Diverse Syntrophic Partnerships from Deep-Sea Methane Vents Revealed by Direct Cell Capture and Metagenomics

Total Page:16

File Type:pdf, Size:1020Kb

Diverse Syntrophic Partnerships from Deep-Sea Methane Vents Revealed by Direct Cell Capture and Metagenomics Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics Annelie Pernthaler*†‡, Anne E. Dekas*, C. Titus Brown§, Shana K. Goffredi*, Tsegereda Embaye*, and Victoria J. Orphan*‡§ Divisions of *Geological and Planetary Sciences and §Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved March 18, 2008 (received for review November 29, 2007) Microorganisms play a fundamental role in the cycling of nutrients of the metabolic potential of the entire community (4, 5); however, and energy on our planet. A common strategy for many microorgan- information regarding specific groups of microorganisms and in- isms mediating biogeochemical cycles in anoxic environments is terspecies associations is often lacking. Methods that enable the syntrophy, frequently necessitating close spatial proximity between selective extraction of individual microorganisms from native mi- microbial partners. We are only now beginning to fully appreciate the crobial communities before genome sequencing have shown prom- diversity and pervasiveness of microbial partnerships in nature, the ise for interpreting genome data in the context of specific micro- majority of which cannot be replicated in the laboratory. One notable organisms. Examples of these purification approaches for single example of such cooperation is the interspecies association between cells include microfluidics (6), optical trapping (7), immunomag- anaerobic methane oxidizing archaea (ANME) and sulfate-reducing netic capture (8), and flow cytometry (9, 10). The ability to identify bacteria. These consortia are globally distributed in the environment and characterize the metabolic potential of in situ syntrophic and provide a significant sink for methane by substantially reducing partnerships presents a greater challenge and requires new meth- the export of this potent greenhouse gas into the atmosphere. The odological strategies that are both compatible with metagenomic interdependence of these currently uncultured microbes renders analysis and can be applied in complex environmental samples, such them difficult to study, and our knowledge of their physiological as anoxic sediments, where these interspecies associations are likely capabilities in nature is limited. Here, we have developed a method to occur. to capture select microorganisms directly from the environment, In response to this need, we have developed a culture- using combined fluorescence in situ hybridization and immunomag- independent method called ‘‘magneto-FISH’’ that enables the netic cell capture. We used this method to purify syntrophic anaerobic capture and assessment of interspecies associations and corre- methane oxidizing ANME-2c archaea and physically associated mi- sponding metabolic properties of these organisms directly from croorganisms directly from deep-sea marine sediment. Metagenom- complex environments. Briefly, magneto-FISH allows for the tar- ics, PCR, and microscopy of these purified consortia revealed unex- geted magnetic capture of whole microorganisms and cell aggre- pected diversity of associated bacteria, including Betaproteobacteria gates, using 16S rRNA oligonucleotide probes to the exclusion of and a second sulfate-reducing Deltaproteobacterial partner. The de- other microorganisms within the environmental sample. In this tection of nitrogenase genes within the metagenome and subse- study, we applied magneto-FISH for targeted metagenomic inves- 15 tigations of in situ syntrophic assemblages, followed by genomics- quent demonstration of N2 incorporation in the biomass of these methane-oxidizing consortia suggest a possible role in new nitrogen enabled hypothesis development and subsequent hypothesis testing, inputs by these syntrophic assemblages. using a combination of pyrosequencing and isotope labeling ex- periments. The magneto-FISH method increases the probability of betaproteobacteria ͉ methanotrophy ͉ nitrogen fixation ͉ syntrophy identifying potentially hidden microbial associations and simplify- ing environmental genomics by specifically targeting the microor- ganism(s) of interest. ur understanding of the interplay between microorganisms Here, we investigate a globally significant but poorly understood Oand the environment has advanced tremendously in the past syntrophic association between as-yet uncultured groups of anaer- two decades through the application of environmental metagenom- obic methane-oxidizing archaea (ANME) and sulfate-reducing ics, microanalytical methodologies, novel cultivation methods, and bacteria; a microbial association responsible for consuming Ͼ80% coupling of stable and radiogenic isotopes with molecular analysis of the methane flux from the ocean (11). We can now begin to of organic biosignatures (i.e., DNA, RNA, protein, and lipids). The address key questions pertaining to the ecology and physiology of strict requirement for pure cultures has been alleviated through the these organisms, such as: How versatile is the syntrophic association refinement of these techniques, and the field of microbial ecology is now poised to fully illuminate the complex interrelationships within natural communities. Author contributions: A.P. and V.J.O. designed research; A.P., A.E.D., S.K.G., T.E., and V.J.O. The anaerobic cycling of carbon frequently relies on closely performed research; A.P. and C.T.B. contributed new reagents/analytic tools; A.P., A.E.D., coupled interdependent microbial associations (1). The prevalence C.T.B., S.K.G., and V.J.O. analyzed data; and A.P., C.T.B., and V.J.O. wrote the paper. and biogeochemical importance of these associations emphasizes The authors declare no conflict of interest. the need for effective methodologies that enable the study of novel This article is a PNAS Direct Submission. microbial processes and interspecies relationships in situ.Tothis Data deposition: The sequence reported in this paper has been deposited in the GenBank database [accession nos. EU622281–EU622312 (16S rRNA) and EU647340–EU647354 end, culture-independent environmental metagenomic studies (nifH)]. have expanded our understanding of the phylogenetic and meta- †Present address: Department of Environmental Microbiology, Centre for Environmental bolic diversity on Earth (2, 3). An important caveat of these studies Research, UFZ, Permoser Strasse 15, 04318 Leipzig, Germany. is the ability to interpret the metagenomic data in the context of ‡To whom correspondence may be addressed. E-mail: [email protected] or organism identity, which increases in difficulty with increasing [email protected]. community complexity. Direct sequencing of complex soils and This article contains supporting information online at www.pnas.org/cgi/content/full/ sediments, using high-throughput sequencing methods (shotgun 0711303105/DCSupplemental. cloning or clone-free pyrosequencing), yield important overviews © 2008 by The National Academy of Sciences of the USA 7052–7057 ͉ PNAS ͉ May 13, 2008 ͉ vol. 105 ͉ no. 19 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0711303105 Downloaded by guest on September 25, 2021 Table 1. Comparison of 16S rRNA diversity recovered before and after capture of ANME-2c consortia, using Magneto-FISH 16S rRNA phylotypes, % Bulk sediment Bead capture clone library clone library Closest relative Archaea 26 92 ANME-2c 6 7 ANME-2a 21Methanococcoides burtonii 19 0 ANME-2b 44 0 Others (ANME-1, MBGD, MBGB) Bacteria Fig. 1. CARD-FISH of Eel River Basin sediment with probe ANME-2c࿝760 25 42 Deltaproteobacteria (Desulfobulbus (green) and a general DNA stain (DAPI, blue), before (a) and after (b) capture or Desulfosarcina) with paramagnetic beads (dark red, collage of six images). (Scale bars, 10 ␮m.) 032Betaproteobacteria (Burkholderiaceae) 09Alphaproteobacteria (Sphingomonas) 92Gammaproteobacteria (uncultured) between specific ANME groups and associated bacteria? What 16 7 Epsilonproteobacteria (uncultured) 0 4 CFB group* (AJ535255, AY768987) metabolic processes are available to them and how do they specif- 03Planctomyces (AF424488, EF424502) ically acquire essential nutrients in a carbon-dominated environ- 50 Ͻ1 Others (eight additional major lineages) ment? Do these properties vary between the different methane- oxidizing ANME ecotypes? Metagenomic studies of ANME Archaeal and bacterial 16S rRNA clone libraries were constructed by using archaea have primarily focused on methane and energy metabo- Ar20F-958r and Ba27F-1492r, respectively. Total number of clones in archaeal lism; however, the underlying nutrition and the intricacies of these library: 211 (bead capture) and 254 (bulk sediment). Total number of clones in bacterial library: 139 (bead capture) and 165 (bulk sediment). interspecies associations are still a mystery. Using the phylogenetic *CFB group: Cytophaga/Flexibacter/Bacterioides. selectiveness of the 16S rRNA targeted magneto-FISH assay, we broaden our understanding of the syntrophic lifestyle and specifi- cally nitrogen acquisition of a specific methane-oxidizing ecotype, ANME-2 subgroups represent unique ecotypes. Metagenomic se- known as the ANME-2c, and their coassociated bacterial partners quencing of the microbial community in methane seep sediment recovered from methane-rich deep-sea sediments. has shed light on the physiology and specific mechanism of AOM catalyzed by some of the ANME archaea (18, 19). However, details Results and Discussion of the metabolic regulation, environmental
Recommended publications
  • The Syntrophy Hypothesis for the Origin of Eukaryotes Revisited Purificación López-García, David Moreira
    The Syntrophy hypothesis for the origin of eukaryotes revisited Purificación López-García, David Moreira To cite this version: Purificación López-García, David Moreira. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nature Microbiology, Nature Publishing Group, 2020, 5 (5), pp.655-667. 10.1038/s41564- 020-0710-4. hal-02988531 HAL Id: hal-02988531 https://hal.archives-ouvertes.fr/hal-02988531 Submitted on 3 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 2 Perspectives 3 4 5 6 The Syntrophy hypothesis for the origin of eukaryotes revisited 7 8 Purificación López-García1 and David Moreira1 9 10 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France 11 12 13 14 *Correspondence to: [email protected] 15 16 17 18 19 1 20 The discovery of Asgard archaea, phylogenetically closer to eukaryotes than other archaea, together with 21 improved knowledge of microbial ecology impose new constraints on emerging models for the origin of the 22 eukaryotic cell (eukaryogenesis). Long-held views are metamorphosing in favor of symbiogenetic models 23 based on metabolic interactions between archaea and bacteria. These include the classical Searcy’s and 24 hydrogen hypothesis, and the more recent Reverse Flow and Entangle-Engulf-Enslave (E3) models.
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
    life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment.
    [Show full text]
  • The Deep Continental Subsurface: the Dark Biosphere
    International Microbiology (2018) 21:3–14 https://doi.org/10.1007/s10123-018-0009-y REVIEW The deep continental subsurface: the dark biosphere Cristina Escudero1 & Mónica Oggerin1,2 & Ricardo Amils1,3 Received: 17 April 2018 /Revised: 8 May 2018 /Accepted: 9 May 2018 /Published online: 30 May 2018 # Springer International Publishing AG, part of Springer Nature 2018 Abstract Although information from devoted geomicrobiological drilling studies is limited, it is clear that the results obtained so far call for a systematic exploration of the deep continental subsurface, similar to what has been accomplished in recent years by the Ocean Drilling Initiatives. In addition to devoted drillings from the surface, much of the continental subsurface data has been obtained using different subterranean Bwindows,^ each with their correspondent limitations. In general, the number and diversity of microorganisms decrease with depth, and the abundance of Bacteria is superior to Archaea. Within Bacteria, the most commonly detected phyla correspond to Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Within Archaea, methanogens are recurrently detected in most analyzed subsurface samples. One of the most controversial topics in the study of subsurface environments is whether the available energy source is endogenous or partly dependent on products photosynthetically generated in the subsurface. More information, at better depth resolution, is needed to build up the catalog of deep subsurface microbiota and the biologically available electron
    [Show full text]
  • Review: Short Chain Fatty Acids in Human Gut and Metabolic Health
    Wageningen Academic Beneficial Microbes, 2020; 11(5): 411-455 Publishers Short chain fatty acids in human gut and metabolic health E.E. Blaak1*, E.E. Canfora1, S. Theis2, G. Frost3, A.K. Groen4,5, G. Mithieux6, A. Nauta7, K. Scott8, B. Stahl9,10, J. van Harsselaar2, R. van Tol11, E.E. Vaughan12 and K. Verbeke13 1Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.; 2Südzucker Group – Beneo, Wormser Str. 11, Mannheim, 67283, Germany; 3Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ London, United Kingdom; 4Diabetes Center, Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands; 5Quantitative Systems Biology, Department of Pediatrics, Centre for Liver, Digestive and Metabolic Diseases, University Medical Centre Groningen (UMCG), University of Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; 6INSERM U1213, Faculté de Médecine Laennec, University of Lyon, 7-11 Rue Guillaume Paradin, 69372 Lyon, France; 7FrieslandCampina, P.O. Box 1551, 3800 BN Amersfoort, the Netherlands; 8The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom; 9Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands; 10Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584
    [Show full text]
  • Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M
    Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, R. Guyoneaud To cite this version: Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, et al.. Distribution of Sulfate- Reducing Communities from Estuarine to Marine Bay Waters. Microbial Ecology, Springer Verlag, 2017, 73 (1), pp.39-49. 10.1007/s00248-016-0842-5. hal-01499135 HAL Id: hal-01499135 https://hal.archives-ouvertes.fr/hal-01499135 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Microb Ecol (2017) 73:39–49 DOI 10.1007/s00248-016-0842-5 MICROBIOLOGY OF AQUATIC SYSTEMS Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin 1,2 & Marisol Goñi-Urriza1 & Claire Gassie1 & Elisabeth Carlier 1 & Mathilde Monperrus3 & Rémy Guyoneaud1 Received: 23 May 2016 /Accepted: 17 August 2016 /Published online: 31 August 2016 # Springer Science+Business Media New York 2016 Abstract Estuaries are highly dynamic ecosystems in which gradient. The concentration of cultured sulfidogenic microor- freshwater and seawater mix together.
    [Show full text]
  • Impacts of Desulfobacterales and Chromatiales on Sulfate Reduction in The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.16.252635; this version posted November 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Impacts of Desulfobacterales and Chromatiales on sulfate reduction in the 2 subtropical mangrove ecosystem as revealed by SMDB analysis 3 Shuming Mo 1, †, Jinhui Li 1, †, Bin Li 2, Ran Yu 1, Shiqing Nie 1, Zufan Zhang 1, Jianping 4 Liao 3, Qiong Jiang 1, Bing Yan 2, *, and Chengjian Jiang 1, 2 * 5 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro- 6 bioresources, Guangxi Research Center for Microbial and Enzyme Engineering 7 Technology, College of Life Science and Technology, Guangxi University, Nanning 8 530004, China. 9 2 Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove 10 Research Center, Guangxi Academy of Sciences, Beihai 536000, China. 11 3 School of Computer and Information Engineering, Nanning Normal University, 12 Nanning 530299, China. 13 † These authors contributed equally to this work. 14 *: Corresponding Author: 15 Tel: +86-771-3270736; Fax: +86-771-3237873 16 Email: [email protected] (CJ); [email protected] (BY) 17 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.16.252635; this version posted November 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Exploring the Lipidomes of Shallow-Water and Deep-Sea Hydrothermal Systems
    Exploring the lipidomes of shallow-water and deep-sea hydrothermal systems Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. nat. - Am Fachbereich Geowissenschaften der Universität Bremen vorgelegt von Miriam Sollich Bremen Mai 2018 1. Gutachter: Dr. Solveig I. Bühring 2. Gutachter: Associate Prof. Dr. Eoghan P. Reeves Tag des Promotionskolloquiums:16. Februar 2018 Den Wissenschaftlern geht es wie den Chaoten. Es ist alles da, man muss es nur suchen. - Franz Kern - CONTENTS Abstract Zusammenfassung Acknowledgements List of Abbreviations Chapter I 1 Introduction and Methods Chapter II 37 Scope and Outline Chapter III 43 Heat stress dictates the microbial lipid composition along a thermal gradient in marine sediments Chapter IV 91 Shallow-water hydrothermal systems offer ideal conditions to study archaeal lipid membrane adaptations to environmental extremes Chapter V 113 Transfer of chemosynthetic fixed carbon and its ecological significance revealed by lipid analysis of fluids at diffuse flow deep-sea vents (East Pacific Rise 9°50’N) Chapter VI 143 Concluding Remarks and Future Perspectives ABSTRACT Shallow-water and deep-sea hydrothermal systems are environments where seawater percolates downward through fractures in the oceanic crust, and becomes progressively heated and chemically altered. Finally, the entrained water is expelled into the overlying water column as a hydrothermal fluid. Hydrothermal circulation occurs at all active plate boundaries like mid-ocean ridges, submarine volcanic arcs and backarc basins. They represent one of the most extreme and dynamic ecosystems on the planet with steep physico-chemical gradients. Nevertheless, these environments are characterized by exceptional high biomass representing hotspots of life in the mostly hostile and desolated deep sea.
    [Show full text]
  • High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-Methylalkyl)Succinate Synthase Genes
    ORIGINAL RESEARCH published: 07 January 2016 doi: 10.3389/fmicb.2015.01511 High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-methylalkyl)succinate Synthase Genes Marion H. Stagars1,S.EmilRuff1,2† , Rudolf Amann1 and Katrin Knittel1* 1 Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany, 2 HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany Edited by: Alkanes comprise a substantial fraction of crude oil and are prevalent at marine seeps. Hans H. Richnow, These environments are typically anoxic and host diverse microbial communities that Helmholtz Centre for Environmental Research, Germany grow on alkanes. The most widely distributed mechanism of anaerobic alkane activation Reviewed by: is the addition of alkanes to fumarate by (1-methylalkyl)succinate synthase (Mas). Here Beth Orcutt, we studied the diversity of MasD, the catalytic subunit of the enzyme, in 12 marine Bigelow Laboratory for Ocean sediments sampled at seven seeps. We aimed to identify cosmopolitan species as well Sciences, USA Zhidan Liu, as to identify factors structuring the alkane-degrading community. Using next generation China Agricultural University, China sequencing we obtained a total of 420 MasD species-level operational taxonomic units *Correspondence: (OTU0.96) at 96% amino acid identity. Diversity analysis shows a high richness and Katrin Knittel [email protected] evenness of alkane-degrading bacteria. Sites with similar hydrocarbon composition harbored similar alkane-degrading communities based on MasD genes; the MasD †Present address: community structure is clearly driven by the hydrocarbon source available at the various S.
    [Show full text]
  • Metatranscriptome Analysis of Microbial Communities in Rice Microcosms
    Metatranscriptome analysis of microbial communities in rice microcosms Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat) dem Fachbereich Biologie der Philipps-Universität Marburg/Lahn vorgelegt von Yongkyu Kim aus Seoul, Südkorea Marburg an der Lahn | 2012 Metatranscriptome analysis of microbial communities in rice microcosms Doctoral thesis Submitted in the fulfillment of the requirements for a doctoral degree “Doktorgrad der Naturwissenschaften (Dr. rer.nat.)” to the faculty of biology – Philipps-Universität Marburg by Yongkyu Kim From Seoul, South Korea Marburg/Lahn | 2012 The research for the completion of this work was carried out from October 2008 to April 2012 in the Department of Biogeochemistry at the Max Planck Institute for Terrestrial Microbiology under the supervision of PD. Dr. Werner Liesack. Thesis was accepted to the Dean, Faculty of Biology, Philipps-Universität Marburg on: First reviewer: PD. Dr. Werner Liesack Second reviewer: Prof. Dr. Martin Thanbichler Date of oral examination: Publication The following papers were published by the date of submission of the present thesis: 1) Mettel C¥, Kim Y¥, Shrestha PM & Liesack W (2010) Extraction of mRNA from Soil. Applied and Environmental Microbiology 76: 5995-6000 ¥ These authors contributed equally to this work 2) Kulichevskaya IS, Serkebaeva YM, Kim Y, Rijpstra WIC, Damsté JSS, Liesack W & Dedysh SN (2012) Telmatocola sphagniphila gen. nov., sp. nov., a Novel Dendriform Planctomycete from Northern Wetlands. Frontiers in Microbiology 3: 1-9 Dedicate to my wife and family Table of Contents Summary IV Zusammenfassung V 1. Introduction 1 1.1. Microorganisms exist in complex communities 1 1.2. Functional analysis of microbial community 3 1.3.
    [Show full text]
  • Advance View Proofs
    M&E Papers in Press. Published online on March 23, 2012 doi:10.1264/jsme2.ME11357 1 2 Revised ME11357 3 4 Isolation and Characterization of Novel Sulfate-Reducing Bacterium Capable of 5 Anaerobic Degradation of p-Xylene 6 * 7 YURIKO HIGASHIOKA, HISAYA KOJIMA , AND MANABU FUKUI 8 9 The Institute of Low Temperature Science, Hokkaido University, Nishi 8, Kita 19, 10 Kita-ku, Sapporo, Hokkaido 060-0819, Japan 11 Proofs 12 (Received December 21, 2011-Accepted February 2, 2012) 13 View 14 Running headline: p-Xylene-Degrading Sulfate Reducer 15 16 * Corresponding author. E-mail: [email protected]; Tel: 17 +81-11-706-5460;Advance Fax: +81-11-706-5460. 18 19 20 21 1 Copyright 2012 by the Japanese Society of Microbial Ecology / the Japanese Society of Soil Microbiology 22 A novel strain of p-xylene-degrading sulfate reducer was isolated in pure culture. 23 Strain PP31 was obtained from a p-xylene-degrading enrichment culture established 24 from polluted marine sediment. Analyses of the 16S rRNA gene and two functional 25 genes involved in sulfate respiration and anaerobic degradation of aromatic compounds 26 revealed that the isolate was closely related to members of the genus Desulfosarcina. 27 Strain PP31 was capable of growing on p-xylene under sulfate-reducing conditions, and 28 the ratio of generated sulfide and consumed p-xylene suggested complete oxidation by 29 the novel isolate. The strain could not grow on benzene, toluene, ethylbenzene, 30 m-xylene o-xylene, or n-hexane as an electron donor. Strain PP31 is the first isolated 31 bacterium that degrades p-xylene anaerobically, and will be useful to understanding the 32 mechanism of anaerobic degradation of p-xylene.
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]