The American Lobster Underwater World 2

Total Page:16

File Type:pdf, Size:1020Kb

The American Lobster Underwater World 2 QL 626 U5313 no.18 c.2 - The American Lobster Underwater World 2 Who hasn't looked at a lobster in a fîsh or scampi. The lobster belongs to the store and wondered how such an ugly decapod or 10-legged family of crustaceans The American creature could be the epicurean's delight? which includes shrimps, prawns, crabs and At one time surplus catches of lobster crayfish. Lobs ter were used as fertilizer. Fishermen con- Lobsters have a jointed external shell, sidered them a nuisance when they became which protects and supports the body parts, entangled in their nets. while still permitting movement. The However, for qui te a number of years, lobster's body is formed mainly by the the lobster has become a highly sought after cephalothorax, or head and chest area, and creature. Gourmets the world over prize the six-jointed abdomen which is common- this crustacean as the most delectable. ly known as the tail. The claws, carried on As a result, lobsters are now trapped its first pair of legs and to which it owes unremittingly, and it appears that their much of its distinctiveness, are called the populations - at least in certain areas - pincer and the crusher according to their are threatened. Most females don't get a respective functions. Four pairs of walking chance to reproduce even once before being legs occur on its thorax, and a series of caught by the fîshing industry. swimmerets, used for carrying eggs in the Scientists are concerned, and are calling case of the female, are suspended from for stiffer contrais. Fishermen and pro- beneath the abdomen. Lobsters corne in ducers claim that the industry is already various colours - mostly colours which are severely over-regulated. In any event, there useful for camouflage purposes, but are is a need for reexamination of a manage- usually greenish when in the water, tending ment code which has evolved over the past to redden when out. 90 years. Skillful management must weigh Adult lobsters vary greatly in size among potential short-term lasses against long- localities, depending upon the age and local term gains. Ultimately, it is obvious that all growth rate, as well as the intensity of the concerns are contingent upon the protec- fîshery . In areas where the exploitation rate tion of the species. is high, the local stock of lobsters is main- tained at a young average age. The average Description size is consequently smaller than it would be That most coveted of crustaceans, the if there were less fîshing pressure. The American lobster (or Homarus americanus intensively-fîshed Gulf of St. Lawrence as it is known scientifîcally), is an in- stocks have an average size of less than vertebrate crustacean. It has no immediate 400 g. Sorne lobsters can grow to a size of relatives in Canada. lt does have, however, more than 20 kg if they survive the fîshery one European brother Homarus and natural mortality. vulgaris. Also related is the Norway lobster Distribution Lobsters live along the east coast of North America from North Carolina to Labrador. They are abundant off Maine, southwest Nova Scotia, and the Gulf of St. Lawrence coastline of the Maritimes. Lobsters prefer a habitat where they can find shelter. In deep water canyons off the coast of the U .S., lobsters have been observed lodged individually in small bur- rows dug into the face of clay cliffs. Inshore lobster populations are found on rocky bot- toms, where a large number of individuals can obtain appropriate shelter. On sand or mud, lobsters may be found hiding under rocks of about their own size. In a number of areas lobsters tend to be larger in deeper water. There are excep- tions. For example, large egg-bearing females are found in shallow waters in the Bay of Fundy where they reproduce and moult during the summer months. Just as the emergence of droves of office workers on a sunny day in spring does not necessarily indicate that the number of of- fice workers themselves is on the rise - soit is with lobsters. They become more active Underwater World 3 when the water begins to warm up. Thus soon after moulting, concentrating on high the catch increases and it appears that there calcium foods to encourage the rapid are more. ln fact, they are only more active. hardening of its shell. The calcium which So water temperatures, if not taken into ac- had been stored in the stomach walls is also count, can play havoc with demographic used at this time. Sometimes it may even eat surveys. its old shell. For one or two months after a moult the lobster's flesh is watery and does Life History not quite fit the shell. During this period its The Iobster begins its life as an egg, glued appetite is enormous and it is readily at- to the swirnmerets on the underside of the tracted to the bait in lobster traps. female's abdomen. The speed of matura- Growth slows down progressively as the tion at this stage may be accelerated by juvenile Iobster grows to adulthood. Since warmer water temperatures. Usually the lobsters grow faster in more temperate eggs hatch in the summer, and the newly- waters they may moult more often. In the released Iarvae float to the surface where Northumberland Strait, for example, where they feed upon smaller planktonic summer water temperatures may reach organisms and undergo three moults, each 20°C, a lobster at the current canner time growing larger, and more similar to an minimum of 63.5 mm carapace length, can adult. In three to six weeks, depending on moult twice in one year. Once a lobster has the temperature, the juvenile lobster replenished the flesh within its new shell, it descends to the sea bottom. At this stage its will be about 50 per cent heavier than total length is about 15 mm. The mortality before a moult. So in one year a lobster rate of larvae is very high, and only about from the Northumberland Strait would one per cent of the floating larvae may set- grow from 200 g to 450 g, and would moult tle on the ocean floor. twice, whereas his counterpart in a cooler Luckily, each female produces enormous habitat would average 300 g, and moult on- numbers of eggs. For example, a large ly once. "canner" with a carapace or shell length of Temperature is also a factor in the age at 78 mm releases about 7 ,500 eggs at one which a lobster attains sexual maturity. time. Even if only one per cent of these Female lobsters in the Northumberland make it to the bottom, this still means that Strait may mature at 200 g or three years of Fig. J. Egg-bearing or berried lobs ter. each female has produced at least 75 off- age, whereas their counterparts in the Bay spring that have survived. Typical large of Fundy will not mature sexually until they breeders in the Bay of Fundy release 30,000 are 700 g or eight years of age. eggs at a time, and the jumbos of more than The size at which the average female is 125 mm in length have been known to pro- mature and capable of producing eggs to duce more than 40,000 eggs. replenish the population is very important ln order to survive, small lobsters Iead a in the regulation of the fisheries harvest, Fig. 2. C/ose-upsection ofberried lobster. very secretive existence, so most of their because if females are not given the chance time is spent hiding in burrows. Through- to contribute to the reproduction of the out their lives, they prey upon correspond- species, the lobster population will obvious- ingly small individuals of high food quality, ly suffer a decline. This is the main problem such as crabs, mussels, clams, sea urchins facing the lobster population today. and starfish. There is no evidence of canna- balism in the wild. Reproduction As the growing lobster becomes too big The female is only sexually receptive for a for its shell, it sheds it for a larger one. Be- few days after moulting, while her shell is tween moults, the flesh becomes pro- still soft and flexible. When lobsters mate, gressively more densely packed inside the the male deposits sperm in the spermatheca shell. Meanwhile, a new soft shell develops between the female's last two pairs of walk- inside the old one. Calcium salts are absorb- ing legs. The sperm is then stored for as ed from the outer shell and stored in the long as a year, until the eggs are ready. At stomach wall. The lobster arches its body that time the eggs are released from the into a "V" form, folded at the junction of openings of the oviduct at the bases of the carapace and abdomen. The large flexible third pair of walking legs. As they pass old membrane stretches, then splits, and the toward the swimmerets, sperm is released to animal lies on its side and backs out of the fertilize them. The eggs are then carried on shell. Once free, the lobster flips back into the swimmerets until the following year. In the normal position and proceeds to suck in the past it was assumed that after hatching water and to puff itself up to about IO to the eggs, the female would moult and then 15 percent larger than its previous size. mate again to recommence a two-year At this stage the lobster's shell is very reproductive cycle. However, it seems that tender and the Iobster is extremely very large females are able to conserve vulnerable to predation.
Recommended publications
  • Decapod Crustacean Grooming: Functional Morphology, Adaptive Value, and Phylogenetic Significance
    Decapod crustacean grooming: Functional morphology, adaptive value, and phylogenetic significance N RAYMOND T.BAUER Center for Crustacean Research, University of Southwestern Louisiana, USA ABSTRACT Grooming behavior is well developed in many decapod crustaceans. Antennular grooming by the third maxillipedes is found throughout the Decapoda. Gill cleaning mechanisms are qaite variable: chelipede brushes, setiferous epipods, epipod-setobranch systems. However, microstructure of gill cleaning setae, which are equipped with digitate scale setules, is quite conservative. General body grooming, performed by serrate setal brushes on chelipedes and/or posterior pereiopods, is best developed in decapods at a natant grade of body morphology. Brachyuran crabs exhibit less body grooming and virtually no specialized body grooming structures. It is hypothesized that the fouling pressures for body grooming are more severe in natant than in replant decapods. Epizoic fouling, particularly microbial fouling, and sediment fouling have been shown r I m ans of amputation experiments to produce severe effects on olfactory hairs, gills, and i.icubated embryos within short lime periods. Grooming has been strongly suggested as an important factor in the coevolution of a rhizocephalan parasite and its anomuran host. The behavioral organization of grooming is poorly studied; the nature of stimuli promoting grooming is not understood. Grooming characters may contribute to an understanding of certain aspects of decapod phylogeny. The occurrence of specialized antennal grooming brushes in the Stenopodidea, Caridea, and Dendrobranchiata is probably not due to convergence; alternative hypotheses are proposed to explain the distribution of this grooming character. Gill cleaning and general body grooming characters support a thalassinidean origin of the Anomura; the hypothesis of brachyuran monophyly is supported by the conservative and unique gill-cleaning method of the group.
    [Show full text]
  • Download-The-Data (Accessed on 12 July 2021))
    diversity Article Integrative Taxonomy of New Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region Kareen E. Schnabel 1,* , Qi Kou 2,3 and Peng Xu 4 1 Coasts and Oceans Centre, National Institute of Water & Atmospheric Research, Private Bag 14901 Kilbirnie, Wellington 6241, New Zealand 2 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 3 College of Marine Science, University of Chinese Academy of Sciences, Beijing 100049, China 4 Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; [email protected] * Correspondence: [email protected]; Tel.: +64-4-386-0862 Abstract: The New Zealand fauna of the crustacean infraorder Stenopodidea, the coral and sponge shrimps, is reviewed using both classical taxonomic and molecular tools. In addition to the three species so far recorded in the region, we report Spongicola goyi for the first time, and formally describe three new species of Spongicolidae. Following the morphological review and DNA sequencing of type specimens, we propose the synonymy of Spongiocaris yaldwyni with S. neocaledonensis and review a proposed broad Indo-West Pacific distribution range of Spongicoloides novaezelandiae. New records for the latter at nearly 54◦ South on the Macquarie Ridge provide the southernmost record for stenopodidean shrimp known to date. Citation: Schnabel, K.E.; Kou, Q.; Xu, Keywords: sponge shrimp; coral cleaner shrimp; taxonomy; cytochrome oxidase 1; 16S ribosomal P. Integrative Taxonomy of New RNA; association; southwest Pacific Ocean Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region.
    [Show full text]
  • Common Kansas Spiders
    A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas.
    [Show full text]
  • An Illustrated Key to the Malacostraca (Crustacea) of the Northern Arabian Sea
    An illustrated key to the Malacostraca (Crustacea) of the northern Arabian Sea. Part 1: Introduction Item Type article Authors Tirmizi, N.M.; Kazmi, Q.B. Download date 25/09/2021 13:22:23 Link to Item http://hdl.handle.net/1834/31867 Pakistan Journal of Marine Sciences, Vol.2(1), 49-66, 1993 AN IlLUSTRATED KEY TO THE MALACOSTRACA (CRUSTACEA) OF THE NORTHERN ARABIAN SEA Part 1: INTRODUCTION Nasima M. T:innizi and Quddusi B. Kazmi Marine Reference Collection and Resource Centre, University of Karachi Karachi-75270, Pakistan ABS'J.'R.ACT: The key deals with the Malacostraca from the northern Arabian Sea (22°09'N to 10°N and 50°E to 76°E). It is compiled from the specimens available to us and those which are in the literature. An introduction to the class Malacostraca and key to the identification of subclasses, superorders and orders is given. All the key characters are illustrated. Original references with later changes are men­ tioned. The key will be published in parts not necessarily in chronological order. KEY WORDS: Malacostraca -Arabian Sea - Orders -Keys. INTRODUCTION The origin of this work can be traced back to the prepartition era and the early efforts of carcinologists who reported on the marine Crustacea of the northern Arabi­ an Sea and adjacent oceanic zones. We owe indebtedness to many previous workers like Alcock (1896-1901) and Henderson (1893) who had also contributed to the list of species which the fauna now embodies. With the creation of Pakistan carcinological studies were 'undertaken specially by the students and scientists working at the Zoolo­ gy Department, University of Karachi.
    [Show full text]
  • California Spiny Lobster Scientific Name: Panulirus Interruptus Range
    Fishery-at-a-Glance: California Spiny Lobster Scientific Name: Panulirus interruptus Range: Spiny Lobster range from Monterey, California southward to at least as far as Magdalena Bay, Baja California. The physical center of the range is within Mexico, and population density and fishery productivity is highest in this area. Habitat: As juveniles (less than 3 years of age), Spiny Lobster live in coastal rubble beds, but as adults, they are found on hard bottomed or rocky-reef habitat kelp forests. Size (length and weight): Adult Spiny Lobsters average 2 pounds in weight and about 12 inches total length, with males slightly larger than females. Adults more than 5 pounds are currently considered trophy individuals, although records exist from a century ago of 26 pound, 3 foot long lobsters. Life span: Spiny Lobsters can live up to 30 to 50 years. Reproduction: Spiny Lobsters mature at about 5 years of age, or 2.5-inch carapace length. They have a complex, 2-year reproductive cycle from mating to the settlement of juvenile lobsters. Fecundity increases with size, and females produce one brood of eggs per year. Prey: Spiny Lobsters are omnivorous, and act as important keystone predators within the southern California nearshore ecosystem. Adults forage at night for algae, fish, and many marine invertebrates. Predators: Predators of juvenile Spiny Lobsters include California Sheephead, Cabezon, rockfishes, Kelp Bass, Giant Sea Bass, and octopus. Predators of adult lobsters tend to be the larger individuals such as male California Sheephead and Giant Sea Bass. Fishery: The commercial fishery accounted for approximately 312 metric tons (688,000 lb) in ex- vessel landings and $12.7 million in ex-vessel value during the 2017-2018 fishing season.
    [Show full text]
  • Fossil Evidence for the Origin of Spider Spinnerets, and a Proposed Arachnid Order
    Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order Paul A. Seldena,b,1, William A. Shearc, and Mark D. Suttond aPaleontological Institute, University of Kansas, 1475 Jayhawk Boulevard, Lawrence, KS 66045; bDepartment of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; cDepartment of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943; and dDepartment of Earth Science & Engineering, Imperial College London, SW7 2AZ, United Kingdom Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved November 14, 2008 (received for review September 14, 2008) Silk production from opisthosomal glands is a defining character- and the lack of tartipores (vestigial spigots from earlier instars), istic of spiders (Araneae). Silk emerges from spigots (modified the fossil spinneret was compared most closely with posterior setae) borne on spinnerets (modified appendages). Spigots from median spinnerets of the primitive spider suborder Mesothelae. Attercopus fimbriunguis, from Middle Devonian (386 Ma) strata of The distinctiveness of the cuticle enabled us to associate the Gilboa, New York, were described in 1989 as evidence for the spinneret with remains previously referred tentatively to a oldest spider and the first use of silk by animals. Slightly younger trigonotarbid arachnid (2). Restudy of this material resulted in (374 Ma) material from South Mountain, New York, conspecific a fuller description of the animal as the oldest known spider, with A. fimbriunguis, includes spigots and other evidence that Attercopus fimbriunguis (3). The appendicular morphology of elucidate the evolution of early Araneae and the origin of spider Attercopus, but little of the body, is now known in great detail.
    [Show full text]
  • Terrestrial Isopoda of Arkansas David Causey
    Journal of the Arkansas Academy of Science Volume 5 Article 7 1952 Terrestrial Isopoda of Arkansas David Causey Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Causey, David (1952) "Terrestrial Isopoda of Arkansas," Journal of the Arkansas Academy of Science: Vol. 5 , Article 7. Available at: http://scholarworks.uark.edu/jaas/vol5/iss1/7 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. ' Journal of the Arkansas Academy of Science, Vol. 5 [1952], Art. 7 THE TERRESTRIAL ISOPODA OF ARKANSAS* DAVID CAUSEY University of Arkansas 1. Introduction The Isopoda are an interesting and readily available example of one division of the higher Crustacea. After the caridoid facies became established in the early Malacostraca, two divergent trends arose. In the Eucarida, e.g., the shrimp, crawfish, and crab, the trend included the elaboration of the carapace into a myriad pattern of forms, sculpturing, and coloring, along with the empha- sis on stalked eyes and the carrying of the eggs by the female on her abdominal appendages.
    [Show full text]
  • The Place of the Hoplocarida in the Malacostracan Pantheon
    The University of Maine DigitalCommons@UMaine Marine Sciences Faculty Scholarship School of Marine Sciences 6-1-2009 The lP ace of the Hoplocarida in the Malacostracan Pantheon Les Watling University of Maine - Main, [email protected] C. H.J. Hof F. R. Schram Follow this and additional works at: https://digitalcommons.library.umaine.edu/sms_facpub Repository Citation Watling, Les; Hof, C. H.J.; and Schram, F. R., "The lP ace of the Hoplocarida in the Malacostracan Pantheon" (2009). Marine Sciences Faculty Scholarship. 134. https://digitalcommons.library.umaine.edu/sms_facpub/134 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Marine Sciences Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. JOURNALOF CRUSTACEANBIOLOGY, 20, SPECIALNUMBER 2: 1-11, 2000 THE PLACE OF THE HOPLOCARIDA IN THE MALACOSTRACAN PANTHEON Les Watling, Cees H. J. Hof, and Frederick R. Schram (LW,corresponding) Darling MarineCenter, University of Maine, Walpole, Maine 04573, U.S.A. (e-mail: [email protected]);(CHJH) Department of EarthSciences, University of Bristol, Wills MemorialBuilding, Queens Road, Bristol BS8 1RJ, United Kingdom (e-mail: [email protected]); (FRS) Zoological Museum, University of Amsterdam,Post Box 94766, NL-1090 GT Amsterdam, The Netherlands(e-mail: [email protected]) ABSTRACT The stomatopodbody plan is highly specializedfor predation,yet the SuperorderHoplocarida originatedfrom something other than the "lean,mean, killing machine" seen today.The fossil record of the groupindicates that it originatedearly on froma non-raptorialancestor, with the specialized predatorymorphology developing much later.
    [Show full text]
  • California Spiny Lobster (Panulirus Interruptus) Movement Behavior and Habitat Use: Implications for the Effectiveness of Marine Protected Areas
    UC San Diego Research Theses and Dissertations Title California spiny lobster (Panulirus interruptus) movement behavior and habitat use: Implications for the effectiveness of marine protected areas Permalink https://escholarship.org/uc/item/3rg047sr Author Withy-Allen, Kira R.Y. Publication Date 2010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CALIFORNIA SPINY LOBSTER (PANULIRUS INTERRUPTUS) MOVEMENT BEHAVIOR AND HABITAT USE: IMPLICATIONS FOR THE EFFECTIVENESS OF MARINE PROTECTED AREAS ______________ A Thesis Presented to the Faculty of San Diego State University ______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology ______________ by Kira R.Y. Withy-Allen Summer 2010 SAN DIEGO STATE UNIVERSITY The Undersigned Faculty Committee Approves the Thesis of Kira R.Y. Withy-Allen: California Spiny Lobster (Panulirus interruptus) Movement Behavior and Habitat Use: Implications for the Effectiveness of Marine Protected Areas ____________________________________________ Kevin Hovel, Chair Department of Biology ____________________________________________ Matthew Edwards Department of Biology ____________________________________________ Li An Department of Geography ______________________________ Approval Date iii Copyright © 2010 by Kira R.Y. Withy-Allen All Rights Reserved iv ABSTRACT OF THE THESIS California Spiny Lobster (Panulirus interruptus) Movement Behavior and Habitat Use: Implications for the Effectiveness of Marine Protected Areas by Kira
    [Show full text]
  • A Phylogenetic Analysis of the Isopoda with Some Classificatory Recommendations
    A PHYLOGENETIC ANALYSIS OF THE ISOPODA WITH SOME CLASSIFICATORY RECOMMENDATIONS RICHARD C. BRUSCA AND GEORGE D.F. WILSON Brusca, R.C. and Wilson, G.D.F. 1991 09 01: A phylogenetic analysis of the Isopoda with some classificatory recommendations. Memoirs of the Queensland Museum 31: 143-204. Brisbane. ISSN 0079-8835. The phylogenetic relationships of the isopod crustacean suborders are assessed using cladistic methodology. The monophyly of the Flabellifera was tested by including all 15 component families separately in the analysis. Four other peracarid orders (Mysidacea, Amphipoda, Mictacea, and Tanaidacea) were used as multiple out-groups to root our phylogenetic estimates within the Isopoda. A broad range of possible characters for use in assessing isopod relationships is discussed and a final data (character) matrix was selected. This data matrix, comprising 29 taxa and 92 characters, was subjected to computer-assisted analysis using four different phylogenetic programs: HENNIG86, PAUP, PHYLIP, and MacClade. Phylogenetic hypotheses from the literature (particularly Wagele, 1989a) are discussed and compared with our own conclusions. The following hypotheses are suggested by our analysis. The Isopoda constitutes a monophyletic group. The Phreatoicidea is the earliest derived group of living isopods, followed by an Asellota-Microcerberidea line, and next the Oniscidea. Above the Onis- cidea is a large clade of 'long-tailed' isopod taxa (Valvifera, Anthuridea, Flabellifera, Epicaridea, Gnathiidea). The Microcerberidea is the sister group of the Asellota, but probably should not be included in the Asellota. The Oniscidea constitutes a monophyletic group. The monotypic taxon Calabozoidea is either a primitive oniscidean, or is a sister group of the Oniscidea (Calabozoa is not an asellotan).
    [Show full text]
  • American Lobster
    American Lobster Context While surfing this site, you will discover the American lobster and its sometimes surprising characteristics. You will learn where the lobster lives, how it grows, and what it eats. You will also discover the history of lobster fishing, and how it is managed today. Furthermore, you will learn that it is not the only species in the great lobster family. In fact, many of its relatives throughout the world are sometimes quite different from the North American lobster. Content: Nathalie Paille and Luc Bourassa | Graphics: Johanne Noël https://ogsl.ca/en 1 American Lobster What is a lobster? Lobsters living along Canadian and American coasts are generally called "American lobster". They represent a highly valued commercial species. In the classification of animal species, lobsters belong to the following: c Invertebrate group, because they don’t have a spine or internal skeleton. c Arthropod subphylum, because of their articulated legs. c Shellfish class, because of their carapace, which is their external skeleton. c Decapods order, because of their five pairs of legs (10 legs in all). c Nephropids family. c Homarus genus. The Latin name (or scientific name) for American lobster is Homarus americanus. The name americanus corresponds to the name given to the lobster species. https://ogsl.ca/en 2 American Lobster Characteristics Z Exterior anatomy Antennas Eyes Chelipeds (or claws) Pereiopods Cephalothorax Rostrum (or walking legs) Uropods Abdomen Telson Mouth Anus Swimmerets (or pleopods) https://ogsl.ca/en 3 American Lobster Antennas Lobsters have three pairs of antennas: a large pair and two small pairs. They are sensory organs.
    [Show full text]
  • Common Spiders (Arachnida: Araneae) in the Wichita Mountains and Surrounding Areas
    Common Spiders (Arachnida: Araneae) in the Wichita Mountains and Surrounding Areas Angel A. Chiri Entomologist and abdomen) and does not include legs. Introduction Although this guide is primarily for spiders, harvestmen, scorpions, ticks, and sun spiders are Spiders belong in the Phylum Arthropoda, Class briefly mentioned. Arachnida, Order Araneae. These common arachnids are found in grasslands, forests, orchards, cultivated fields, backyards, gardens, empty lots, parks, and homes. There are some 570 genera and 3,700 species of spiders in North America, north of Mexico. According to an Oklahoma State University checklist at least some 187 genera and 432 species were recorded in the state. Cokendolpher and Bryce (1980) examined arachnid specimens collected at the Wichita Mountains Wildlife Refuge by various groups between 1926 and 1978. Their work yielded a total of 182 arachnid species, of which 170 were spiders. Figure 1. Texas brown tarantula, Aphonopelma hentzi, male Many spiders are common and distinctive, often seen resting on their webs or crawling on the Summary of Structure and Function ground during the warmer months. The larger orb-weavers, for instance, are readily noticed in Being arthropods, spiders have a rigid external late summer and early fall because of their size skeleton, or exoskeleton, and jointed legs. The and conspicuousness. Others are uncommon or spider body consists of two segments, the seldom seen because of their secretive habits or cephalothorax (anterior segment) and the small size. For instance, some spiders that live abdomen (posterior segment), joined by a short, in leaf litter are minute, cryptic, and seldom thin, flexible pedicel. The dorsal part of the noticed without the use of special collecting cephalothorax is the carapace.
    [Show full text]