The Denver Observer September 2018

Total Page:16

File Type:pdf, Size:1020Kb

The Denver Observer September 2018 The Denver SEPTEMBER 2018 OBSERVER New DAS member Steve Smith saw the chart for Vesta’s path through Ophiuchus in last month’s Observer, and pho- tographed the minor planet as it passed by the star c Ophiuchi on the evening of August 20th. Image © Steve Smith. SEPTEMBER SKIES by Zachary Singer The Solar System horizon, rising to about 7° some 15 minutes later. Look soon though, because the planet’s Sky Calendar If you’ve been watching the sky after 2 Last-Quarter Moon sunset in August, then you’ve likely noticed on its way to superior conjunction (where it th 9 New Moon the striking vista of four bright planets— lines up with the Sun in the sky) on the 20 , and it will be lost in the sun’s light well before 16 First-Quarter Moon Venus, Jupiter, Saturn, and Mars—lined up 24 Full Moon from southwest to southeast. Even without then. a telescope, their sweep makes a memorable Early in the month, Venus appears only view, and the arrangement will continue well 10° above the horizon 30 minutes after sun- In the Observer into September; if you haven’t seen it you set, and as noted above, it will get lower daily. President’s Message . .2 should—get outside about a half-hour after Though this will make telescopic observa- sunset and look for the planets to start com- tions increasingly challenging, the upside is Society Directory. 2 ing out. As the month progresses, Venus will that by mid-month, the planet will also ap- Schedule of Events . 2 pear as a stunning, large and bright crescent, get lower in the west, so you’ll need a clear Front Range Light Pollution . .3 horizon. reaching magnitude -4.6 at its peak, accord- Mercury continues as a pre-dawn object ing to SkySafari software (the folks atSky and About Denver Astronomical Society . 3 in early September, rising about 1½ hours Telescope say -4.8!). Astro Update . 4 The dust storms on Mars are reported before the Sun. Around 5:30 AM, an hour be- DAS News . 5 fore sunup, Mercury sits 4° above the eastern to be abating, but visibility of the planet’s The Observer is available in color PDF format from the DAS Continued on Page 6 website: https://www.denverastro.org/das/?page_id=13 THE DENVER OBSERVER SEPTEMBER 2018 Society Directory PRESIDENT’S MESSAGE by Ron Hranac DAS Executive Board Sometimes, You Don’t Need a Telescope President: Ron Hranac The peak of the annual Perseid meteor or “falling” stars. They’re produced when a [email protected] shower has come and gone, and this year’s meteoroid enters Earth’s atmosphere, becom- Vice President: was by most accounts a pretty good one. The ing visible when it’s 50 to 75 miles or so above Lindsey Shaw [email protected] peak occurred at the same time as our August the surface. Meteor showers occur when Secretary: dark sky weekend. Throw in pleasant summer Earth passes through streams of debris left Ed Ladner weather and a new Moon, and we had nearly behind by comets and perhaps some asteroids. [email protected] ideal observing conditions. Smoke and haze Surprisingly, most meteoroids that produce Treasurer: Scott Perrin from wildfires in the western U.S. notwith- visible meteors are no larger than the size of [email protected] standing, quite a few Denver Astronomical a pea. The American Meteor Society has a Executive Board Members: Past President, Ron Pearson Society members and their guests trekked to calendar of major meteor showers available on July Candia Ed Scholes the Edmund G. Kline Dark Site (http://www. their web site at https://www.amsmeteors.org/ Jack Eastman Sorin denverastro.org/?page_id=85) to observe the meteor-showers/meteor-shower-calendar/. Joe Gafford Chris Ubing Dena McClung Dan Wray show. Estimates I heard from some members Sporadic meteors: These are also pro- about meteor counts ranged from 15-20 per duced when meteoroids (or small asteroids) President Emeritus, Larry Brooks hour to as many as 50 per hour. enter Earth’s atmosphere, but are not associ- Committees Why am I mentioning the Perseid meteor ated with meteor showers. Van Nattan-Hansen Scholarship Fund: Megan Daniels (Chair) shower after the fact? Because meteor showers Observation of meteor showers and spo- [email protected] are among things-astronomical that can be radic meteors is best done away from bright EGK Dark Site Committee: Darrell Dodge, Interim Chair enjoyed without optical aid. (Indeed, trying lights, preferably between about local mid- [email protected] to observe a meteor shower with a telescope night and sunrise. Dress for the weather, apply IDA Representative: would be an exercise in futility.) It’s easy to insect repellant if necessary, grab a reclining Dr. Robert Stencel [email protected] forget that there is much in the sky one can lawn chair, and lie back and look up to get the Volunteers or Appointed enjoy without a ’scope. Here’s a list of some of best view of as much of the sky as possible. Representatives my favorites, in no particular order. Constellations: A fun way to enjoy the ALCor: Meteor showers: Meteors are the visible night sky is to observe the constellations, Darrell Dodge 303 932-1309 streaks of light that are often called “shooting” groups of stars that form familiar patterns (the Newsletter Editor: Zachary Singer 303 718-4188 Continued on Page 5 [email protected] Newsletter Proofreaders: DAS SCHEDULE Darrell Dodge, Ron Hranac Website: September 2018 Darrell Dodge [email protected] 8 Dark Sky Weekend—EGK Dark Site & Brooks Observatory IT Coordinator: Ken Sturrock 15 Open House—DU’s Historic Chamberlin Observatory—Starts at 7:30 PM [email protected] 21 DAS General Meeting—DU’s Olin Hall, Rm. 105—Starts at 7:30 PM External Outreach Coordinator: Julie (July) Candia 28 E-Board Meeting—At DU’s Historic Chamberlin Observatory, 7:30 PM. [email protected] All members welcome. Public Night Coordinator: (October 2018) Hugh Davidson 303 679-0629 6 Dark Sky Weekend—EGK Dark Site & Brooks Observatory Librarian: Eileen Barela 6-14 Okie-Tex Star Party (near Kenton, Oklahoma) Telescope Loan Program: 13 Open House—DU’s Historic Chamberlin Observatory—Starts at 7:30 PM Ed Scholes [email protected] DAS Information Line: (303) 871-5172 During Open House, volunteer members of the DAS Public Nights feature a presentation on astronomical DAS Correspondence: bring their telescopes to the Chamberlin Observa- subjects and a small-group observing session on the Denver Astronomical Society tory’s front (south) lawn, so the public can enjoy historic 20-inch telescope (weather permitting), at Cham- P.O. Box 102738 views of the stars and planets, try out different berlin Observatory on Tuesday and Thursday evenings Denver, Colorado 80250 telescope designs, and get advice from DAS mem- (except holidays), beginning at the following times: [email protected] bers. The Observatory is open, too (costs listed March 10 - September 30 at 8:30 PM New-Member Ambassador: below), and its historic 20-inch telescope is open Digby Kirby for observing with no reservations necessary. October 1 - March 9 at 7:30 PM [email protected] Open House costs (non-members): If the skies are clear, Public Night costs (non-members): $4/adult, (970) 301-2287 $2/person ($5/family), $1/person in inclement weather. $3/child and students with ID. DAS mem- Membership Coordinator: DU students with ID, and DAS members free. bers and DU students with ID: free. Dena McClung [email protected] Members of the public (non-DAS/DU, as above), please make reservations via our website http://www.denverastro.org (www .denverastro .org) or call (303) 871-5172. The Denver Astronomical Society One Mile Nearer the Stars - 2 - ∞ THE DENVER OBSERVER SEPTEMBER 2018 DOES LIGHT POLLUTION HAVE TO by Dr. Bob Stencel HIDE COLORADO SKIES? Light-pollution solutions (LPS) is a ing the night sky. As Jack Eastman, of the residents, rather than code-enforcement phrase that’s been in circulation for a decade Denver Astronomical Society, points out, folk working after hours. Many neighbor- or more, signaling that we don’t have to flat-panel LED lighting could be made less hoods already have (less-than-smart) light- quietly endure increasingly bright skies at harmful with a simple yellow filter overlay ing in place, so persuading a group to invest night. Happily, engineering solutions can to attenuate the blue photons. in lower-impact lights may be a hard sell; produce a win-win result for all (cost-effec- Regionally, there is some encouraging nonetheless, advocating smarter lighting tive lighting without glare and skyglow), if news: Westcliffe, Colorado is an Interna- can pay off over the long run, because these we have the will to pursue them. In spite of tional Dark Sky Association-designated light fixtures will eventually get replaced. that, metro Denver and Colorado’s Front dark-sky-friendly community. You can find 3. When you see a construction fence Range are awash in skyglow. Why? their progress reports at: https://www.darkski- appear, it often has signage, allowing you First, what is skyglow? Arguably, it is the escolorado.org/. Boulder is facing a mandate to contact the owner/builder and to advo- summation of all of the glare and light seen to begin enforcing their lighting codes, and cate for smarter lighting before they invest all around us in metro areas—this glare and will revisit the topic this autumn, according in excessively bright, inferior equipment “light-trespass” result from mis-aimed light. to activist Richard O’Brien. Northern Lara- that adds to glare and skyglow.
Recommended publications
  • SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
    THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.
    [Show full text]
  • Sky Notes by Neil Bone 2005 August & September
    Sky notes by Neil Bone 2005 August & September below Castor and Pollux. Mercury is soon ing June and July, it is still quite possible that Sun and Moon lost from view again, arriving at superior con- noctilucent clouds (NLC) could be seen into junction beyond the Sun on September 18. early August, particularly by observers at The Sun continues its southerly progress along Venus continues its rather unfavourable more northerly locations. Quite how late into the ecliptic, reaching the autumnal equinox showing as an ‘Evening Star’. Although it August NLC can be seen remains to be deter- position at 22h 23m Universal Time (UT = pulls out to over 40° elongation east of the mined: there have been suggestions that the GMT; BST minus 1 hour) on September 22. Sun during September, Venus is also heading visibility period has become longer in recent At that precise time, the centre of the solar southwards, and as a result its setting-time years. Observational reports will be welcomed disk is positioned at the intersection between after the Sun remains much the same − barely by the Aurora Section. the celestial equator and the ecliptic, the latter an hour − during this interval. Although bright While declining sunspot activity makes great circle on the sky being inclined by 23.5° at magnitude −4, Venus will be quite tricky major aurorae extending to lower latitudes to the former. Calendrical autumn begins at the to catch in the early twilight: viewing cir- less likely, the appearance of coronal holes equinox, but amateur astronomers might more cumstances don’t really improve until the in the latter parts of the cycle does bring the readily follow meteorological timing, wherein closing weeks of 2005.
    [Show full text]
  • Hints About the Multiplicity of WR 133 Based on Multiepoch Radio
    Astronomy & Astrophysics manuscript no. wr133final c ESO 2019 April 2, 2019 Hints about the multiplicity of WR 133 based on multiepoch radio observations M. De Becker1, N. L. Isequilla1, 2, 3, P. Benaglia2, 3 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, University of Liège, Quartier Agora, 19c, Allée du 6 Août, B5c, B-4000 Sart Tilman, Belgium 2 Instituto Argentino de Radioastronomía (CONICET;CICPBA), C.C. No 5, 1894, Villa Elisa, Argentina 3 Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Paseo del Bosque s/n, 1900, La Plata, Argentina Received ; accepted ABSTRACT Several tens of massive binary systems display indirect, or even strong evidence for non-thermal radio emission, hence their particle accelerator status. These objects are referred to as particle-accelerating colliding-wind binaries (PACWBs). WR 133 is one of the shortest period Wolf-Rayet + O systems in this category, and is therefore critical to characterize the boundaries of the parameter space adequate for particle acceleration in massive binaries. Our methodology consists in analyzing JVLA observations of WR 133 at different epochs to search for compelling evidence for a phase-locked variation attributable to synchrotron emission produced in the colliding-wind region. New data obtained during two orbits reveal a steady and thermal emission spectrum, in apparent contradiction with the previous detection of non-thermal emission. The thermal nature of the radio spectrum along the 112.4-d orbit is supported by the strong free-free absorption by the dense stellar winds, and shows that the simple binary scenario cannot explain the non-thermal emission reported previously.
    [Show full text]
  • Sky & Telescope
    Eclipse from the See Sirius B: The Nearest Spot the Other EDGE OF SPACE p. 66 WHITE DWARF p. 30 BLUE PLANETS p. 50 THE ESSENTIAL GUIDE TO ASTRONOMY What Put the Bang in the Big Bang p. 22 Telescope Alignment Made Easy p. 64 Explore the Nearby Milky Way p. 32 How to Draw the Moon p. 54 OCTOBER 2013 Cosmic Gold Rush Racing to fi nd exploding stars p. 16 Visit SkyandTelescope.com Download Our Free SkyWeek App FC Oct2013_J.indd 1 8/2/13 2:47 PM “I can’t say when I’ve ever enjoyed owning anything more than my Tele Vue products.” — R.C, TX Tele Vue-76 Why Are Tele Vue Products So Good? Because We Aim to Please! For over 30-years we’ve created eyepieces and telescopes focusing on a singular target; deliver a cus- tomer experience “...even better than you imagined.” Eyepieces with wider, sharper fields of view so you see more at any power, Rich-field refractors with APO performance so you can enjoy Andromeda as well as Jupiter in all their splendor. Tele Vue products complement each other to pro- vide an observing experience as exquisite in performance as it is enjoyable and effortless. And how do we score with our valued customers? Judging by superlatives like: “in- credible, truly amazing, awesome, fantastic, beautiful, work of art, exceeded expectations by a mile, best quality available, WOW, outstanding, uncom- NP101 f/5.4 APO refractor promised, perfect, gorgeous” etc., BULLSEYE! See these superlatives in with 110° Ethos-SX eye- piece shown on their original warranty card context at TeleVue.com/comments.
    [Show full text]
  • [Astro-Ph.SR] 30 Jun 2016 Alschaefer Gail MNRAS Hi Farrington Chris Ebr Pablo Herbert Old Richardson D
    MNRAS 000, 1–11 (2016) Preprint 1 July 2016 Compiled using MNRAS LATEX style file v3.0 The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138 Noel D. Richardson1⋆, Tomer Shenar2, Olivier Roy-Loubier3, Gail Schaefer4, Anthony F. J. Moffat3, Nicole St-Louis3, Douglas R. Gies5, Chris Farrington4, Grant M. Hill6, Peredur M. Williams7, Kathryn Gordon5, Herbert Pablo3, and Tahina Ramiaramanantsoa3 1 Ritter Observatory, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606-3390, USA 2 Institut fur¨ Physik und Astronomie, Universit¨at Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany 3 D´epartement de physique and Centre de Recherche en Astrophysique du Qu´ebec (CRAQ), Universit´ede Montr´eal, C.P. 6128, Succ. Centre-Ville, Montr´eal, Qu´ebec, H3C 3J7, Canada 4 The CHARA Array, Mount Wilson Observatory, 91023 Mount Wilson CA, USA 5 Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P. O. Box 5060, Atlanta, GA 30302-5060, USA 6 W. M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI 96743, USA 7 Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK ABSTRACT We report on interferometric observations with the CHARA Array of two classical Wolf-Rayet stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H-band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems ( fWR,137 = 0.59 ± 0.04; fWR,138 = 0.67 ± 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modeling of each system.
    [Show full text]
  • Patrick Moore's Practical Astronomy Series
    Patrick Moore’s Practical Astronomy Series Other Titles in this Series Navigating the Night Sky Astronomy of the Milky Way How to Identify the Stars and The Observer’s Guide to the Constellations Southern/Northern Sky Parts 1 and 2 Guilherme de Almeida hardcover set Observing and Measuring Visual Mike Inglis Double Stars Astronomy of the Milky Way Bob Argyle (Ed.) Part 1: Observer’s Guide to the Observing Meteors, Comets, Supernovae Northern Sky and other transient Phenomena Mike Inglis Neil Bone Astronomy of the Milky Way Human Vision and The Night Sky Part 2: Observer’s Guide to the How to Improve Your Observing Skills Southern Sky Michael P. Borgia Mike Inglis How to Photograph the Moon and Planets Observing Comets with Your Digital Camera Nick James and Gerald North Tony Buick Telescopes and Techniques Practical Astrophotography An Introduction to Practical Astronomy Jeffrey R. Charles Chris Kitchin Pattern Asterisms Seeing Stars A New Way to Chart the Stars The Night Sky Through Small Telescopes John Chiravalle Chris Kitchin and Robert W. Forrest Deep Sky Observing Photo-guide to the Constellations The Astronomical Tourist A Self-Teaching Guide to Finding Your Steve R. Coe Way Around the Heavens Chris Kitchin Visual Astronomy in the Suburbs A Guide to Spectacular Viewing Solar Observing Techniques Antony Cooke Chris Kitchin Visual Astronomy Under Dark Skies How to Observe the Sun Safely A New Approach to Observing Deep Space Lee Macdonald Antony Cooke The Sun in Eclipse Real Astronomy with Small Telescopes Sir Patrick Moore and Michael Maunder Step-by-Step Activities for Discovery Transit Michael K.
    [Show full text]
  • Oct 2017 Newsletter
    Volume23, Issue 2 NWASNEWS October 2017 Newsletter for the Wiltshire, Swindon, Beckington Sharing the Skies Astronomical Societies and Salisbury Plain Observing Group While we have officially swapped the chair and vice chair roles I will still be editing the Wiltshire Society Page 2 newsletter. Swindon Stargazers 3 The AGM enabled us to pass over duties (ha ha ha) and I would like to thank the Beckington and Astronomy 4 society for the gift of 6 constellation wine Apollo Astronauts in UK. 4 glasses from the society. Debbie Crokker has agreed to become Cassini ends its mission 5 vice Treasurer, and details have been passed to her for tonight. Viewing Logs and Images 6-8 I have unfortunately had to help out a lot with Dark Skies Wales this last few weeks and going forward a few more weeks while Herschel Society Meeting 8 the Director Allan Trow underwent surgery Space News that has lead to more surgery being need- :Data from Opportunity shows ed. We wish him a speedy recovery. equatorial water on Mars. It means I will also be in Spain at the GEO Lunar Observer crash site found observatory while there are paying visitors New dual object found there including a journalist which means I Mystery of Moonquakes solved? Galaxy shapes give keys will miss the next event in Devizes. Rosetta lander last image viewed Also a special birthday event in Devizes Ligo gravity waves. Another found that Pete Glastonbury is helping to organ- Sub surface ice on Vesta ise. This will now be on the 14th October.
    [Show full text]
  • International Astronomical Union Commission G1 BIBLIOGRAPHY
    International Astronomical Union Commission G1 BIBLIOGRAPHY OF CLOSE BINARIES No. 108 Editor-in-Chief: W. Van Hamme Editors: R.H. Barb´a D.R. Faulkner P.G. Niarchos D. Nogami R.G. Samec C.D. Scarfe C.A. Tout M. Wolf M. Zejda Material published by March 15, 2019 BCB issues are available at the following URLs: http://ad.usno.navy.mil/wds/bsl/G1_bcb_page.html, http://faculty.fiu.edu/~vanhamme/IAU-BCB/. The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a. Catalogues b. Discoveries of new binaries and novae c.
    [Show full text]
  • Observer's Handbook 1989
    OBSERVER’S HANDBOOK 1 9 8 9 EDITOR: ROY L. BISHOP THE ROYAL ASTRONOMICAL SOCIETY OF CANADA CONTRIBUTORS AND ADVISORS Alan H. B atten, Dominion Astrophysical Observatory, 5071 W . Saanich Road, Victoria, BC, Canada V8X 4M6 (The Nearest Stars). L a r r y D. B o g a n , Department of Physics, Acadia University, Wolfville, NS, Canada B0P 1X0 (Configurations of Saturn’s Satellites). Terence Dickinson, Yarker, ON, Canada K0K 3N0 (The Planets). D a v id W. D u n h a m , International Occultation Timing Association, 7006 Megan Lane, Greenbelt, MD 20770, U.S.A. (Lunar and Planetary Occultations). A lan Dyer, A lister Ling, Edmonton Space Sciences Centre, 11211-142 St., Edmonton, AB, Canada T5M 4A1 (Messier Catalogue, Deep-Sky Objects). Fred Espenak, Planetary Systems Branch, NASA-Goddard Space Flight Centre, Greenbelt, MD, U.S.A. 20771 (Eclipses and Transits). M a r ie F i d l e r , 23 Lyndale Dr., Willowdale, ON, Canada M2N 2X9 (Observatories and Planetaria). Victor Gaizauskas, J. W. D e a n , Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Solar Activity). R o b e r t F. G a r r i s o n , David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (The Brightest Stars). Ian H alliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Miscellaneous Astronomical Data). W illiam H erbst, Van Vleck Observatory, Wesleyan University, Middletown, CT, U.S.A. 06457 (Galactic Nebulae). Ja m e s T. H im e r, 339 Woodside Bay S.W., Calgary, AB, Canada, T2W 3K9 (Galaxies).
    [Show full text]
  • Cygnus X-1 = V1357 Cygni Röntgendoppelstern, Mikroquasar Und Schwarzes Loch
    Cygnus X-1 = V1357 Cygni Röntgendoppelstern, Mikroquasar und Schwarzes Loch Wolfgang Vollmann Wo ist das der Erde nächste Schwarze Loch? Es ist möglicherweise das System Cygnus X-1 in 6.000 Lichtjahren Entfernung am Ort 19h58m22s +35°12' (2000.0), beim Hals des Sternbilds Schwan, nicht weit von Eta Cygni (η Cyg). Im kleinen Fernrohr ist 26' ostnordöstlich von η Cyg ein Stern mit 8,8 mag sichtbar. Er ist im visuellen Spektralbereich ein klein wenig veränderlich um weniger als 0,1 mag und hat die Veränderlichen-Bezeichnung V1357 Cygni erhalten [1]. Dieser sehr heiße leuchtkräftige O-Stern (Spektraltyp O9.7 Iab) bildet mit einem extrem kompakten Objekt, dem wahrscheinlichen Schwarzen Loch, ein Doppelsystem, wobei sich die beiden Objekte in 5,6 Tagen umkreisen. Eine visuelle Beobachtung von V1357 Cygni ist mit einem kleinen Fernrohr gut möglich. Ab etwa 20-facher Vergrößerung ist der Stern auch gut getrennt vom 55 Bogensekunden nördlich stehen Stern mit 9,9 mag zu sehen, der ebenfalls etwas veränderlich ist (V1674 Cygni, unbekannter Typ, Helligkeitsänderungen kleiner als 0,1 mag). Der Begleiter macht visuelle Helligkeitsschätzungen von V1357 Cygni schwieriger. Bild 1: V1357 Cygni = Cyg X-1. Aufnahme 2015 Nov 12, 19:15 UT, Bildfeld 3 x 2,5 Grad, Norden ist oben. Der helle Stern rechts neben dem markierten Objekt ist der mit freiem Auge sichtbare Stern Eta Cygni (η Cyg, 3,9 mag), Wolfgang Vollmann Bild 2: V1357 Cygni = Cyg X-1(Bildmitte, markiert). Aufnahme aus dem DSS Digital Sky Survey. Der helle Stern rechts ist Eta Cygni. Das nebelige Objekt links ist der Emissionsnebel Sh2-101 Cygnus X-1 ist ein gut untersuchtes System mit zur Zeit mehr als 3000 in Simbad zitierten Fachartikeln [2].
    [Show full text]
  • First Dynamical Mass of a Nitrogen Rich Wolf Rayet Star
    The CHARA Science Meeting 2021 The First Dynamical Mass Determination of a Nitrogen-rich Wolf– Rayet Star Using a Combined Visual and Spectroscopic Orbit Noel Richardson, Laura Lee, et al. Embry-Riddle Aeronautical University 1 The CHARA Science Meeting 2021 What is a Wolf-Rayet star? • Classical WR stars are H-free, evolved massive stars. They have extremely high effective temperatures and strong stellar winds. WR124, HST Sana et al. (2012) 2 The CHARA Science Meeting 2021 Previous Interferometry of WR stars • Due to the rarity of these objects, only a few have been observed. • Large distances – not much to resolve for most WR stars • Binaries are main focus with current instrumentation 3 The CHARA Science Meeting 2021 Gamma2 Vel • WC8 + O7.5III • P = 78.53 d • e = 0.33 • Lamberts et al. 2017 + RiChardson et al. 2017 • M_O = 28.4 Msun • M_WR = 9 Msun 4 The CHARA Science Meeting 2021 WR140 – Monnier et al. (2011); Thomas, Richardson et al. (submitted) • WC7pd + O5.5fC • P = 7.93 years • e = 0.8993 • M_O = 29.3 Msun • M_WR = 10.3 Msun 5 The CHARA Science Meeting 2021 WR137, WR138 – resolved with CHARA (Richardson et al. 2016) • WR 137 • WC7 + O • P = 13 yr • Dust formation at periastron • WR 138 • WN + O • P – unknown, possibly ~4 yr? • CLIMB observations resolved the binaries – began a long-term NOAO NOIR Lab program for orbits. • Upgraded MIRC-X made the program finally take off! 6 The CHARA Science Meeting 2021 WR 133 - background • WN5o + O9I • Known SB2 orbit with P=133 d, but relatively understudied. • member of NGC 6871 • Inclination
    [Show full text]
  • Spatial Distribution of Galactic Wolf–Rayet Stars and Implications for the Global Population
    MNRAS 447, 2322–2347 (2015) doi:10.1093/mnras/stu2525 Spatial distribution of Galactic Wolf–Rayet stars and implications for the global population C. K. Rosslowe‹ andP.A.Crowther Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, S3 7RH, UK Accepted 2014 November 26. Received 2014 November 26; in original form 2014 September 5 ABSTRACT We construct revised near-infrared absolute magnitude calibrations for 126 Galactic Wolf– Rayet (WR) stars at known distances, based in part upon recent large-scale spectroscopic surveys. Application to 246 WR stars located in the field permits us to map their Galactic distribution. As anticipated, WR stars generally lie in the thin disc (∼40 pc half-width at half- maximum) between Galactocentric radii 3.5–10 kpc, in accordance with other star formation tracers. We highlight 12 WR stars located at vertical distances of ≥300 pc from the mid-plane. Analysis of the radial variation in WR subtypes exposes a ubiquitously higher NWC/NWN ratio than predicted by stellar evolutionary models accounting for stellar rotation. Models for non- rotating stars or accounting for close binary evolution are more consistent with observations. We consolidate information acquired about the known WR content of the Milky Way to build a simple model of the complete population. We derive observable quantities over a range of wavelengths, allowing us to estimate a total number of 1900 ± 250 Galactic WR stars, implying an average duration of ∼ 0.4 Myr for the WR phase at the current Milky Way star formation rate. Of relevance to future spectroscopic surveys, we use this model WR population to predict follow-up spectroscopy to KS 17.5 mag will be necessary to identify 95 per cent of Galactic WR stars.
    [Show full text]