A Portal to Saturn

Total Page:16

File Type:pdf, Size:1020Kb

A Portal to Saturn s(AaN nuaDs, nDds, E uuDS 9z 11 Bto'sog 4ao4to6J1 '1/en!$q a)uatrs e)DdS .quawiltsur buualol Aq pe\oaLc urnlls LpottD)-jd1NSVN ]lparJ 6u16ow1 s,1u1sso3 worl sralllJ uareJllp 6usn ua4o1 sa6nw! ]ueraJlp aL Jo ltDLtod V (ra>IIIdS aql ppuil roC 'sadPJspuel snolrnJ Jo sauaf,s pue sll pue urnles aJoldxg :a1dru1s sem 1eo3 I-reruFd s,rutsse3 'aroru rualslls urntes aqt tuorJ 'e1ep 'sa8eurl;o ruparls aql leql qlyv\ pue pua 11IA[ Sultuem stsltualrs UaI teqt ^peals pue genereds ro8el{o1 pue roauold pooqroqq8lau s.urnles Jo uollPloldxa s(lulsse) uoos lng elep sa8erui 4req luas 'all Jo i{lPaqs s(snpelaJu! . aqt ra$p 'so35r aq1 ut pallaJuof, seIA ]lesll uolsslru aql 'suaSLnH-rursseJ lnoqtr/v\ olll roJ Ie-iluatod oql tIP tro luPuodtul lsoul sdeqrad ^aolaq asoqt 'pue !sur:o1s Sutltot '1sen s,urnles :sa{el aueqlaru d>llnru plro^A e ur ou)l ralau erreq deql iuarpliqllooqJs puelsropun s,ue1r; l{q pateusuo-aJP IIIIs pue-orala suot]eut8erut puv'suooru s11 pue 's8urr s11'1ueg8 se8 eq1 ol (qola Jno s(Iuisse3 ur 1q8ne3's8uJl sll pue'suooru s11 elep;o sa1[qe8r8 q8norql 3u1qu.ror ol saAII naql ]o ape)ap 'taueld aql;o sa8pu;l l\er ooo(oo€ ueq] aJoru palllrusuerl e u€ql arolu pale)Ipap oqlu\ slsllualJs pue slaajPl )IJIluaI)s p 'uellJ dzeq seq suaSfng-IulsseS 's1arrer1 sll Jo asrnoJ aql raAO ;o uorle:aua8 paqlunel lI qlllA uoour s,urn 'uoolu Iuals^s rPIos -tpS uo pupl o1 sua8dng pa11er aqord padeqs-recnes aplm ralno ue uo rapuel e dorp {1n;ssatJns ol lsr} aql auef,aq -ralaiu-z p pue sluounllsul JIJIlualf,s rtBut[ttec'L66t (u€tlJ uolssnu aql uo u^ op pallrnol aqord suaSfng aql raqotro 9r uo paqrunel uolsslru suaS[ng-rurss"r tlt*o (Eooz uar{la &enue{ 7r uo puv 'salull €z snpelaf,ug uooiu ueaJo aql pue saulll oor ueql oJotrr ue1t1[q urvrog -r.Ilrlq qtalluamr sr1;o fqs s4aarn 1sn[ 'dn urnq pue araqds seq tI 'urnles^)l punore sliqJo ooz ueql arolu ul sralauolry -orule s (urnleg olur a8unld Ilun l;ercareds traquralda5 ':atuulr uolllrq € ueql arolu pala^erl sPq IuIsseJ'?ooz ul urnlPs iursspJ S(VSVN 9t uO slt 'luroddesrp o1u1 sanoul asrallun aqt uI aJII le IeAJrJe Slr a)urs 1ou plp suoSdnH-IuissP:) daap Jo {ulql 'sno^zap arvr rvrdq pa8ueqr dlleluaurepunJ leql uols -uar 1;eDareds snorrrard 3u1rnp pa^ra)aJ al1^ elep aql pue -srur e '.read looqJs /\\au e:otr dn rea8 Lrtunoc mes art sareld a8uells aql lnoqP sn qJeal pue s8ulpunorrns aql punole uarpllqJ pue sasolJ laluluns s lopuo/l,\ Duuvof fi8 SN:3ANH-INISSY] TAOUI SSNICNII ]IBVION N]I NUnIUS0I lilUod U 'olou pu0'oJOtldsoulO s,lu0l5 so0 eLll ul sllu0unp ol sofie lno peuodo'tluOl puonoq fitltq0llq0Ll lo luttll oM fionn oLll pe0uoql urnl0s ol uolsslu vsvN puo-01-uoos ot.lI lroz raqu:aldag soT ll 9z '(Arl4rre 'sasseA leruraqlorpdq roolJpas alqrssod aqt) saqorrlu roJ errnos -an alod qlnos tuor; Suyvrads ar1 pup ralplr Jo sarunld {3raua ue pue 'salnralour rlue8ro 'ra1em p1nb11 aq plnol\ lq8uq pe{e1dsp qtrcg ol paurntar sa8eurl'raqruarrop u1 prlelrr) asor{J 'sexal 'oruoluy ueg ul alnlllsul qJrpasaU 'uaq1 'arulre d11err3o1oaB sl snpelaJuA tpqt;;o uaqt paddq ]sellqlnoS aql le raqJrposor pue rolaruorlrad5 ssery , 'snpelacug;o tsar aql ueqt raure^r sl alod qtnos aql leql IerlnaN pue uoI s.lulsseJ uo role8rlsanur lednur:d'a1re16 Surmoqs elep qlrrn 3uo1e 'e1ep asaql 'surer8 arr pue roden retunH pres ,,'.Q11qel1qeq aurloP lPql P.rrallrJ luasard aql ralervr palralap slu€runrtsur 'dqdg leqr SuunC 'uo-rsslru Jo IIP lsolule sarJsrles snPela)ua ]eq] ufi\or{s sPq IulsseJ,, aqt ]o snro] arllua aql tsoule patueqc puno; daql 1eq16 .a:aqdsoute aa]ll qll^/r ruaal qupg uo qolqrvr 's1uazlleruraqlorpdq aq asar{t plno) 'ratp^ tpqt ro; {ool ol lu-rsse) luos sraq)reasar o5.'saraqdsotule roq qtl/\/r Sull)eer slpJauru lsoq rleu roog s(ueaf,o aqt leql dfi11 qrrm sapoq punorp llp spler; )rlau8eu-r rvroq ol uDIe stsaSSns qrlqlt'saurnld aq1 ur uaSorp[q relnJelotu punoJ leq/\Aeuos uoou eq1 o1 spuodsar 11-snpelarug punorp dlluacar uana [aq1'aJII roJ truelrodrul aq ol lq8noql salnr {Ia8uerls stre plar} Jrlau8eru aql 1ng'p1ar; orlau8etu (ua3.dxo;o -a1oru-uaSorpfq pue 'uoqrer 'uato:11u pasod s(urnles urqly\A sllqro 'sassenarJ daap qlrrvr pa8no8 ayod -ruoJ seln)aloru cluetro pue 'roderr raleiu 'urnrpos palJalap qlnos paraloJ-arg slr'snpelerug 'e1od qlnos s(snpel diaqrreasar'u1e8e pue ure8e sureluno; aql r{tnorql -arug l(q tu{g rurssp) lues slsltualrs uo]sslru '9ooz ll1n{ u1 genareds eql Surpuas dg'uearo 1eqo1t p sasol)ua llaqs a)l ueafo'"-::: s(snppla)uE leql punol slsrtualJs 's{q[g asoql qtnorql eHellqeH {1e;1ue1o6 s.snpelaru3 paleo au lulsr t 'sa1u1l €z uootu aq1 lsed Sunivts ppq lulsse)'pua s,uo1ss1u.t llq lsfqtg snppla]ug aroru 6r pappp upal aq1 'pant-rrtu1 'uols -srur suatdng-rursseJ aqt Suluueds eiep uror; sBurpur; a1q drr s1r;o 1no Sulrvrads ralearr;o slef slsoq ,, '.rrq;::tJl: -elou or ere ereH'q8q ald slueruqsrlduroJ)p asoql puv ue a^eq l.usaop snPelaJug 'pauunls ara/v\ slsrlualJS (,'paqslldluo)Je spq rurssp) lpql 11e u1 aprrd snopuaruerl,, Jo osle tnq 'panulluor aqs^tasrnoc;o 'ssaupes;o s8ullaa; are aroql 1dr/vsvN:]!paJJ 'aq feu leql ralelpq/v\ ,,'uo1ss1ur lxau eql ro] arnln1 aql 'aeqdsowlo s,uJniDS olu! sa{lp ADDe)Dds aql uatl$'Leqwaldag g1 olur prpmJo] oB ol leqt esn pup rurssp) ruor; paurpal al(alv\ uo pua il!/A puD l66t Jeqopo u paq)unq uolsslw suadlng leqt a8palivrool rno alel o1 Suro8 ar(alysuoll)arlp lua (ples -lulssoJ eLL's.tDat g $Dd aql u saaDw! MDJ OOO'OO€ uDtll aJow pa4ull -ralJrp I1e oB pue,, asradsrp 1utl ureal lulssp) aql aqs -uMop puD unDs p IDAUJD sil a)uls sJapuol!4 uollllq e uDql aJow pale 'spua uolss-rru eql raUV'uorlenper8 looqrs qBrq e a{ll slaaJ (lsrluarls -^ill sDLl Uu) aqf 'uJnlDS tD AD.Da)Dds /u/ssDJ qysyN Jo uollD4sryl! uV pua s(rursse3 peaq s(uolsslru suaS[n11-rursse3 frozen surface. This rain may also help to fill the lakes of liquid methane and ethane that spread across the north pole. The iiquid cycling of methane is akin to Earth,s water cycle, scientists speculate. Although Huygens and Cassini revealed much about Titan, there are still mountains more mysteries to solve, Tgrtle noted. How do complex molecules form in the atmo- sphere? How do the lakes and seas get their liquid hydro- carbons-solely from the rain or possibly from a subsur- face reservoir? Could Titan be a window into our own nlanel-'s nast? Cassini Changed HowWe Think of "Habitability" The Cassini-Huygens mission's observations of Enceladus and Titan marked one of the mission's most profound leg- acies: a tectonic shift in how we think of Cossini coptured this imoge of Encelodus, with its south pole plumes of "habitability.,, Before Cassini-Huygens, when scientists pondered wotet shooting into spoce, from o distonce of 77ZOOO kiloneters. The life beyond Earth, they imagined searching soo-kilometer-wide moon ond its internol oceon hove coptivoted the terresftial planets Iike Mars or Venus, orbiting close enough Sun scientific world ever since the Cosslnl feom dete cted them in 2OO5. to the where liquid water could pool on a rocky surface. Unfortunately, Cred it: NASNJ P L-Co ltech/Spoce Scie nce I nstitute Venus turned out to be a scorching hot planet with a run- away greenhouse gas effect, and a cavalcade of rovers has Unfortunately, Cassini does not hold instruments that yet to find biological traces on Mars. ('Had can study the ocean's depths, Spilker said. we known But Cassini-Huygens changed the game when it found that Enceladus had geysers, we would have maybe picked complex hydrocarbons on Saturn's ocean moons, hinted at some instruments to help answer" the question of whether hydrothermal vents on Enceladus, and revealed a cycle of life exists underneath the icy shell. liquid methane on Titan, explained Scott Edgington, the "We must go back and look for life," Waite added. Cassini team's deputy project scientist. The bottom line is, ocean worlds encapsulated by ice are Huygens Showed Us Titan, now targets in the broader search for life beyond Earth. a Possibly Primordial Earthlike World "Those two tiny little moons in the Saturn system have When Voyager passed by the Saturn system, it sent back changed our paradigm" of what a "habitable,'world might images of Saturn's largest moon, Titan, covered in a thick, Iook like, Edgington said. yellow haze. Voyager's infrared spectrometers detected a nitrogen-rich atmosphere peppered with hydrocarbons Cassini Found Enceladus Ocean Material and organic molecules thought to be biological precursors, in the E Ring leading scientists to speculate that Titan could resemble a Saturn's outermost ring, the E ring, is huge, stretching primordial Earth. To investigate further, the European from Titan to the smaller moon Mlmas (a distance of about Space Agency designed the Huygens probe, which hitched a ride to Titan on Cassini's back. On z4 Decemberzoo4, the saucer-shaped craft popped off Cassini and careened toward Titan. Several weeks later, on 14 January 2oo5, Huygens parachuted onto Titan,s sur- face. Throughout the 2.5-hour journey, Huygens gathered the first in situ data about Titan's atmosphere and sent humanity the first pictures of the moon's surface. Mission scientists combined those images to create a video (http:// bit.lylHuygens-Titan).
Recommended publications
  • 3.1 Discipline Science Results
    CASSINI FINAL MISSION REPORT 2019 1 SATURN Before Cassini, scientists viewed Saturn’s unique features only from Earth and from a few spacecraft flybys. During more than a decade orbiting the gas giant, Cassini studied the composition and temperature of Saturn’s upper atmosphere as the seasons changed there. Cassini also provided up-close observations of Saturn’s exotic storms and jet streams, and heard Saturn’s lightning, which cannot be detected from Earth. The Grand Finale orbits provided valuable data for understanding Saturn’s interior structure and magnetic dynamo, in addition to providing insight into material falling into the atmosphere from parts of the rings. Cassini’s Saturn science objectives were overseen by the Saturn Working Group (SWG). This group consisted of the scientists on the mission interested in studying the planet itself and phenomena which influenced it. The Saturn Atmospheric Modeling Working Group (SAMWG) was formed to specifically characterize Saturn’s uppermost atmosphere (thermosphere) and its variation with time, define the shape of Saturn’s 100 mbar and 1 bar pressure levels, and determine when the Saturn safely eclipsed Cassini from the Sun. Its membership consisted of experts in studying Saturn’s upper atmosphere and members of the engineering team. 2 VOLUME 1: MISSION OVERVIEW & SCIENCE OBJECTIVES AND RESULTS CONTENTS SATURN ........................................................................................................................................................................... 1 Executive
    [Show full text]
  • The Future Exploration of Saturn 417-441, in Saturn in the 21St Century (Eds. KH Baines, FM Flasar, N Krupp, T Stallard)
    The Future Exploration of Saturn By Kevin H. Baines, Sushil K. Atreya, Frank Crary, Scott G. Edgington, Thomas K. Greathouse, Henrik Melin, Olivier Mousis, Glenn S. Orton, Thomas R. Spilker, Anthony Wesley (2019). pp 417-441, in Saturn in the 21st Century (eds. KH Baines, FM Flasar, N Krupp, T Stallard), Cambridge University Press. https://doi.org/10.1017/9781316227220.014 14 The Future Exploration of Saturn KEVIN H. BAINES, SUSHIL K. ATREYA, FRANK CRARY, SCOTT G. EDGINGTON, THOMAS K. GREATHOUSE, HENRIK MELIN, OLIVIER MOUSIS, GLENN S. ORTON, THOMAS R. SPILKER AND ANTHONY WESLEY Abstract missions, achieving a remarkable record of discoveries Despite the lack of another Flagship-class mission about the entire Saturn system, including its icy satel- such as Cassini–Huygens, prospects for the future lites, the large atmosphere-enshrouded moon Titan, the ’ exploration of Saturn are nevertheless encoura- planet s surprisingly intricate ring system and the pla- ’ ging. Both NASA and the European Space net s complex magnetosphere, atmosphere and interior. Agency (ESA) are exploring the possibilities of Far from being a small (500 km diameter) geologically focused interplanetary missions (1) to drop one or dead moon, Enceladus proved to be exceptionally more in situ atmospheric entry probes into Saturn active, erupting with numerous geysers that spew – and (2) to explore the satellites Titan and liquid water vapor and ice grains into space some of fi Enceladus, which would provide opportunities for which falls back to form nearly pure white snow elds both in situ investigations of Saturn’s magneto- and some of which escapes to form a distinctive ring sphere and detailed remote-sensing observations around Saturn (e.g.
    [Show full text]
  • CASSINI Exploration of Saturn
    CASSINI Exploration of Saturn Launch Location Cape Canaveral Air Force Station Launch Vehicle Titan IV-B Launch Date October 15, 1997 SATURN What do I see when I picture Saturn? Saturn is the sixth planet from the Sun and has been called “The Jewel of the Solar System.” Scientists be- lieve that Saturn formed more than four billion years ago from the same giant cloud of gas and dust whirling around the very young Sun that formed Earth and the other planets of our solar system. Saturn is much larg- er than Earth. Its mass is 95.18 times Earth’s mass. In other words, it would take over 95 Earths to equal the mass of Saturn. If you could weigh the planets on a giant scale, you would need slightly more than 95 Earths to equal the weight of Saturn. Saturn’s diameter is about 9.5 Earths across. At that ratio, if Saturn were as big as a baseball, Earth would be about half the size of a regular M&M candy. Saturn spins on its axis (rotates) just as our planet Earth spins on its axis. However, its period of rotation, or the time it takes Saturn to spin around one time, is only 10.2 Earth hours. A day on Saturn is just a little more than 10 hours long; so if you lived on Saturn, you would only have to be in school for a couple of hours each day! Because Saturn spins so fast, and its interior is gas, not rock, Saturn is noticeably flattened, top and bottom.
    [Show full text]
  • In Situ Exploration of the Giant Planets Olivier Mousis, David H
    In situ Exploration of the Giant Planets Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, Stas Barabash, Michel Blanc, T. Cavalié, Athena Coustenis, Magali Deleuil, et al. To cite this version: Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, et al.. In situ Exploration of the Giant Planets. 2019. hal-02282409 HAL Id: hal-02282409 https://hal.archives-ouvertes.fr/hal-02282409 Submitted on 2 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. In Situ Exploration of the Giant Planets A White Paper Submitted to ESA’s Voyage 2050 Call arXiv:1908.00917v1 [astro-ph.EP] 31 Jul 2019 Olivier Mousis Contact Person: Aix Marseille Université, CNRS, LAM, Marseille, France ([email protected]) July 31, 2019 WHITE PAPER RESPONSE TO ESA CALL FOR VOYAGE 2050 SCIENCE THEME In Situ Exploration of the Giant Planets Abstract Remote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe.
    [Show full text]
  • Cassini-Huygens
    High Ambitions for an Outstanding Planetary Mission: Cassini-Huygens Composite image of Titan in ultraviolet and infrared wavelengths taken by Cassini’s imaging science subsystem on 26 October. Red and green colours show areas where atmospheric methane absorbs light and reveal a brighter (redder) northern hemisphere. Blue colours show the high atmosphere and detached hazes (Courtesy of JPL /Univ. of Arizona) Cassini-Huygens Jean-Pierre Lebreton1, Claudio Sollazzo2, Thierry Blancquaert13, Olivier Witasse1 and the Huygens Mission Team 1 ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands 2 ESA Directorate of Operations and Infrastructure, ESOC, Darmstadt, Germany 3 ESA Directorate of Technical and Quality Management, ESTEC, Noordwijk, The Netherlands Earl Maize, Dennis Matson, Robert Mitchell, Linda Spilker Jet Propulsion Laboratory (NASA/JPL), Pasadena, California Enrico Flamini Italian Space Agency (ASI), Rome, Italy Monica Talevi Science Programme Communication Service, ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands assini-Huygens, named after the two celebrated scientists, is the joint NASA/ESA/ASI mission to Saturn Cand its giant moon Titan. It is designed to shed light on many of the unsolved mysteries arising from previous observations and to pursue the detailed exploration of the gas giants after Galileo’s successful mission at Jupiter. The exploration of the Saturnian planetary system, the most complex in our Solar System, will help us to make significant progress in our understanding
    [Show full text]
  • Detection of Chemical Species in Titan's Atmosphere Using High
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO FÍSICA Detection of Chemical Species in Titan’s Atmosphere using High-Resolution Spectroscopy José Luís Fernandes Ribeiro Mestrado em Física Especialização em Astrofísica e Cosmologia Dissertação orientada por: Doutor Pedro Machado 2019 Acknowledgments This master’s thesis would not be possible without the support of my parents, Maria de F´atimaPereira Fernandes Ribeiro and Lu´ısCarlos Pereira Ribeiro, who I would like to thank for believing in me, encouraging me and allowing me to embark on this journey of knowledge and discovery. They made the person that I am today. I would like to thank all my friends and colleagues who accompanied me all these years for the great moments and new experiences that happened trough these years of university. They contributed a lot to my life and for that I am truly grateful. I just hope that I contributed to theirs as well. I also would like to thank John Pritchard from ESO Operations Support for helping me getting the EsoReflex UVES pipeline working on my computer, without him we would probably wouldn’t have the Titan spectra reduced by now. And I also like to thank Doctor Santiago P´erez-Hoyos for his availability to teach our planetary sciences group how to use the NEMESIS Radiative Transfer model and Doctor Th´er`ese Encrenaz for providing the ISO Saturn and Jupiter data. I would like to give a special thank you to Jo˜aoDias and Constan¸caFreire, for their support and help during this work. Lastly, and surely not the least, I would like to thank my supervisor Pedro Machado for showing me how to be a scientist and how to do scientific work.
    [Show full text]
  • Kronos: Exploring the Depths of Saturn with Probes and Remote Sensing Through an International Mission
    Exp Astron (2009) 23:947–976 DOI 10.1007/s10686-008-9094-9 ORIGINAL ARTICLE Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission B. Marty & T. Guillot & A. Coustenis & the Kronos consortium & N. Achilleos & Y. Alibert & S. Asmar & D. Atkinson & S. Atreya & G. Babasides & K. Baines & T. Balint & D. Banfield & S. Barber & B. Bézard & G. L. Bjoraker & M. Blanc & S. Bolton & N. Chanover & S. Charnoz & E. Chassefière & J. E. Colwell & E. Deangelis & M. Dougherty & P. Drossart & F. M. Flasar & T. Fouchet & R. Frampton & I. Franchi & D. Gautier & L. Gurvits & R. Hueso & B. Kazeminejad & T. Krimigis & A. Jambon & G. Jones & Y. Langevin & M. Leese & E. Lellouch & J. Lunine & A. Milillo & P. Mahaffy & B. Mauk & A. Morse & M. Moreira & X. Moussas & C. Murray & I. Mueller-Wodarg & T. C. Owen & S. Pogrebenko & R. Prangé & P. Read & A. Sanchez-Lavega & P. Sarda & D. Stam & G. Tinetti & P. Zarka & J. Zarnecki Received: 7 December 2007 /Accepted: 2 April 2008 /Published online: 13 May 2008 # Springer Science + Business Media B.V. 2008 Abstract Kronos is a mission aimed to measure in situ the chemical and isotopic compositions of the Saturnian atmosphere with two probes and also by remote sensing, in order to understand the origin, formation, and evolution of giant planets in general, including extrasolar planets. The abundances of noble gases, hydrogen, B. Marty (*) CRPG, Nancy-Université, CNRS, BP 20, 54501 Vandoeuvre, Cedex, France e-mail: [email protected] T. Guillot Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 04, France e-mail: [email protected] A.
    [Show full text]
  • Planetary Exploration of Saturn Moons Dione and Enceladus Juan R
    Planetary Exploration of Saturn moons Dione and Enceladus Juan R. Sanmartín and Jesús Peláez ETSIAE, Universidad Politécnica de Madrid I. Introduction Search for habitability in moons of Outer planets, requires presence of sources of energy. Dissipation from tidal forces is a major energy source in evolution of Icy moon systems. Heating always accompanies dissipation but, in case of tidal heating, it will additionally present complex spatial distribution, reflecting on a multi-layer structure in the particular case of Icy moons. Subsurface oceans are a generic feature of large icy bodies at some point in their evolution. A standard interior model for Icy moons consists of an outer solid (ice) layer, an intermediate liquid layer, and a solid (rocky) core. As a satellite rises a tide on its planet, they exchange angular momentum, affecting satellite orbit and planet spin; the moon gains orbital energy at the expense of the planet rotational energy. A complex 3-body paradigm, Laplace resonance, involves two (or more) moons of a planet, forming by differential expansions of orbits by tidal torques. At Jupiter, moons Io, Europa, and Ganymede are in 1:2:4 resonance. 1 Two moons of Saturn, Enceladus and Dione, are in a 1:2 resonance: Enceladus revolution and rotation periods are both 1.370 days, Dione´s periods being approximately 2.74 days. It had been recently discovered that Enceladus ejects plumes of water vapour and ice particles, evidence of a liquid water reservoir below the surface, in the South Polar Terrain. More recently, in the Spring of 2017, it was found that such plumes contain molecular hydrogen, considered sign of chemical reactions supporting microbial life [1].
    [Show full text]
  • EPSC2018-168, 2018 European Planetary Science Congress 2018 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2018
    EPSC Abstracts Vol. 12, EPSC2018-168, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Cassini: One Year Later Linda J. Spilker and Scott G. Edgington, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States ([email protected], [email protected]). Abstract polar fractures, or “tiger stripes”, and a subsurface, global, salty ocean containing organics, ammonia, Cassini, the most distant planetary orbiter ever hydrogen, and silicates, with active hydrothermal launched, arrived at Saturn in 2004. For the next 13 vents on its seafloor. Cassini revealed an ocean years, through its prime and two extended missions, world that is potentially habitable. These discoveries and over almost half a Saturnian year, this spacecraft have fundamentally altered many of our concepts of made astonishing discoveries, reshaping and where life may be found in our solar system. fundamentally changing our understanding of this Enceladus is also the source of the E Ring and water unique planetary system. Cassini sent back its final from its jets dominates the Saturnian magnetosphere. bits of unique science data on 15 September 2017, as Dynamic Rings: Cassini’s 13 years in orbit made it plunged into Saturn’s atmosphere, vaporizing and it possible to observe temporal changes in Saturn’s satisfying planetary protection requirements. dynamic ring system. The orbiter discovered During its last year of exploration, Cassini migrating propeller-like objects and unexpected ring completed its investigations of the Saturn system, particle clumping, imaged the possible birth of a new probed as-yet unsolved mysteries, observed seasonal moon at the edge of the A ring, and observed one of the most active, chaotic rings in our solar system, and temporal changes, and addressed new questions Saturn’s F ring.
    [Show full text]
  • Federal Register / Vol. 62, No. 68 / Wednesday, April 9, 1997 / Notices
    17216 Federal Register / Vol. 62, No. 68 / Wednesday, April 9, 1997 / Notices NATIONAL AERONAUTICS AND locations by contacting the pertinent of plutonium dioxide to generate SPACE ADMINISTRATION Freedom of Information Act Office: electric power for the spacecraft and its (d) NASA, Ames Research Center, instruments. The spacecraft would also [Notice 97±040] Moffett Field, CA 94035 (415±604± use approximately 130 RHU's, each National Environmental Policy Act; 4190). containing a small amount of plutonium Cassini Mission (e) NASA, Dryden Flight Research dioxide, to generate heat for controlling Center, Edwards, CA 93523 (805±258± the thermal environment of the AGENCY: National Aeronautics and 3448). spacecraft and several of its Space Administration (NASA). (f) NASA, Goddard Space Flight instruments. ACTION: Notice of availability of draft Center, Greenbelt, MD 20771 (301±286± The action selected and documented supplemental environmental impact 0730). in the ROD consists of completing statement (DSEIS) for the Cassini (g) NASA, Johnson Space Center, preparations for and implementing the mission to Saturn and its moons. Houston, TX 77058 (713±483±8612). Cassini mission to Saturn and its (h) NASA, Langley Research Center, moons, with a launch of the Cassini SUMMARY: Pursuant to the National Hampton, VA 23665 (757±864±2497). spacecraft onboard a Titan IV (SRMU)/ Environmental Policy Act of 1969 (i) NASA, Lewis Research Center, Centaur. The launch would take place at (NEPA), as amended (42 U.S.C. 4321 et 21000 Brookpark Road, Cleveland, OH CCAS during the primary launch seq.), the Council on Environmental 44135 (216±433±2222). opportunity that begins in early October Quality Regulations for Implementing (j) NASA, Marshall Space Flight 1997 and continues into mid-November the Procedural Provisions of NEPA (40 Center, AL 35812 (205±544±0031).
    [Show full text]
  • Federal Register / Vol. 62, No. 128 / Thursday, July 3, 1997 / Notices 36081
    Federal Register / Vol. 62, No. 128 / Thursday, July 3, 1997 / Notices 36081 (h) NASA, Langley Research Center, and implementing the Cassini Mission NASA notice on April 9, 1997, (62 FR Hampton, VA 23655 (757±864±2497). to Saturn and its moons, with a launch 17216) and U.S. Environmental (i) NASA, Lewis Research Center, 21000 of the Cassini spacecraft onboard a Titan Protection Agency notice on April 11, Brookpark Road, Cleveland, OH IV(SRMU)/Centaur. The launch would 1997, (62 FR 17810); and (b) direct 44135 (216±433±2222). take place at CCAS during the primary mailings to interested parties. (j) NASA, Marshall Space Flight Center, launch opportunity that begins in early Comments received have been AL 35812 (202±544±0031). October 1997 and continues into mid- addressed in the FSEIS. (k) NASA, Stennis Space Center, MS November 1997. A secondary launch Benita A. Cooper, 39529 (601±688±2164). opportunity extends from the end of Associate Administrator for Management Limited copies of the FSEIS are November 1997 to early January 1997, Systems and Facilities. available, on a first request basis, by with a backup opportunity from mid- [FR Doc. 97±17404 Filed 7±2±97; 8:45 am] contacting Mark R. Dahl at the address March to early April 1999, both using BILLING CODE 7510±01±M or telephone number indicated below. the Titan IV(SRMU)/Centaur. The FOR FURTHER INFORMATION CONTACT: primary launch opportunity would Mr. Mark R. Dahl, NASA Headquarters, employ a Venus-Venus-Earth-Jupiter- NATIONAL AERONAUTICS AND Code SD, Washington, DC 20546±0001; Gravity-Assist trajectory to Saturn; the SPACE ADMINISTRATION telephone 202±358±1544.
    [Show full text]
  • Planetary Exploration of Saturn Moons Dione and Enceladus
    DOI: 10.13009/EUCASS2019-81 8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Planetary Exploration of Saturn moons Dione and Enceladus Juan R. Sanmartín* and J. Peláez** * Real Academia de Ingeniería Universidad Politécnica de Madrid Pza. C. Cisneros 3, Madrid 28040, [email protected] ** Universidad Politécnica de Madrid Pza. C. Cisneros 3, Madrid 28040, [email protected] Abstract Search for habitability in Outer planets moons, requires presence of water, energy, and proper chemistry. Dissipation from tidal forces is major energy source in evolution of Icy moon systems. Saturn moons Enceladus and Dione are in 1:2 Laplace resonance. Enceladus ejects plumes of water vapor and ice particles, Dione exhibits linear virgae, hundred kilometres long, latitudinal color lines. A minor tether mission would explore this system. Following Saturn capture, repeated, free Lorentz drag at periapsis brings apoapsis to elliptical orbit at 1:1 resonance with Dione. After multiple flybys, repeated operation reaches 1:2 resonance with Enceladus, for flybys. 1. Introduction Search for habitability in moons of Outer planets, requires presence of sources of energy. Dissipation from tidal forces is a major energy source in evolution of Icy moon systems. Heating always accompanies dissipation but, in case of tidal heating, it will additionally present complex spatial distribution, reflecting on a multi-layer structure in the particular case of Icy moons. Subsurface oceans are a generic feature of large icy bodies at some point in their evolution. A standard interior model for Icy moons consists of an outer solid (ice) layer, an intermediate liquid layer, and a solid (rocky) core.
    [Show full text]