Innovation in Flight: Research of the Nasa Langley Research Center on Revolutionary Advanced Concepts for Aeronautics

Total Page:16

File Type:pdf, Size:1020Kb

Innovation in Flight: Research of the Nasa Langley Research Center on Revolutionary Advanced Concepts for Aeronautics INNOVATION IN FLIGHT: RESEARCH OF THE NASA LANGLEY RESEARCH CENTER ON REVOLUTIONARY ADVANCED CONCEPTS FOR AERONAUTICS By Joseph R. Chambers NASA SP-2005-4539 ACKNOWLEDGMENTS I am sincerely indebted to the dozens of current and retired employees of NASA who consented to be interviewed and submitted their personal experiences, recollections, and files from which this documentation of Langley contributions was drawn. The following active and retired Langley personnel contributed vital information to this effort: Donald D. Baals Louis J. Glaab Vivek Mukhopadhyay Daniel G. Baize Sue B. Grafton Daniel G. Murri E. Ann Bare Edward A. Haering, Jr. (NASA Thomas A. Ozoroski J.F. Barthelemy Dryden) Arthur E. Phelps, III Dennis W. Bartlett Andrew S. Hahn Dhanvada M. Rao CIP Steven X. S. Bauer Roy V. Harris Richard J. Re Bobby L. Berrier Jennifer Heeg Wilmer H. Reed, III Jay Brandon Jerry N. Hefner Rodney H. Ricketts Albert J. Braslow William P. Henderson A. Warner Robins Dennis M. Bushnell Paul M. Hergenrother Gautam H. Shah Richard L. Campbell Joseph L. Johnson, Jr. William J. Small Peter G. Coen Denise R. Jones Stephen C. Smith (NASA Ames) Fayette S. Collier Donald F. Keller M. Leroy Spearman Robert. V. Doggett, Jr. Lynda J. Kramer Eric C. Stewart Samuel M. Dollyhigh Steven E. Krist Dan D. Vicroy Cornelius Driver John E. Lamar Richard D. Wagner Clinton V. Eckstrom Robert E. McKinley Richard A. Wahls James R. Elliott Domenic J. Maglieri Richard M. Wood Michael C. Fischer Mark D. Moore Jeffrey A. Yetter Charles M. Fremaux Robert W. Moses Long P. Yip Neal T. Frink Thomas M. Moul Steven D. Young I would like to express my special gratitude to Noel A. Talcott and Dr. Darrel R. Tenney, who provided the inspiration and mechanism to undertake this activity. The efforts of the following active and retired industry members in reviewing the material signifi- cantly enhanced the accuracy and content of the final product: The Boeing Company: A. L. “Del” Nagel, Rudy N. Yurkovich, Eric Y. Reichenbach, M. Emmett Omar, Michael J. Janisko, Robert A. Woodling, D. L. “Tony” Antani, Norbert F. Smith, Daniel Smith, Arthur G. Powell, Robert H. Liebeck, and William E. Vargo. Lockheed-Martin Corporation: Barry Creighton. Gulfstream Aerospace: Michael P. Mena. Northrop Grumman Corporation: Heinz A. Gerhardt, Dave H. Graham, Dale J. Lorincz and Vince Wisniewski. Thanks also to Percival J. Tesoro for the cover design and desktop publishing, Alicia V. Tarrant and Jeffrey B. Caplan for outstanding assistance in photographic research in the Langley files, and Denise M. Stefula and Kay V. Forrest for editing. iii CONTENTS Special thanks and gratitude go to Dennis M. Bushnell, Senior Scientist of the NASA Langley Research Center, for his support and comments in the preparation of this document. His personal Acknowledgments ..................................................................................................... iii example and dedication to the pursuit of revolutionary technology have served as the stimulus Preface........................................................................................................................vi and encouragement sought by thousands of his peers during his outstanding and remarkable Innovation: Seed Corn and Barriers.............................................................................1 NASA career. Selected Examples of Langley’s Research On Revolutionary Advanced Concepts Joseph R. Chambers Supersonic Civil Aircraft ......................................................................................7 Yorktown, VA Blended Wing Body...........................................................................................71 August 22, 2005 Synthetic Vision.................................................................................................93 Laminar Flow Control .....................................................................................123 Upper-Surface Blowing ....................................................................................163 Active Control of Aeroelastic Response ............................................................191 Joined Wing Aircraft........................................................................................227 Vortex Flap ......................................................................................................247 Innovative Control Effectors ............................................................................269 Personal Air Vehicles ...............................................................................................299 The Future of Innovation: Priming the Pump..........................................................319 Bibliography............................................................................................................322 Index.......................................................................................................................348 NASA History Series...............................................................................................369 About the Author....................................................................................................387 iv v PREFACE This document is intended to be a companion to previous books by the author: NASA SP-2000- efforts and minimize the so-called “reinvention of the wheel” syndrome. More importantly, the 4519, Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft information identifies major obstacles to advanced aeronautics technology, thereby providing of the 1990’s, and NASA SP-2003-4529, Concept to Reality: Contributions of the Langley a sensitivity for multi-faceted research projects to ensure a higher likelihood of application. A Research Center to U.S. Civil Aircraft of the 1990’s. Material included in the previous volumes definition of current barriers to application is extremely valuable for use in the future, when new provides informative and significant examples of the impact of applications of aeronautics research breakthroughs in various technical disciplines may eliminate or minimize some of the critical barriers conducted by the NASA Langley Research Center on important U.S. civil and military aircraft of that have traditionally blocked the application of some of these specific revolutionary concepts. the 1990s. These contributions occurred because of the investment of the Nation in the innovation, Finally, a review of the material will hopefully inspire the nontechnical (as well as technical) expertise, and dedication of a staff of researchers and their unique facilities at Langley. Within that communities that aeronautics is not a “mature science” and that considerable opportunities exist research environment, literally thousands of revolutionary concepts and advanced technologies to revolutionize the future. for aeronautics have emerged, directed at challenges and barriers that impede the advancement of the state of the art in aircraft design and mission capabilities. Unfortunately, in the world of The written material has been prepared for a broad audience and does not presume any significant technology only a handful of advanced concepts are ever applied, due to a number of reasons. technical expertise. Hopefully, it will provide informative and interesting overviews for researchers Factors that inhibit the application of advanced research technology are numerous and varied in engaged in aeronautics activities, internal NASA policy makers, national policy makers, NASA nature, including cost, environmental impact, safety, complexity, reduced or inadequate funding stakeholders, the media and the general public. A bibliography is provided for technical specialists and human resources, world events, perceived or actual risk, technical barriers, and others. and others who desire a more in-depth discussion of the concepts. The objective of this publication is to discuss the importance of innovation and the role of revolutionary advanced concepts within the aeronautics research community, and to provide information on typical advanced research projects conducted by Langley and its partners on topics that have not yet been applied by the military or civil aviation industry to production aircraft. Detailed information is first provided to describe each advanced concept, the projected benefits that could be provided if the technology is applied, and the challenges faced by the NASA research team to reduce the risk of application. Next, descriptions of specific research activities on the concepts identify the key projects, accomplishments, personnel, and facilities involved in the development of each concept. Finally, perspectives are provided on the current status of the subject concepts, including discussions of factors or future events that might intensify interest in their use for future applications. Many of the concepts described herein are subjects of ongoing NASA research thrusts, for which significant technical challenges are in the process of being addressed. Some of the research activities discussed were conducted and completed in past NASA projects; however, evolving requirements for military or civil aircraft systems demand a reexamination of the potential and current feasibility of the principles involved. This document is intended to serve several purposes. As a source of collated information on revolutionary concepts, it will serve as a key reference for readers wishing to grasp the underlying principles and challenges related to specific revolutionary concepts. Hopefully,
Recommended publications
  • Flight International – July 2021.Pdf
    FlightGlobal.com July 2021 RISE of the open rotor Airbus, Boeing cool subsidies feud p12 Home US Air Force studies advantage resupply rockets p28 MC-21 leads Russian renaissance p44 9 770015 371327 £4.99 Sonic gloom Ton up Investors A400M gets pull plug a lift with on Aerion 100th delivery 07 p30 p26 Comment All together now Green shoots Irina Lavrishcheva/Shutterstock While CFM International has set out its plan to deliver a 20% fuel saving from its next engine, only the entire aviation ecosystem working in concert can speed up decarbonisation ohn Slattery, the GE Aviation restrictions, the RISE launch event governments have a key role to chief executive, has many un- was the first time that Slattery and play here through incentivising the doubted skills, but perhaps his Safran counterpart, Olivier An- production and use of SAF; avia- the least heralded is his abil- dries, had met face to face since tion must influence policy, he said. Jity to speak in soundbites while they took up their new positions. It He also noted that the engine simultaneously sounding natural. was also just a week before what manufacturers cannot do it alone: It is a talent that politicians yearn would have been the first day of airframers must also drive through for, but which few can master; the Paris air show – the likely launch aerodynamic and efficiency im- frequently the individual simply venue for the RISE programme. provements for their next-genera- sounds stilted, as though they were However, out of the havoc tion products. reading from an autocue.
    [Show full text]
  • Solar System Exploration
    Theme: Solar System Exploration Cassini, a robotic spacecraft launched in 1997 by NASA, is close enough now to resolve many rings and moons of its destination planet: Saturn. The spacecraft has now closed to within a single Earth-Sun separation from the ringed giant. In November 2003, Cassini snapped the contrast-enhanced color composite pictured above. Many features of Saturn's rings and cloud-tops now show considerable detail. When arriving at Saturn in July 2004, the Cassini orbiter will begin to circle and study the Saturnian system. Several months later, a probe named Huygens will separate and attempt to land on the surface of Titan. Solar System Exploration MAJOR EVENTS IN FY 2005 Deep Impact will launch in December 2004. The spacecraft will release a small (820 lbs.) Impactor directly into the path of comet Tempel 1 in July 2005. The resulting collision is expected to produce a small impact crater on the surface of the comet's nucleus, enabling scientists to investigate the composition of the comet's interior. Onboard the Cassini orbiter is a 703-pound scientific probe called Huygens that will be released in December 2004, beginning a 22-day coast phase toward Titan, Saturn's largest moon; Huygens will reach Titan's surface in January 2005. ESA 2-1 Theme: Solar System Exploration OVERVIEW The exploration of the solar system is a major component of the President's vision of NASA's future. Our cosmic "neighborhood" will first be scouted by robotic trailblazers pursuing answers to key questions about the diverse environments of the planets, comets, asteroids, and other bodies in our solar system.
    [Show full text]
  • Getting Shipshape
    AER October 2020 OSPACE DOES AEROSPACE HAVE A RACE PROBLEM? SECRETS FROM THE FALKLANDS AIR WAR POWERING UP ELECTRIC FLIGHT www.aerosociety.com October 2020 GETTING SHIPSHAPE Volume 47 Number 10 Volume UK F-35B FORCE GETS READY FOR FIRST OPERATIONAL CARRIER DEPLOYMENT Royal AeronauticaSociety OCTOBER 2020 AEROSPACE COVER FINAL.indd 1 18/09/2020 14:59 RAeS 2020 Virtual Conference Programme Join us from wherever you are in the world to experience high quality, informative content. Book early for our special introductory offer rates. STRUCTURES & MATERIALS UAS / ROTORCRAFT / AIR TRANSPORT GREENER BY DESIGN 7th Aircraft Structural Urban Air Mobility RAeS Climate Change Design Conference Conference 2020 Conference 2020 DATE NEW DATE DATE 8 October 22 - 23 October 3 - 4 November TIME TIME TIME 14:00 - 17:00 13:00 - 18:00 13:00 - 18:00 SCAN USING SCAN USING SCAN USING YOUR PHONE YOUR PHONE YOUR PHONE FOR MORE INFO FOR MORE INFO FOR MORE INFO Embark on your virtual learning journey with the RAeS Connect and interact with our speakers and ask questions live Engage and network with other professionals from across the world Meet our sponsors at our virtual exhibitor booths Access content post-event to continue your professional development For the full virtual conference programme and further details on what to expect visit aerosociety.com/VCP Volume 47 Number 10 October 2020 EDITORIAL Contents When global rules unravel Regulars 4 Radome 12 Transmission What price global standards, rules and regulations? Pre-pandemic there were The latest aviation and Your letters, emails, tweets aeronautical intelligence, and social media feedback.
    [Show full text]
  • Nasa Langley Research Center 2012
    National Aeronautics and Space Administration NASA LANGLEY RESEARCH CENTER 2012 www.nasa.gov An Orion crew capsule test article moments before it is dropped into a An Atlantis flag flew outside Langley’s water basin at Langley to simulate an ocean splashdown. headquarters building during NASA’s final space shuttle mission in July. Launching a New Era of Exploration Welcome to Langley NASA Langley had a banner year in 2012 as we helped propel the nation toward a new age of air and space. From delivering on missions to creating new technologies and knowledge for space, aviation and science, Langley continued the rich tradition of innovation begun 95 years ago. Langley is providing leading-edge research and game-changing technology innovations for human space exploration. We are testing prototype articles of the Orion crew vehicle to optimize designs and improve landing systems for increased crew survivability. Langley has had a role in private-industry space exploration through agreements with SpaceX, Sierra Nevada Corp. and Boeing to provide engineering expertise, conduct testing and support research. Aerospace and Science With the rest of the world, we held our breath as the Curiosity rover landed on Mars – with Langley’s help. The Langley team performed millions of simulations of the entry, descent and landing phase of the Mars Science Laboratory mission to enable a perfect landing, Langley Center Director Lesa Roe and Mark Sirangelo, corporate and for the first time made temperature and pressure vice president and head of Sierra Nevada Space Systems, with measurements as the spacecraft descended, providing the Dream Chaser Space System model.
    [Show full text]
  • Rideshare and the Orbital Maneuvering Vehicle: the Key to Low-Cost Lagrange-Point Missions
    SSC15-II-5 Rideshare and the Orbital Maneuvering Vehicle: the Key to Low-cost Lagrange-point Missions Chris Pearson, Marissa Stender, Christopher Loghry, Joe Maly, Valentin Ivanitski Moog Integrated Systems 1113 Washington Avenue, Suite 300, Golden, CO, 80401; 303 216 9777, extension 204 [email protected] Mina Cappuccio, Darin Foreman, Ken Galal, David Mauro NASA Ames Research Center PO Box 1000, M/S 213-4, Moffett Field, CA 94035-1000; 650 604 1313 [email protected] Keats Wilkie, Paul Speth, Trevor Jackson, Will Scott NASA Langley Research Center 4 West Taylor Street, Mail Stop 230, Hampton, VA, 23681; 757 864 420 [email protected] ABSTRACT Rideshare is a well proven approach, in both LEO and GEO, enabling low-cost space access through splitting of launch charges between multiple passengers. Demand exists from users to operate payloads at Lagrange points, but a lack of regular rides results in a deficiency in rideshare opportunities. As a result, such mission architectures currently rely on a costly dedicated launch. NASA and Moog have jointly studied the technical feasibility, risk and cost of using an Orbital Maneuvering Vehicle (OMV) to offer Lagrange point rideshare opportunities. This OMV would be launched as a secondary passenger on a commercial rocket into Geostationary Transfer Orbit (GTO) and utilize the Moog ESPA secondary launch adapter. The OMV is effectively a free flying spacecraft comprising a full suite of avionics and a propulsion system capable of performing GTO to Lagrange point transfer via a weak stability boundary orbit. In addition to traditional OMV ’tug’ functionality, scenarios using the OMV to host payloads for operation at the Lagrange points have also been analyzed.
    [Show full text]
  • NASA Langley Research Center Dedicated As Vertical Flight Heritage Site N Friday, May 8 (The W
    NASA Langley Research Center Dedicated as Vertical Flight Heritage Site n Friday, May 8 (the W. F. Durand. The paper states day after Forum 71), “The gravest charge against ONASA Langley Research the helicopter is its lack of hosted a ceremony for the means of making a safe recognition of the Center as descent when the engine has an AHS International Vertical stopped.” It disproved two Flight Heritage Site. The common misperceptions that ceremony featured remarks the parachute effect of the by NASA Administrator, stopped blades or the blades Charles Bolden; Associate spinning backwards could Administrator for Aeronautics, create a safe landing. It then Jaiwon Shin; Acting Center provided a mathematical Director Dave Bowles; US treatment of the principle Congressman Scott Rigell (via of autorotation. This video); the Honorable George principle was later to be a Wallace, Mayor of the City of major feature in Juan de la Hampton; and AHS Executive Cierva’s autogyro work and, Director Mike Hirschberg. Sikorsky YR-4B in the NACA Langley Full Scale Wind Tunnel in 1944. (All eventually, in satisfactory NASA debuted a photos courtesy of NASA) helicopter behavior following historical overview video of a power failure. This 1920 NASA Langley’s rotorcraft be dedicated since AHS began the technical publication even contributions created specifically for the Vertical Flight Heritage Sites Program demonstrated some understanding of event. Administrator Bolden predicted in 2013. The initiative is intended to twist and rotor inflow considerations. the impact that vertical flight aircraft recognize and help preserve sites of Throughout the years, Langley would have on relieving ground traffic the most noteworthy and significant researchers continued exploring the congestion in the future, citing the long contributions made in both the theory complex problem of vertical flight.
    [Show full text]
  • Npl Fact Sheets (Initial Title)
    Region 3: Mid-Atlantic Region Hazardous Site Cleanup Division Serving: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia Recent Additions | Contact Us | Print Version Search: EPA Home > OSWER Home > Region 3 HSCD > Virginia Superfund Sites > Langley Air Force Base > Current Site Information Superfund Current Site Information (NPL Pad) Brownfields / Redevelopment Langley Air Force Base / NASA Langley Initiatives Research Center Administrative Record EPA Region 3 EPA ID# VA2800005033 Last Update: May 2000 Virginia Risk Assessment / Hampton 2nd Congressional District Other Names: None RBC Tables Resources / State Links Current Site Status Specialist Listing Several sites are currently in the remedial investigation/feasibility study (RI/FS) stage. Records of Decision have been signed by Oil Pollution NASA and the EPA for the Area E Warehouse Operable Unit (OU) and the Tabbs Creek OU. Two Records of Decision have been Freedom of signed for the LAFB. Dredging of soils contaminated with PCBs Information Act (Polychlorinated Biphenyls) and PCTs (Polychlorinated Terphenyls) Requests (FOIA) along Tabbs Creek began in December 1999 and should take six to eight months to complete. Site Description The Langley Air Force Base (LAFB)/NASA Langley Research Center (NASA LaRC) site in Hampton, Virginia consists of two Federal facilities. LAFB covers 3,152 acres, has been an airfield and aeronautical research center since 1917, and is the home base for the First Fighter Wing. NASA LaRC is consists of 787 acres and is a research facility that conducts numerous operations in nearly 200 buildings and 40 wind tunnels. Wastes generated at LAFB include petroleum, oils and lubricants, fuels, solvents, paints, pesticides, photographic chemicals, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and heavy metals.
    [Show full text]
  • Neptune Polar Orbiter with Probes*
    NEPTUNE POLAR ORBITER WITH PROBES* 2nd INTERNATIONAL PLANETARY PROBE WORKSHOP, AUGUST 2004, USA Bernard Bienstock(1), David Atkinson(2), Kevin Baines(3), Paul Mahaffy(4), Paul Steffes(5), Sushil Atreya(6), Alan Stern(7), Michael Wright(8), Harvey Willenberg(9), David Smith(10), Robert Frampton(11), Steve Sichi(12), Leora Peltz(13), James Masciarelli(14), Jeffrey Van Cleve(15) (1)Boeing Satellite Systems, MC W-S50-X382, P.O. Box 92919, Los Angeles, CA 90009-2919, [email protected] (2)University of Idaho, PO Box 441023, Moscow, ID 83844-1023, [email protected] (3)JPL, 4800 Oak Grove Blvd., Pasadena, CA 91109-8099, [email protected] (4)NASA Goddard Space Flight Center, Greenbelt, MD 20771, [email protected] (5)Georgia Institute of Technology, 320 Parian Run, Duluth, GA 30097-2417, [email protected] (6)University of Michigan, Space Research Building, 2455 Haward St., Ann Arbor, MI 48109-2143, [email protected] (7)Southwest Research Institute, Department of Space Studies, 1050 Walnut St., Suite 400, Boulder, CO 80302, [email protected] (8)NASA Ames Research Center, Moffett Field, CA 94035-1000, [email protected] (9)4723 Slalom Run SE, Owens Cross Roads, AL 35763, [email protected] (10) Boeing NASA Systems, MC H013-A318, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099, [email protected] (11)Boeing NASA Systems, MC H012-C349, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099 [email protected] (12)Boeing Satellite Systems, MC W-S50-X382, P.O. Box 92919, Los Angeles, CA 90009-2919, [email protected] (13) )Boeing NASA Systems, MC H013-C320, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099, [email protected] (14)Ball Aerospace & Technologies Corp., P.O.
    [Show full text]
  • NASA Langley Research Center
    National Aeronautics and Space Administration LANGLEY RESEARCH CENTER www.nasa.gov contents NASA is on a reinvigorated “path of exploration, innovation and technological development leading to an array of challenging destinations and missions. — Charles Bolden” NASA Administrator Director’s Message ........................................ 2-3 Exploration Developing a New Launch Crew Vehicle ................. 4-5 Aeronautics Forging Tomorrow’s Flight Today ............................... 6 NASA Tests Biofuels for Commercial Jets .................. 7 Science Tracking Dynamic Change ......................................... 8 Airborne Air-Quality Campaign Created a Buzz ........... 9 Systems Analysis Making the Complex Work ...................................... 10 Partnerships Collaborating to Transition NASA Technologies .......................................... 12-13 We Have Liftoff Two Launches Carried Langley Instruments into Space ..................................... 14-15 A Space Shuttle Tribute ........................... 16-17 Economics ................................................... 18-19 Langley People ........................................... 20-21 Outreach & Education .............................. 22-23 Awards & Patents ...................................... 24-26 Contacts/Leadership ...................................... 27 Virginia Air & Space Center ........................... 27 (Inside cover) Splashdown of a crew A conference room in Langley’s new headquarters capsule mockup in Langley’s new Hydro building uses
    [Show full text]
  • Curriculum Vita
    Ruhai Wang, Ph.D. Professor Graduate Program Coordinator Phillip M. Drayer Department of Electrical Engineering Lamar University Beaumont, Texas 77710 United States E-mail: [email protected] Phone: 409-880-1829 __________________________________________________________ PROFESSIONAL EXPERIENCE ▪ Professor, August 2014 - Present Phillip M. Drayer Department of Electrical Engineering Lamar University Beaumont, Texas 77710 USA ▪ Associate Professor, July 2007 – June 2014 Phillip M. Drayer Department of Electrical Engineering Lamar University Beaumont, Texas 77710 USA ▪ Assistant Professor, June 2002 - June 2007 Phillip M. Drayer Department of Electrical Engineering Lamar University Beaumont, Texas 77710 USA AREAS OF EXPERTISES AND RESEARCH INTERESTS ▪ Computer Networks and Security ▪ Cyber-Physical Systems and Cybersecurity ▪ Satellite/Space Networks and Deep-Space Communications ▪ Delay-/Disruption-Tolerant Networks (DTN) ▪ Intermittent-Connectivity Networks ▪ Wireless and Ad Hoc Networks HIGHEST DEGREE EARNED Ph.D. in Electrical/Computer Engineering August 2001 ▪ New Mexico State University, Las Cruces, New Mexico, USA ▪ Advisor: Dr. Stephen Horan (Currently a Principal Investigator at NASA Langley Research Center) HIGHLIGHT OF PROFESSIONAL ACTIVITIES (1) Associate Editor, IEEE Transactions on Aerospace & Electronics Systems, 2018-Present (2) Associate Editor, IEEE Aerospace & Electronics Systems Magazine, January 2012-Present (3) Member, The Teaching Board of PhD Program in Science and Technology for Electronic and Telecommunication (STIET), University of Genova, Italy, 2018-Present (4) Named as “Best Associate Editor” of IEEE Aerospace & Electronics Systems Magazine, 2015 (5) Associate Editor, Wiley InterScience’s Wireless Communications and Mobile Computing Journal, Aug. 1 2006-2010 (6) Guest Editor, IEEE Aerospace & Electronics Systems Magazine Special Issue on “Recent Trends in Interplanetary Communications Systems”, 2010. (7) Associate Editor, Journal of Computer Systems, Networks, and Communications (JCSNC), July 2007-July 2011.
    [Show full text]
  • Planetary Science
    Mission Directorate: Science Theme: Planetary Science Theme Overview Planetary Science is a grand human enterprise that seeks to discover the nature and origin of the celestial bodies among which we live, and to explore whether life exists beyond Earth. The scientific imperative for Planetary Science, the quest to understand our origins, is universal. How did we get here? Are we alone? What does the future hold? These overarching questions lead to more focused, fundamental science questions about our solar system: How did the Sun's family of planets, satellites, and minor bodies originate and evolve? What are the characteristics of the solar system that lead to habitable environments? How and where could life begin and evolve in the solar system? What are the characteristics of small bodies and planetary environments and what potential hazards or resources do they hold? To address these science questions, NASA relies on various flight missions, research and analysis (R&A) and technology development. There are seven programs within the Planetary Science Theme: R&A, Lunar Quest, Discovery, New Frontiers, Mars Exploration, Outer Planets, and Technology. R&A supports two operating missions with international partners (Rosetta and Hayabusa), as well as sample curation, data archiving, dissemination and analysis, and Near Earth Object Observations. The Lunar Quest Program consists of small robotic spacecraft missions, Missions of Opportunity, Lunar Science Institute, and R&A. Discovery has two spacecraft in prime mission operations (MESSENGER and Dawn), an instrument operating on an ESA Mars Express mission (ASPERA-3), a mission in its development phase (GRAIL), three Missions of Opportunities (M3, Strofio, and LaRa), and three investigations using re-purposed spacecraft: EPOCh and DIXI hosted on the Deep Impact spacecraft and NExT hosted on the Stardust spacecraft.
    [Show full text]
  • NASA Guidebook for Proposers, Appendix H
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) ********** GUIDEBOOK FOR PROPOSERS RESPONDING TO A NASA NOTICE OF FUNDING OPPORTUNITY (NOFO) Revised as of February 4, 2021 Effective as of February 15, 2021 TABLE OF CONTENTS Preface 1. Introduction to NASA’s Programs 2. Proposal Preparation and Organization 2.1 Submission Guidance 2.2 Submission Requirements and Restrictions 2.3 Notice of Intent (NOI) to Propose 2.4 Submission Process 2.5 Successor Proposals 2.6 Standard Proposal Style Format 2.7 Overview of Proposal 2.8 Required Proposal Elements 2.9 Certifications, Assurances, Representations and Sample Agreements 2.10 Proposal Summary/Abstract 2.11 Data Management Plan 2.12 Table of Contents 2.13 Scientific/Technical/Management Plan 2.14 References and Citations 2.15 Biographical Sketch 2.16 Current and Pending Support 2.17 Statements of Commitment and Letters of Resource Support 2.18 Proposal Budget with Budget Narrative and Budget Details 2.19 Facilities and Equipment 2.20 Table of Personnel and Work Effort 2.21 Special Notifications and/or Certifications 2.22 Assembly of Electronic Proposals 2.23 NASA Requirements for Uploaded PDF Files 3. Proposal Submission 3.1 NSPIRES Registration Requirements and Instructions 3.2 Submitting Proposals through NSPIRES 3.3 Submitting Proposals through Grants.gov 3.4 Other Submission Options 3.5 Proposal Receipt 4. Proposal Review and Selection 4.1 Administrative Review 4.2 Technical and Programmatic Review 4.3 Selection Based on Technical Merit 4.4 Budget, Cost Analysis and Financial 4.5 Withdrawal of Proposal 4.6 Proposal Rejected by NASA without Review 5.
    [Show full text]