+ Part 1 (986 Kb PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solar System Exploration
Theme: Solar System Exploration Cassini, a robotic spacecraft launched in 1997 by NASA, is close enough now to resolve many rings and moons of its destination planet: Saturn. The spacecraft has now closed to within a single Earth-Sun separation from the ringed giant. In November 2003, Cassini snapped the contrast-enhanced color composite pictured above. Many features of Saturn's rings and cloud-tops now show considerable detail. When arriving at Saturn in July 2004, the Cassini orbiter will begin to circle and study the Saturnian system. Several months later, a probe named Huygens will separate and attempt to land on the surface of Titan. Solar System Exploration MAJOR EVENTS IN FY 2005 Deep Impact will launch in December 2004. The spacecraft will release a small (820 lbs.) Impactor directly into the path of comet Tempel 1 in July 2005. The resulting collision is expected to produce a small impact crater on the surface of the comet's nucleus, enabling scientists to investigate the composition of the comet's interior. Onboard the Cassini orbiter is a 703-pound scientific probe called Huygens that will be released in December 2004, beginning a 22-day coast phase toward Titan, Saturn's largest moon; Huygens will reach Titan's surface in January 2005. ESA 2-1 Theme: Solar System Exploration OVERVIEW The exploration of the solar system is a major component of the President's vision of NASA's future. Our cosmic "neighborhood" will first be scouted by robotic trailblazers pursuing answers to key questions about the diverse environments of the planets, comets, asteroids, and other bodies in our solar system. -
Nasa Langley Research Center 2012
National Aeronautics and Space Administration NASA LANGLEY RESEARCH CENTER 2012 www.nasa.gov An Orion crew capsule test article moments before it is dropped into a An Atlantis flag flew outside Langley’s water basin at Langley to simulate an ocean splashdown. headquarters building during NASA’s final space shuttle mission in July. Launching a New Era of Exploration Welcome to Langley NASA Langley had a banner year in 2012 as we helped propel the nation toward a new age of air and space. From delivering on missions to creating new technologies and knowledge for space, aviation and science, Langley continued the rich tradition of innovation begun 95 years ago. Langley is providing leading-edge research and game-changing technology innovations for human space exploration. We are testing prototype articles of the Orion crew vehicle to optimize designs and improve landing systems for increased crew survivability. Langley has had a role in private-industry space exploration through agreements with SpaceX, Sierra Nevada Corp. and Boeing to provide engineering expertise, conduct testing and support research. Aerospace and Science With the rest of the world, we held our breath as the Curiosity rover landed on Mars – with Langley’s help. The Langley team performed millions of simulations of the entry, descent and landing phase of the Mars Science Laboratory mission to enable a perfect landing, Langley Center Director Lesa Roe and Mark Sirangelo, corporate and for the first time made temperature and pressure vice president and head of Sierra Nevada Space Systems, with measurements as the spacecraft descended, providing the Dream Chaser Space System model. -
3.1 Discipline Science Results
CASSINI FINAL MISSION REPORT 2019 1 SATURN Before Cassini, scientists viewed Saturn’s unique features only from Earth and from a few spacecraft flybys. During more than a decade orbiting the gas giant, Cassini studied the composition and temperature of Saturn’s upper atmosphere as the seasons changed there. Cassini also provided up-close observations of Saturn’s exotic storms and jet streams, and heard Saturn’s lightning, which cannot be detected from Earth. The Grand Finale orbits provided valuable data for understanding Saturn’s interior structure and magnetic dynamo, in addition to providing insight into material falling into the atmosphere from parts of the rings. Cassini’s Saturn science objectives were overseen by the Saturn Working Group (SWG). This group consisted of the scientists on the mission interested in studying the planet itself and phenomena which influenced it. The Saturn Atmospheric Modeling Working Group (SAMWG) was formed to specifically characterize Saturn’s uppermost atmosphere (thermosphere) and its variation with time, define the shape of Saturn’s 100 mbar and 1 bar pressure levels, and determine when the Saturn safely eclipsed Cassini from the Sun. Its membership consisted of experts in studying Saturn’s upper atmosphere and members of the engineering team. 2 VOLUME 1: MISSION OVERVIEW & SCIENCE OBJECTIVES AND RESULTS CONTENTS SATURN ........................................................................................................................................................................... 1 Executive -
Neptune Polar Orbiter with Probes*
NEPTUNE POLAR ORBITER WITH PROBES* 2nd INTERNATIONAL PLANETARY PROBE WORKSHOP, AUGUST 2004, USA Bernard Bienstock(1), David Atkinson(2), Kevin Baines(3), Paul Mahaffy(4), Paul Steffes(5), Sushil Atreya(6), Alan Stern(7), Michael Wright(8), Harvey Willenberg(9), David Smith(10), Robert Frampton(11), Steve Sichi(12), Leora Peltz(13), James Masciarelli(14), Jeffrey Van Cleve(15) (1)Boeing Satellite Systems, MC W-S50-X382, P.O. Box 92919, Los Angeles, CA 90009-2919, [email protected] (2)University of Idaho, PO Box 441023, Moscow, ID 83844-1023, [email protected] (3)JPL, 4800 Oak Grove Blvd., Pasadena, CA 91109-8099, [email protected] (4)NASA Goddard Space Flight Center, Greenbelt, MD 20771, [email protected] (5)Georgia Institute of Technology, 320 Parian Run, Duluth, GA 30097-2417, [email protected] (6)University of Michigan, Space Research Building, 2455 Haward St., Ann Arbor, MI 48109-2143, [email protected] (7)Southwest Research Institute, Department of Space Studies, 1050 Walnut St., Suite 400, Boulder, CO 80302, [email protected] (8)NASA Ames Research Center, Moffett Field, CA 94035-1000, [email protected] (9)4723 Slalom Run SE, Owens Cross Roads, AL 35763, [email protected] (10) Boeing NASA Systems, MC H013-A318, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099, [email protected] (11)Boeing NASA Systems, MC H012-C349, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099 [email protected] (12)Boeing Satellite Systems, MC W-S50-X382, P.O. Box 92919, Los Angeles, CA 90009-2919, [email protected] (13) )Boeing NASA Systems, MC H013-C320, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099, [email protected] (14)Ball Aerospace & Technologies Corp., P.O. -
NASA Langley Research Center
National Aeronautics and Space Administration LANGLEY RESEARCH CENTER www.nasa.gov contents NASA is on a reinvigorated “path of exploration, innovation and technological development leading to an array of challenging destinations and missions. — Charles Bolden” NASA Administrator Director’s Message ........................................ 2-3 Exploration Developing a New Launch Crew Vehicle ................. 4-5 Aeronautics Forging Tomorrow’s Flight Today ............................... 6 NASA Tests Biofuels for Commercial Jets .................. 7 Science Tracking Dynamic Change ......................................... 8 Airborne Air-Quality Campaign Created a Buzz ........... 9 Systems Analysis Making the Complex Work ...................................... 10 Partnerships Collaborating to Transition NASA Technologies .......................................... 12-13 We Have Liftoff Two Launches Carried Langley Instruments into Space ..................................... 14-15 A Space Shuttle Tribute ........................... 16-17 Economics ................................................... 18-19 Langley People ........................................... 20-21 Outreach & Education .............................. 22-23 Awards & Patents ...................................... 24-26 Contacts/Leadership ...................................... 27 Virginia Air & Space Center ........................... 27 (Inside cover) Splashdown of a crew A conference room in Langley’s new headquarters capsule mockup in Langley’s new Hydro building uses -
Planetary Science
Mission Directorate: Science Theme: Planetary Science Theme Overview Planetary Science is a grand human enterprise that seeks to discover the nature and origin of the celestial bodies among which we live, and to explore whether life exists beyond Earth. The scientific imperative for Planetary Science, the quest to understand our origins, is universal. How did we get here? Are we alone? What does the future hold? These overarching questions lead to more focused, fundamental science questions about our solar system: How did the Sun's family of planets, satellites, and minor bodies originate and evolve? What are the characteristics of the solar system that lead to habitable environments? How and where could life begin and evolve in the solar system? What are the characteristics of small bodies and planetary environments and what potential hazards or resources do they hold? To address these science questions, NASA relies on various flight missions, research and analysis (R&A) and technology development. There are seven programs within the Planetary Science Theme: R&A, Lunar Quest, Discovery, New Frontiers, Mars Exploration, Outer Planets, and Technology. R&A supports two operating missions with international partners (Rosetta and Hayabusa), as well as sample curation, data archiving, dissemination and analysis, and Near Earth Object Observations. The Lunar Quest Program consists of small robotic spacecraft missions, Missions of Opportunity, Lunar Science Institute, and R&A. Discovery has two spacecraft in prime mission operations (MESSENGER and Dawn), an instrument operating on an ESA Mars Express mission (ASPERA-3), a mission in its development phase (GRAIL), three Missions of Opportunities (M3, Strofio, and LaRa), and three investigations using re-purposed spacecraft: EPOCh and DIXI hosted on the Deep Impact spacecraft and NExT hosted on the Stardust spacecraft. -
NASA Guidebook for Proposers, Appendix H
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) ********** GUIDEBOOK FOR PROPOSERS RESPONDING TO A NASA NOTICE OF FUNDING OPPORTUNITY (NOFO) Revised as of February 4, 2021 Effective as of February 15, 2021 TABLE OF CONTENTS Preface 1. Introduction to NASA’s Programs 2. Proposal Preparation and Organization 2.1 Submission Guidance 2.2 Submission Requirements and Restrictions 2.3 Notice of Intent (NOI) to Propose 2.4 Submission Process 2.5 Successor Proposals 2.6 Standard Proposal Style Format 2.7 Overview of Proposal 2.8 Required Proposal Elements 2.9 Certifications, Assurances, Representations and Sample Agreements 2.10 Proposal Summary/Abstract 2.11 Data Management Plan 2.12 Table of Contents 2.13 Scientific/Technical/Management Plan 2.14 References and Citations 2.15 Biographical Sketch 2.16 Current and Pending Support 2.17 Statements of Commitment and Letters of Resource Support 2.18 Proposal Budget with Budget Narrative and Budget Details 2.19 Facilities and Equipment 2.20 Table of Personnel and Work Effort 2.21 Special Notifications and/or Certifications 2.22 Assembly of Electronic Proposals 2.23 NASA Requirements for Uploaded PDF Files 3. Proposal Submission 3.1 NSPIRES Registration Requirements and Instructions 3.2 Submitting Proposals through NSPIRES 3.3 Submitting Proposals through Grants.gov 3.4 Other Submission Options 3.5 Proposal Receipt 4. Proposal Review and Selection 4.1 Administrative Review 4.2 Technical and Programmatic Review 4.3 Selection Based on Technical Merit 4.4 Budget, Cost Analysis and Financial 4.5 Withdrawal of Proposal 4.6 Proposal Rejected by NASA without Review 5. -
The Future Exploration of Saturn 417-441, in Saturn in the 21St Century (Eds. KH Baines, FM Flasar, N Krupp, T Stallard)
The Future Exploration of Saturn By Kevin H. Baines, Sushil K. Atreya, Frank Crary, Scott G. Edgington, Thomas K. Greathouse, Henrik Melin, Olivier Mousis, Glenn S. Orton, Thomas R. Spilker, Anthony Wesley (2019). pp 417-441, in Saturn in the 21st Century (eds. KH Baines, FM Flasar, N Krupp, T Stallard), Cambridge University Press. https://doi.org/10.1017/9781316227220.014 14 The Future Exploration of Saturn KEVIN H. BAINES, SUSHIL K. ATREYA, FRANK CRARY, SCOTT G. EDGINGTON, THOMAS K. GREATHOUSE, HENRIK MELIN, OLIVIER MOUSIS, GLENN S. ORTON, THOMAS R. SPILKER AND ANTHONY WESLEY Abstract missions, achieving a remarkable record of discoveries Despite the lack of another Flagship-class mission about the entire Saturn system, including its icy satel- such as Cassini–Huygens, prospects for the future lites, the large atmosphere-enshrouded moon Titan, the ’ exploration of Saturn are nevertheless encoura- planet s surprisingly intricate ring system and the pla- ’ ging. Both NASA and the European Space net s complex magnetosphere, atmosphere and interior. Agency (ESA) are exploring the possibilities of Far from being a small (500 km diameter) geologically focused interplanetary missions (1) to drop one or dead moon, Enceladus proved to be exceptionally more in situ atmospheric entry probes into Saturn active, erupting with numerous geysers that spew – and (2) to explore the satellites Titan and liquid water vapor and ice grains into space some of fi Enceladus, which would provide opportunities for which falls back to form nearly pure white snow elds both in situ investigations of Saturn’s magneto- and some of which escapes to form a distinctive ring sphere and detailed remote-sensing observations around Saturn (e.g. -
CASSINI Exploration of Saturn
CASSINI Exploration of Saturn Launch Location Cape Canaveral Air Force Station Launch Vehicle Titan IV-B Launch Date October 15, 1997 SATURN What do I see when I picture Saturn? Saturn is the sixth planet from the Sun and has been called “The Jewel of the Solar System.” Scientists be- lieve that Saturn formed more than four billion years ago from the same giant cloud of gas and dust whirling around the very young Sun that formed Earth and the other planets of our solar system. Saturn is much larg- er than Earth. Its mass is 95.18 times Earth’s mass. In other words, it would take over 95 Earths to equal the mass of Saturn. If you could weigh the planets on a giant scale, you would need slightly more than 95 Earths to equal the weight of Saturn. Saturn’s diameter is about 9.5 Earths across. At that ratio, if Saturn were as big as a baseball, Earth would be about half the size of a regular M&M candy. Saturn spins on its axis (rotates) just as our planet Earth spins on its axis. However, its period of rotation, or the time it takes Saturn to spin around one time, is only 10.2 Earth hours. A day on Saturn is just a little more than 10 hours long; so if you lived on Saturn, you would only have to be in school for a couple of hours each day! Because Saturn spins so fast, and its interior is gas, not rock, Saturn is noticeably flattened, top and bottom. -
NASA's Lunar Science Program
NASA’s Lunar Science Program Dr. Kelly Snook Lunar Program Scientist, Science Mission Directorate, NASA HQ Date: February 27, 2008 Overview of Lunar Activities Science Definition and Execution (HQ: SMD) – Strategic Planning – Research & Analysis Administration – Program Direction – Robotic Science Missions • Gravity Recovery And Interior Laboratory (GRAIL) • Lunar Atmosphere Dust Environment Explorer (LADEE) • International Lunar Network (ILN) Landers • International Robotic Science Instruments Operations (HQ: SOMD) – Operations Systems and Demonstrations, such as Communications The Lunar Environment Characterization (HQ: ESMD) – Support human Lunar landing design – Support for Lunar surface mobility and habitability – Cooperation with future mission of opportunity • Fly instruments for needed data • Technology demonstrations – Robotic Missions • Lunar Reconnaissance Orbiter (LRO) • Lunar Crater Observation and Sensing Satellite (LCROSS) Robotic Lunar Exploration “Starting no later than 2008, initiate a series of robotic missions to the Moon to prepare for and support future human exploration activities” - Space Exploration Policy Directive (NPSD31), January 2004 • Objectives: – Environmental characterization for safe access – Global topography and targeted mapping for site selection and safety – Resource prospecting and assessment of In-Situ Resource Utilization (ISRU) possibilities – Technology “proving ground” to enable human exploration Science Mission Directorate Lunar Activities • Lunar Missions and Instruments on Missions of Opportunity • Focused Research & Analysis (R&A) • NASA Lunar Science Institute • Lunar Science Conference Lunar Reconnaissance Orbiter (an Exploration Mission) • LRO is NASA’s first step in returning humans to the Moon. • Focuses on identifying safe landing sites, locates lunar resources, and studies how the lunar radiation environment will affect humans. • Will create the comprehensive atlas of the Moon’s features and resources necessary to design and build the lunar outpost. -
Endless Possibilities at NASA Congestion, and Evaluating New Aircraft Designs
National Aeronautics and Space Administration National Aeronautics and Space Administration Langley Research Center Hampton, VA 23681 NP-2014-12-579-LaRC www.nasa.gov LANGLEY RESEARCH CENTER 2014 iv 1 With the launch of Orion in December, NASA took the first steps toward the future of human space exploration. Langley contributed critical elements to the mission: a launch abort system, structural impact testing, recovery testing, heat shield validation, and wind tunnel testing. The flight test went flawlessly and met NASA’s key objectives. NASA/George Homich A D8 airliner concept from a team led by the Massachusetts Institute of Technology is tested in Langley’s 14 by-22-Foot Subsonic Tunnel. NASA is working with industry and university partners to develop technologies and systems for aircraft that will reduce noise, emissions and fuel consumption. NASA Photos in this publication are by David C. Bowman of NASA Langley unless otherwise credited. 2 3 t’s time once again to recognize many of the past That work includes reducing aircraft noise around year’s accomplishments while looking ahead to airports, boosting fuel efficiency, relieving air traffic another year of endless possibilities at NASA congestion, and evaluating new aircraft designs. ILangley Research Center. In 2014, NASA’s Environmentally Responsible The pages of this report highlight steps we’ve Aviation program used an innovative manu- At right: Space Launch System taken and progress toward enabling human models have been tested in several facturing process to build a 10,000-pound Langley wind tunnels, including exploration of the solar system, as well as our composite aircraft structure for testing at this one in the Transonic Dynamics work helping improve the air travel system and Langley. -
In Situ Exploration of the Giant Planets Olivier Mousis, David H
In situ Exploration of the Giant Planets Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, Stas Barabash, Michel Blanc, T. Cavalié, Athena Coustenis, Magali Deleuil, et al. To cite this version: Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, et al.. In situ Exploration of the Giant Planets. 2019. hal-02282409 HAL Id: hal-02282409 https://hal.archives-ouvertes.fr/hal-02282409 Submitted on 2 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. In Situ Exploration of the Giant Planets A White Paper Submitted to ESA’s Voyage 2050 Call arXiv:1908.00917v1 [astro-ph.EP] 31 Jul 2019 Olivier Mousis Contact Person: Aix Marseille Université, CNRS, LAM, Marseille, France ([email protected]) July 31, 2019 WHITE PAPER RESPONSE TO ESA CALL FOR VOYAGE 2050 SCIENCE THEME In Situ Exploration of the Giant Planets Abstract Remote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe.