strain.
    [Show full text]
  • Introduction to Bacteriology and Bacterial Structure/Function
    INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century.
    [Show full text]
  • Int J Syst Evol Microbiol 67 1
    Author version : International Journal of Systematic and Evolutionary Microbiology, vol.67(6); 2017; 1949-1956 Imhoffiella gen. nov.. a marine phototrophic member of family Chromatiaceae including the description of Imhoffiella purpurea sp. nov. and the reclassification of Thiorhodococcus bheemlicus Anil Kumar et al. 2007 as Imhoffiella bheemlica comb. nov. Nupur1, Mohit Kumar Saini1, Pradeep Kumar Singh1, Suresh Korpole1, Naga Radha Srinivas Tanuku2, Shinichi Takaichi3 and Anil Kumar Pinnaka1* 1Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh – 160 036, INDIA 2CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam-530017, INDIA 3Nippon Medical School, Department of Biology, Kyonan-cho, Musashino 180-0023, Japan Address for correspondence* Dr. P. Anil Kumar Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh – 160 036, INDIA Email: [email protected] Telephone: 00-91-172-6665170 Running title Imhoffiella purpurea sp. nov. Subject category New taxa (Gammaproteobacteria) The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain AK35T is HF562219. A coccoid-shaped phototrophic purple sulfur bacterium was isolated from a coastal surface water sample collected from Visakhapatnam, India. Strain AK35T was Gram-negative, motile, purple colored, containing bacteriochlorophyll a and the carotenoid rhodopinal as major photosynthetic pigments. Strain AK35T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically. Strain AK35T was able to utilize sulfide and thiosulfate as electron donors. The main fatty acids present were identified as C16:0, C18:1 T 7c and C16:1 7c and/or iso-C15:0 2OH (Summed feature 3) were identified.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • 1 Molecular Analysis of Honey Bee Foraging Ecology Dissertation
    Molecular analysis of honey bee foraging ecology Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Rodney Trey Richardson Graduate Program in Entomology The Ohio State University 2018 Dissertation Committee Professor Reed Johnson, Advisor Professor Mary Gardiner Professor John Christman Professor Roman Lanno 1 Copyrighted by Rodney Trey Richardson 2018 2 Abstract While numerous factors currently impact the health of honey bees and other pollinating Hymenoptera, poor floral resource availability due to habitat loss and land conversion is thought to be important. This issue is particularly salient in the upper Midwest, a location which harbors approximately 60 percent of the US honey bee colonies each summer for honey production. This region has experienced a dramatic expansion in the area devoted to crop production over the past decade. Consequently, understanding how changes to landscape composition affect the diversity, quality and quantity of available floral resources has become an important research goal. Here, I developed molecular methods for the identification of bee-collected pollen by adapting and improving upon the existing amplicon sequencing infrastructure used for microbial community ecology. In thoroughly benchmarking our procedures, I show that a simple and cost-effective three-step PCR-based library preparation protocol in combination with Metaxa2-based hierarchical classification yields an accurate and highly quantitative pollen metabarcoding approach when applied across multiple plant markers. In Chapter 1, I conducted one of the first ever proof-of-concept studies applying amplicon sequencing, or metabarcoding, to the identification of bee-collected pollen.
    [Show full text]
  • The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
    life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment.
    [Show full text]
  • Prevalence of Antibiotic-Resistant, Toxic Metal-Tolerant and Biofilm- Forming Bacteria in Hospital Surroundings
    Vol: 35(3), Article ID: e2020018, 19 pages https://doi.org/10.5620/eaht.2020018 eISSN: 2671-9525 1 Original Article 2 Prevalence of antibiotic-resistant, toxic metal-tolerant and biofilm- 3 forming bacteria in hospital surroundings 4 Soumitra Nath1,2,3,* , Ahana Sinha1, Y. Suchitra Singha1, Ankita Dey1, Nilakshi Bhattacharjee1 and Bibhas Deb1,2,3 5 6 1 Department of Biotechnology, Gurucharan College, Silchar, Assam, India 7 2 Bioinformatics Centre, Gurucharan College, Silchar, Assam, India 8 3 Institutional Biotech Hub, Gurucharan College, Silchar, Assam, India 9 *Correspondence: [email protected] 10 11 Received: April 19, 2020 Accepted: August 31, 2020 Abstract The emergence and rapid spread of antibiotic-resistant bacteria due to unethical and non-scientific disposal of hospital wastes and clinical by-products caused an alarming environmental concern and associated public health risks. The present study aims to assess the co-selection of antibiotic resistance and heavy metal tolerance by bacteria isolated from hospital effluents. These isolates were also tested for hemolytic activity, pH-tolerance, thermal inactivation, auto- aggregation, cell-surface hydrophobicity and interaction with other bacteria. The study reports the prevalence of antibiotic-resistant and heavy metal tolerant bacteria in clinical effluents and water samples. Most of these isolates were resistant to vancomycin, clindamycin, ampicillin, rifampicin, penicillin-G, methicillin and cefdinir, and evidenced the production of extended-spectrum β-lactamase enzyme. Toxic metals such as cadmium, copper, iron, lead and zinc also exert a selection pressure towards antibiotic resistance. Pseudomonas aeruginosa strain GCC_19W3, Bacillus sp. strain GCC_19S2 and Achromobacter spanius strain GCC_SB1 showed β-hemolysis, evidenced by the complete breakdown of the red blood cells.
    [Show full text]
  • Hyphal Proteobacteria, Hirschia Baltica Gen. Nov. , Sp. Nov
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1990, p. 443451 Vol. 40. No. 4 0020-7713/9O/040443-O9$02.00/0 Copyright 0 1990, International Union of Microbiological Societies Taxonomic and Phylogenetic Studies on a New Taxon of Budding, Hyphal Proteobacteria, Hirschia baltica gen. nov. , sp. nov. HEINZ SCHLESNER," CHRISTINA BARTELS, MANUEL SITTIG, MATTHIAS DORSCH, AND ERKO STACKEBRANDTT Institut fur Allgemeine Mikrobiologie, Christian-Albrecht-Universitat, 2300 Kiel, Federal Republic of Germany Four strains of budding, hyphal bacteria, which had very similar chemotaxonomic properties, were isolated from the Baltic Sea. The results of DNA-DNA hybridization experiments, indicated that three of the new isolates were closely related, while the fourth was only moderately related to the other three. Sequence signature and higher-order structural detail analyses of the 16s rRNA of strain IFAM 141gT (T = type strain) indicated that this isolate is related to the alpha subclass of the class Proteobacteriu. Although our isolates resemble members of the genera Hyphomicrobium and Hyphomonas in morphology, assignment to either of these genera was excluded on the basis of their markedly lower DNA guanine-plus-cytosine contents. We propose that these organisms should be placed in a new genus, Hirschiu baltica is the type species of this genus, and the type strain of H. bdtica is strain IFAM 1418 (= DSM 5838). Since the first description of a hyphal, budding bacterium, no1 and formamide were tested at concentrations of 0.02 and Hyphomicrobium vulgare (53), only the following additional 0.1% (vol/vol). Utilization of nitrogen sources was tested in genera having this morphological type have been formally M9 medium containing glucose as the carbon source.
    [Show full text]
  • Beijerinckia Derxii Stimulates the Viability of Non-N2-Fixing Bacteria in Nitrogen-Free Media
    H.R.Brazilian Barbosa Journal et al. of Microbiology (2000) 31:168-173 ISSN 1517-8382 BEIJERINCKIA DERXII STIMULATES THE VIABILITY OF NON-N2-FIXING BACTERIA IN NITROGEN-FREE MEDIA Heloiza R. Barbosa*; Daniela Strauss Thuler; Márcia Aiko Shirakawa; Natália R. S. Miyasaka Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil. Submitted: February 14, 2000; Returned to authors for corrections: May 30, 2000; Approved: August 30, 2000 ABSTRACT The interactions between the nitrogen–fixing microorganism Beijerinckia derxii with two non-diazotrophic bacteria, either Escherichia coli or a facultative sulphur-oxidizing chemolitotroph, were studied in mixed cultures. Direct and indirect contact between B. derxii and E. coli were tested. B. derxii increased CFU numbers and/or maintained the viability of the non-diazotrophic bacteria, but neither growth nor nitrogenase activity of the nitrogen-fixing bacterium were affected by either partner. Key words: Beijerinckia derxii, coculture, viability. INTRODUCTION extent of copper, nickel and ore leaching, indicating that nitrogen fixation can be important in bioextractive metallurgy. Mixed cultures of microorganisms are suitable systems for In this study the N2-fixing microorganism Beijerinckia studying the interactions between organisms and their impact derxii, frequently found in Brazilian acid soils (8) was on the environment and may open up new perspectives that cocultured with two non-N2-fixing bacteria, Escherichia coli could lead to new discoveries. Some mixed cultures containing or a facultative sulphur-oxidizing chemolitotroph, in order to N - fixing bacteria provide conditions more suitable for N 2 2 understand some of the ecological roles of free-living N2-fixing fixation than pure cultures.
    [Show full text]