Sulfate-Reducing Bacteria in Anaerobic Bioreactors Are Presented in Table 1
Total Page:16
File Type:pdf, Size:1020Kb
Sulfate-reducing Bacteria inAnaerobi c Bioreactors Stefanie J.W.H. Oude Elferink Promotoren: dr. ir. G. Lettinga bijzonder hoogleraar ind eanaërobisch e zuiveringstechnologie en hergebruik dr. W.M. deVo s hoogleraar ind e microbiologie Co-promotor: dr. ir. AJ.M. Stams universitair docent bij deleerstoelgroe p microbiologie ^OSJO^-M'3^- Stefanie J.W.H.Oud eElferin k Sulfate-reducing Bacteria inAnaerobi c Bioreactors Proefschrift terverkrijgin g van degraa d van doctor op gezag van derecto r magnificus van deLandbouwuniversitei t Wageningen, dr. C.M. Karssen, inhe t openbaar te verdedigen opvrijda g 22me i 1998 des namiddags tehal f twee ind eAula . r.r, A tri ISBN 90 5485 8451 The research described inthi s thesiswa s financially supported by agran t ofth e Innovative Oriented Program (IOP) Committee on Environmental Biotechnology (IOP-m 90209) established by the Dutch Ministry of Economics, and a grant from Pâques BV. Environmental Technology, P.O. Box 52, 8560AB ,Balk , TheNetherlands . BIBLIOTHEEK LANDBOUWUNIVERSITEIT WAGENTNGEN 1 (J ÜOB^ . ^3"£ Stellingen 1. Inhu n lijst van mogelijke scenario's voor de anaërobe afbraak van propionaat onder sulfaatrijke condities vergeten Uberoi enBhattachary a het scenario dat ind e anaërobe waterzuiveringsreactor van depapierfabrie k teEerbee k lijkt opt etreden , namelijk de afbraak vanpropionaa t door syntrofen en sulfaatreduceerders end e afbraak van acetaat en waterstof door sulfaatreduceerders en methanogenen. Ditproefschrift, hoofdstuk 7 UberoiV, Bhattacharya SK (1995)Interactions among sulfate reducers, acetogens, and methanogens in anaerobicpropionate systems. 2. De stelling van McCartney en Oleszkiewicz dat sulfaatreduceerders inanaërob e reactoren waarschijnlijk alleen competerenme t methanogenen voor het aanwezige waterstof, omdat acetaatafbrekende sulfaatreduceerders nog nooit uit anaëroob slib waren geïsoleerd, was correct bij indiening, maar achterhaald bij publicatie. Oude Elferink SJWH, Maas RN, Stams AJM (1993) Characterization of anewl y isolated "Desulfobacterium" species, enriched with acetate from an Upflow Anaerobic Sludge Bed (UASB) reactor. Bioengineer.l:48. McCartney DM, Oleszkiewicz JA (1993) Competition between methanogens and sulfate reducers: effect of CODisulfate ratio and acclimation. Water Environ. Res. 65:655-664. 3. Identificatie vanMethanospirillum hungateii nkorrelsli b metbehul p van transmissie electronenmicroscopie (TEM)blijf t twijfelachtig, ondanks degoe d gedocumenteerde celkenmerken vanM. hungatei. Fang HHP, Li YY, Chui HK (1995) Performance and sludge characteristics of UASB process treating propionate-rich wastewater. Wat. Res. 29:5-895-898. 4. Het ontdekken van eennieuw ebacteriesoor t isgee nkunst , het isoleren en karakteriseren wel. Amann R, Ludwig W, Schleifer K-H (1994 ) Identification of uncultured bacteria: A challenging task for molecular taxonomists. ASM News 60:360-365. 5. Het aantal sulfaatreduceerders in demon d hoeft, zeker gezien hun fermentatieve eigenschappen, niet gelimiteerd teworde n doorhe t beschikbare sulfaat. Van der Hoeven JS,Va n den Kieboom CWA, Schaeken MJM (1995) Sulfate-reducing bacteria in theperiodonta l pocket. Oral Microbiol. Immunol. 10:280-290. 6. Zelfs de meest gecompliceerde methanogene reactor is slechts een vereenvoudigde versie van depens . Van Soest PJ (1994) Nutritional Ecology of the ruminant. 2nded . Cornell University Press, Ithaca, USA. 7. Met geloof envertrouwe n isniet smis ,zolan g hetmaa rnie tblin dis . 8. Leuk wetenschappelijk onderzoek voldoet aandezelfd e criteria als een leukspel . Hetbeva t evolutie entempo ,he ti s eencombinati e vankund e (ofbehendigheid ) en toeval, succes kanworde n toegeschreven aan eigen briljantie en mislukking aan dommepech . 9. Deobservati e van Prof. Dr.Andrease n dat succesvol schrijverschap is gerelateerd aandepressie , alcoholisme enmanisch e depressiviteit, geeft geen positief beeld vanAIO' sdi eprobleemloo s eenperfec t proefschrift schrijven. N. Andreasen. In: De Volkskrant, 4 Oktober 1997. 10. Natuurreservaat "DeBlauw eKamer " is eenmoo i stukje groeneruimte . 11. Met dehondsdage n ishe t gewoonlijk geen hondeweer. 12. Vele handen maken wellicht werk. 13. Een nadeel van sluipverkeer isda t het,ander s dan denaa m doet vermoeden,vaa k met grote snelheid voorbij raast. 14. Netwerken isne twerken . 15. Een slimme meid houdt niet van voorkeursbeleid. Stellingenbehorend bij het proefschrift: "Sulfate reducingbacteria inanaerobic bioreactors." StefanieJ. W.H. OudeElferink, Wageningen, 22mei 1998. Nature,to be commanded, mustbe obeyed. SirFranci s Bacon Aan mijn ouders CONTENTS Chapter page 1 Introduction. 1 2 Desulforhabdus amnigenusgen .nov . sp.nov. , asulfat e reducer isolated 41 fromanaerobi c granular sludge. 3 Desulfobacca acetoxidans gen.nov . sp.nov. , anove l acetate-degrading 49 sulfate reducer isolated from sulfidogenic granular sludge. 4. Kinetics of acetateoxidatio n by two sulfate reducers isolated from anaerobic 59 granular sludge. 5. Isomerisation ofbutyrat e to isobutyrateb yDesulforhabdus amnigenus. 71 6. Detection and quantification ofDesulforhabdus amnigenus in anaerobic 77 anaerobic granular sludgeb y dotblo t hybridization andPC R amplification. 7. Characterization ofth e sulfate-reducing and syntrophic population in granular 87 sludge from a full-scale anaerobic reactor treating papermill wastewater 8. Identification of sulfate reducers andSyntrophobacter sp. in anaerobic granular 103 granular sludgeb y fatty-acid biomarkers and 16SrRN A probing 9. Summary and concluding remarks 119 Samenvatting 126 Curriculum vitae 133 Dankwoord 135 List ofpublication s 136 CHAPTER 1 Introduction Partly published as: Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic bioreactors.FEM S Microbiol. Rev. 15,119-136. Stams AJM, Oude Elferink SJWH (1997) Understanding and advancing wastewater treatment. Curr. Opin.Biotechnol . 8,328-334 . Chapter; 1. INTRODUCTION Since the 1970's the full-scale application of anaerobic wastewater treatment has increased rapidly [108,110,134,254]. This interest in anaerobic wastewater treatment was partly due to the increasing energy prices and for the other part due to the more stringent legislation for the discharge of industrial wastewaters. Contrary to anaerobic wastewater treatment systems, conventional aerobic systems demand high energy inputs for aeration, and large amounts of surplus sludge are produced during the purification process [196]. A break-through in the application of anaerobic wastewater treatment systems came with the development of several new anaerobic reactor types with immobilized biomass, e.g. the Upflow Anaerobic Sludge Bed (UASB) reactor [109-111], the Fluidized Bed reactor [72,88] and the Anaerobic Filter [254,255]. These reactor types have been reviewed by others [71,88,108,196]. The system with the widest application is undoubtedly the UASB reactor [110]. At present more than 400 full-scale UASB reactors are in operation for the treatment of industrial wastewaters [223]. In the UASB reactor an uncoupling of the solids retention time and the hydraulic retention time is achieved by the immobilization of anaerobic bacteria into highly active,well-settleabl e sludge granules [80,109,111], Municipal sewage and industrial wastewaters from e.g. sugar-refineries, beer-breweries, potato- processing factories and slaughterhouses, which contain sulfate concentrations of only about 50-200 mg/1, are treated satisfactorily in UASB reactors. However, problems may arise when wastewaters are treated which contain high concentrations of sulfate or sulfite. Some industrial wastewaters, e.g. wastewaters from edible oil industry, paper mills and patato-starch factories, may contain sulfate concentrations of several grams per liter [172,173,253], as aresul t of theus e of sulfuric acid, aver y concentrated andrelativel y cheap strong acid, or sulfite, ableachin g agent, inproductio n processes. During anaerobic treatment of these wastewaters sulfate reduction will interfere with methanogenesis. Occurrence of sulfate reduction has several disadvantages: 1) sulfate reducers and methanogens compete for substrates resulting in a decrease of methane production [172], 2) sulfide is inhibitory for several types of anaerobic bacteria [74,75,100,197], 3) H2S gas is toxic and malodorous and can cause corrosion problems inboiler s and internal combustion engines [172],an d therefore it has to be removed from the biogas, 4) sulfide-containing effluents of anaerobic reactors can not be discharged at the surface water, because sulfide contributes to the oxygen demanding capacity of the water and because of malodor problems. Therefore, a post-treatment of the anaerobically purified wastewater will become essential. In general occurrence of sulfate reduction in anaerobic bioreactors is undesirable due to the problems associated with the process. However, besides the disadvantages, there are also some advantages of the occurrence of sulfate reduction: 1) sulfate reduction can be used together with Introduction sulfide removal techniques as a biotechnological method for the removal of sulfate [29,78,123,188,207], 2) metal-sulfides have extremely low solubilities, a property which can be used to precipitate toxic heavy metals, such as Co, Ni, Pb and Zn [46,123,135], 3) problems with the anaerobic treatment of sulfite-containing wastewater can be solved by the reduction of sulfite to sulfide [173,140]. The following introduction will first describe how microbiological processes in mesophilic