Sky Notes by Neil Bone 2005 August & September
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Sky & Telescope
Eclipse from the See Sirius B: The Nearest Spot the Other EDGE OF SPACE p. 66 WHITE DWARF p. 30 BLUE PLANETS p. 50 THE ESSENTIAL GUIDE TO ASTRONOMY What Put the Bang in the Big Bang p. 22 Telescope Alignment Made Easy p. 64 Explore the Nearby Milky Way p. 32 How to Draw the Moon p. 54 OCTOBER 2013 Cosmic Gold Rush Racing to fi nd exploding stars p. 16 Visit SkyandTelescope.com Download Our Free SkyWeek App FC Oct2013_J.indd 1 8/2/13 2:47 PM “I can’t say when I’ve ever enjoyed owning anything more than my Tele Vue products.” — R.C, TX Tele Vue-76 Why Are Tele Vue Products So Good? Because We Aim to Please! For over 30-years we’ve created eyepieces and telescopes focusing on a singular target; deliver a cus- tomer experience “...even better than you imagined.” Eyepieces with wider, sharper fields of view so you see more at any power, Rich-field refractors with APO performance so you can enjoy Andromeda as well as Jupiter in all their splendor. Tele Vue products complement each other to pro- vide an observing experience as exquisite in performance as it is enjoyable and effortless. And how do we score with our valued customers? Judging by superlatives like: “in- credible, truly amazing, awesome, fantastic, beautiful, work of art, exceeded expectations by a mile, best quality available, WOW, outstanding, uncom- NP101 f/5.4 APO refractor promised, perfect, gorgeous” etc., BULLSEYE! See these superlatives in with 110° Ethos-SX eye- piece shown on their original warranty card context at TeleVue.com/comments. -
By John Dobson San Francisco Sidewalk Astronomers
the newsletter of the QUEEN ELIZABET H PLANETARIUM SUMMER 198 0 and the EDMONTON CENTRE, RAS C 50$ y SPECIAL TELESCOP E ISSU E NOW PLAYIN G AT QUEEN PlANETARiUM A spectacular celestial event was witnessed by th e ancien t Sumeria n civilizatio n an d ""VELA recorded i n thei r mysteriou s cuneifor m writing. Wha t wa s it ? Th e Vela Apparition APPARITION blends archaeolog y wit h astronom y i n a search for the origins o f civilzation. 3 P M and 8 P M Daily one The night sk y i s a fascinating -realm. Stars, nebulae, an d galaxie s ar e scattere d SUMMER'S throughout infinity . Join us for a tour of the sights o f th e summertim e sky . Rela x and NIGHT enjoy an evening at the Planetarium durin g One Summer's Night. 9PM Dail y A special show for special people age 3 to 7. A Fantasy O f Stars chronicle s th e FANTASY adventures o f Harol d th e Her o a s h e ventures int o th e nigh t sk y t o mee t th e constellations. A reduced admission of only o, STARS 50C for everyon e applies to thi s 3 5 minute live presentation. For more •information , „ , please phone th re Planetariu•• , , 1:3m at 0 P M Wed . and Sun . 455-0119 Vol. 2 5 No . 1 0 StOPCll SUMMER 198 0 Have Telescopes , Will Travel JOH N DOBSO N 1 0 People came from all over the city by bus, by car, by bicycle, and by foot to look through the telescope. -
Patrick Moore's Practical Astronomy Series
Patrick Moore’s Practical Astronomy Series Other Titles in this Series Navigating the Night Sky Astronomy of the Milky Way How to Identify the Stars and The Observer’s Guide to the Constellations Southern/Northern Sky Parts 1 and 2 Guilherme de Almeida hardcover set Observing and Measuring Visual Mike Inglis Double Stars Astronomy of the Milky Way Bob Argyle (Ed.) Part 1: Observer’s Guide to the Observing Meteors, Comets, Supernovae Northern Sky and other transient Phenomena Mike Inglis Neil Bone Astronomy of the Milky Way Human Vision and The Night Sky Part 2: Observer’s Guide to the How to Improve Your Observing Skills Southern Sky Michael P. Borgia Mike Inglis How to Photograph the Moon and Planets Observing Comets with Your Digital Camera Nick James and Gerald North Tony Buick Telescopes and Techniques Practical Astrophotography An Introduction to Practical Astronomy Jeffrey R. Charles Chris Kitchin Pattern Asterisms Seeing Stars A New Way to Chart the Stars The Night Sky Through Small Telescopes John Chiravalle Chris Kitchin and Robert W. Forrest Deep Sky Observing Photo-guide to the Constellations The Astronomical Tourist A Self-Teaching Guide to Finding Your Steve R. Coe Way Around the Heavens Chris Kitchin Visual Astronomy in the Suburbs A Guide to Spectacular Viewing Solar Observing Techniques Antony Cooke Chris Kitchin Visual Astronomy Under Dark Skies How to Observe the Sun Safely A New Approach to Observing Deep Space Lee Macdonald Antony Cooke The Sun in Eclipse Real Astronomy with Small Telescopes Sir Patrick Moore and Michael Maunder Step-by-Step Activities for Discovery Transit Michael K. -
Homework 6 – Stellar Physics 1. Cygnus X-1 Is an X-Ray Source In
Homework 6 – Stellar Physics 1. Cygnus X-1 is an x-ray source in the constellation Cygnus that astrophysicists believe is a black hole. An artist’s impression is shown in Figure 1A. Figure 1A The mass of the black hole has been determined to be 14∙8 solar masses. (a) (i) State what is meant by the Schwarzschild radius of a black hole. (ii) Calculate the Schwarzchild radius of the black hole in Cygnus X-1. (b) The Hertzsprung-Russell (H-R) diagram shown in Figure 1B shows the relationship between luminosity and surface temperature of stars. Figure 1B Zeta Cygni B and Chi Cygni are two stars in the constellation Cygnus. They are shown on the H-R diagram. Chi Cygni is more luminous than Zeta Cygni B. Describe two other differences between these stars. (c) Another star, Aldebaran B, is a distance of 6∙16 x 1017 m from the Earth. The luminosity of Aldebaran B is 2∙32 x 1025 W and its temperature is determined to be 3∙4 x 103 K. (i) Calculate the radius of Aldebaran B. (ii) Calculate the apparent brightness of Aldebaran B as observed from Earth. 1 2. Hertzsprung-Russell (H-R) diagrams are widely used by physicists and astronomers to categorise stars. Figure 2A shows a simplified H-R diagram. Figure 2A (a) State what class of star Sirius B is. (b) Estimate the radius of Betelgeuse. (c) Ross 128 and Barnard’s Star have a similar temperature but Barnard’s Star has a slightly greater luminosity. Determine what other information this tells you about the two stars. -
Cygnus a Monthly Sky Guide for the Beginning to Intermediate Amateur Astronomer Tom Trusock 10-Aug-2005
Small Wonders: Cygnus A monthly sky guide for the beginning to intermediate amateur astronomer Tom Trusock 10-Aug-2005 Figure 1: Widefield Map 2/16 Small Wonders: Cygnus Target List Object Type Size Mag RA Dec α (alpha) Cygni (Deneb) Star 1.3 20h 41m 38.7s 45 17' 59" β (beta) Cygni (Albireo) Star 3 19h 30m 57.9s 27 58' 18" NGC 7000 Bright Nebula 120.0'x100.0' 4 20h 59m 03.2s 44 32' 16" IC 5070 Bright Nebula 60.0'x50.0' 8 20h 51m 01.1s 44 12' 13" NGC 6960 Supernova Remnant 70.0'x6.0' 7 20h 45m 57.0s 30 44' 12" NGC 6979 Bright Nebula 7.0'x3.0' 20h 51m 14.9s 32 10' 14" NGC 6992 Bright Nebula 60.0'x8.0' 7 20h 56m 39.0s 31 44' 16" M 29 Open Cluster 10.0' 6.6 20h 24m 11.6s 38 30' 58" M 39 Open Cluster 31.0' 4.6 21h 32m 10.4s 48 26' 40" NGC 6826 Planetary Nebula 36" 8.8 19h 44m 58.8s 50 32' 21" NGC 7026 Planetary Nebula 45" 10.9 21h 06m 31.4s 47 52' 28" NGC 6888 Bright Nebula 18.0'x13.0' 10 20h 12m 20.0s 38 22' 18" NGC 6946 Galaxy 11.5'x9.8' 9 20h 35m 01.0s 60 10' 19" Challenge Objects Object Type Size Mag RA Dec PK 64+ 5.1 Planetary Nebula 5" 9.6 19h 35m 02.3s 30 31' 45" Sh2-112 9.0'x7.0' Cygnus ygnus is a spectacular summer constellation. -
Oct 2017 Newsletter
Volume23, Issue 2 NWASNEWS October 2017 Newsletter for the Wiltshire, Swindon, Beckington Sharing the Skies Astronomical Societies and Salisbury Plain Observing Group While we have officially swapped the chair and vice chair roles I will still be editing the Wiltshire Society Page 2 newsletter. Swindon Stargazers 3 The AGM enabled us to pass over duties (ha ha ha) and I would like to thank the Beckington and Astronomy 4 society for the gift of 6 constellation wine Apollo Astronauts in UK. 4 glasses from the society. Debbie Crokker has agreed to become Cassini ends its mission 5 vice Treasurer, and details have been passed to her for tonight. Viewing Logs and Images 6-8 I have unfortunately had to help out a lot with Dark Skies Wales this last few weeks and going forward a few more weeks while Herschel Society Meeting 8 the Director Allan Trow underwent surgery Space News that has lead to more surgery being need- :Data from Opportunity shows ed. We wish him a speedy recovery. equatorial water on Mars. It means I will also be in Spain at the GEO Lunar Observer crash site found observatory while there are paying visitors New dual object found there including a journalist which means I Mystery of Moonquakes solved? Galaxy shapes give keys will miss the next event in Devizes. Rosetta lander last image viewed Also a special birthday event in Devizes Ligo gravity waves. Another found that Pete Glastonbury is helping to organ- Sub surface ice on Vesta ise. This will now be on the 14th October. -
Variable Star
Variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) fluctuates. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes Trifid Nebula contains Cepheid variable stars eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle.[1] Contents Discovery Detecting variability Variable star observations Interpretation of observations Nomenclature Classification Intrinsic variable stars Pulsating variable stars Eruptive variable stars Cataclysmic or explosive variable stars Extrinsic variable stars Rotating variable stars Eclipsing binaries Planetary transits See also References External links Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol.[2][3][4] Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti (later named Mira) pulsated in a cycle taking 11 months; the star had previously been described as a nova by David Fabricius in 1596. This discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught. -
Desert Skies
Desert Skies Tucson Amateur Astronomy Association Volume LII, Number 8 August, 2006 Jupiter Dominates the August Night Sky ♦ Learn the latest about comets at ♦ Constellation of the month the monthly meeting ♦ Grand Canyon Star Party Report ♦ Star party for U of A students ♦ Object of the Month Desert Skies: August, 2006 2 Volume LII, Number 8 Cover Photo: Imaged by Rik Hill using a C14 and a ToUCam. It's a stack of about 3600 images taken in 3 minutes time. The stacking was done with Registax 3 and the final processing with GIMP. TAAA Web Page: http://www.tucsonastronomy.org TAAA Phone Number: (520) 792-6414 Office/Position Name Phone E-mail Address President Bill Lofquist 297-6653 [email protected] Vice President Ken Shaver 762-5094 [email protected] Secretary Steve Marten 307-5237 [email protected] Treasurer Terri Lappin 977-1290 [email protected] Member-at-Large George Barber 822-2392 [email protected] Member-at-Large JD Metzger 760-8248 [email protected] Member-at-Large Teresa Plymate 883-9113 [email protected] Chief Observer Wayne Johnson 586-2244 [email protected] AL Correspondent (ALCor) Nick de Mesa 797-6614 [email protected] Astro-Imaging SIG Steve Peterson 762-8211 [email protected] Computers in Astronomy SIG Roger Tanner 574-3876 [email protected] Beginners SIG Bill Lofquist 297-6653 [email protected] Newsletter Editor George Barber 822-2392 [email protected] School Star Party -
Observing List
day month year Epoch 2000 local clock time: 4.00 Observing List for 24 7 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 60 75 Andromeda Gamma Andromedae (*266) 2.3 5.5 9.8 yellow & blue green double star 2 3.9 42 19 73 111 Andromeda Pi Andromedae 4.4 8.6 35.9 bright white & faint blue 0 36.9 33 43 72 71 Andromeda STF 79 (Struve) 6 7 7.8 bluish pair 1 0.1 44 42 58 80 Andromeda 59 Andromedae 6.5 7 16.6 neat pair, both greenish blue 2 10.9 39 2 89 34 Andromeda NGC 7662 (The Blue Snowball) planetary nebula, fairly bright & slightly elongated 23 25.9 42 32.1 75 84 Andromeda M31 (Andromeda Galaxy) large sprial arm galaxy like the Milky Way 0 42.7 41 16 75 85 Andromeda M32 satellite galaxy of Andromeda Galaxy 0 42.7 40 52 75 82 Andromeda M110 (NGC205) satellite galaxy of Andromeda Galaxy 0 40.4 41 41 60 84 Andromeda NGC752 large open cluster of 60 stars 1 57.8 37 41 57 73 Andromeda NGC891 edge on galaxy, needle-like in appearance 2 22.6 42 21 89 173 Andromeda NGC7640 elongated galaxy with mottled halo 23 22.1 40 51 82 10 Andromeda NGC7686 open cluster of 20 stars 23 30.2 49 8 47 200 Aquarius 55 Aquarii, Zeta 4.3 4.5 2.1 close, elegant pair of yellow stars 22 28.8 0 -1 35 181 Aquarius 94 Aquarii 5.3 7.3 12.7 pale rose & emerald 23 19.1 -13 28 30 173 Aquarius 107 Aquarii 5.7 6.7 6.6 yellow-white & bluish-white 23 46 -18 41 26 221 Aquarius M72 globular cluster 20 53.5 -12 32 27 220 Aquarius M73 Y-shaped asterism of 4 stars 20 59 -12 38 40 181 Aquarius NGC7606 Galaxy 23 19.1 -8 29 28 219 Aquarius NGC7009 -
Astronomical Coordinate Systems
Appendix 1 Astronomical Coordinate Systems A basic requirement for studying the heavens is being able to determine where in the sky things are located. To specify sky positions, astronomers have developed several coordinate systems. Each sys- tem uses a coordinate grid projected on the celestial sphere, which is similar to the geographic coor- dinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth’s equator). Each coordinate system is named for its choice of fundamental plane. The Equatorial Coordinate System The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the most closely related to the geographic coordinate system because they use the same funda- mental plane and poles. The projection of the Earth’s equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles onto the celestial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate sys- tems: the geographic system is fixed to the Earth and rotates as the Earth does. The Equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but it’s really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec. for short). It measures the angle of an object above or below the celestial equator.