Desert Skies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sky Notes by Neil Bone 2005 August & September
Sky notes by Neil Bone 2005 August & September below Castor and Pollux. Mercury is soon ing June and July, it is still quite possible that Sun and Moon lost from view again, arriving at superior con- noctilucent clouds (NLC) could be seen into junction beyond the Sun on September 18. early August, particularly by observers at The Sun continues its southerly progress along Venus continues its rather unfavourable more northerly locations. Quite how late into the ecliptic, reaching the autumnal equinox showing as an ‘Evening Star’. Although it August NLC can be seen remains to be deter- position at 22h 23m Universal Time (UT = pulls out to over 40° elongation east of the mined: there have been suggestions that the GMT; BST minus 1 hour) on September 22. Sun during September, Venus is also heading visibility period has become longer in recent At that precise time, the centre of the solar southwards, and as a result its setting-time years. Observational reports will be welcomed disk is positioned at the intersection between after the Sun remains much the same − barely by the Aurora Section. the celestial equator and the ecliptic, the latter an hour − during this interval. Although bright While declining sunspot activity makes great circle on the sky being inclined by 23.5° at magnitude −4, Venus will be quite tricky major aurorae extending to lower latitudes to the former. Calendrical autumn begins at the to catch in the early twilight: viewing cir- less likely, the appearance of coronal holes equinox, but amateur astronomers might more cumstances don’t really improve until the in the latter parts of the cycle does bring the readily follow meteorological timing, wherein closing weeks of 2005. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Constellation Is the Corona Australis
CORONA AUSTRALIS, THE SOUTHERN CROWN Corona Australis is a constellation in the southern celestial hemisphere. Its Latin name means "southern crown", and it is the southern counterpart of Corona Borealis, the northern crown. One of the 48 constellations listed by the 2nd-century astronomer Ptolemy, it remains one of the 88 modern constellations. The Ancient Greeks saw Corona Australis as a wreath rather than a crown and associated it with Sagittarius or Centaurus. Other cultures have likened the pattern to a turtle, ostrich nest, a tent, or even a hut belonging to a rock hyrax (a shrewmouse; a small, well-furred, rotund animals with short tails). Although fainter than its northern namesake, the oval - or horseshoe-shaped pattern of its brighter stars renders it distinctive. Alpha and Beta Coronae Australis are its two brightest stars with an apparent magnitude of around 4.1. Epsilon Coronae Australis is the brightest example of a W Ursae Majoris variable in the southern sky (an eclipsing contact binary). Lying alongside the Milky Way, Corona Australis contains one of the closest star-forming regions to our Solar System —a dusty dark nebula known as the Corona Australis Molecular Cloud, lying about 430 light years away. Within it are stars at the earliest stages of their lifespan. The variable stars R and TY Coronae Australis light up parts of the nebula, which varies in brightness accordingly. Corona Australis is bordered by Sagittarius to the north, Scorpius to the west, Telescopium to the south, and Ara to the southwest. The three-letter abbreviation for the constellation, as adopted by the International Astronomical Union in 1922, is 'CrA'. -
By John Dobson San Francisco Sidewalk Astronomers
the newsletter of the QUEEN ELIZABET H PLANETARIUM SUMMER 198 0 and the EDMONTON CENTRE, RAS C 50$ y SPECIAL TELESCOP E ISSU E NOW PLAYIN G AT QUEEN PlANETARiUM A spectacular celestial event was witnessed by th e ancien t Sumeria n civilizatio n an d ""VELA recorded i n thei r mysteriou s cuneifor m writing. Wha t wa s it ? Th e Vela Apparition APPARITION blends archaeolog y wit h astronom y i n a search for the origins o f civilzation. 3 P M and 8 P M Daily one The night sk y i s a fascinating -realm. Stars, nebulae, an d galaxie s ar e scattere d SUMMER'S throughout infinity . Join us for a tour of the sights o f th e summertim e sky . Rela x and NIGHT enjoy an evening at the Planetarium durin g One Summer's Night. 9PM Dail y A special show for special people age 3 to 7. A Fantasy O f Stars chronicle s th e FANTASY adventures o f Harol d th e Her o a s h e ventures int o th e nigh t sk y t o mee t th e constellations. A reduced admission of only o, STARS 50C for everyon e applies to thi s 3 5 minute live presentation. For more •information , „ , please phone th re Planetariu•• , , 1:3m at 0 P M Wed . and Sun . 455-0119 Vol. 2 5 No . 1 0 StOPCll SUMMER 198 0 Have Telescopes , Will Travel JOH N DOBSO N 1 0 People came from all over the city by bus, by car, by bicycle, and by foot to look through the telescope. -
Cygnus a Monthly Sky Guide for the Beginning to Intermediate Amateur Astronomer Tom Trusock 10-Aug-2005
Small Wonders: Cygnus A monthly sky guide for the beginning to intermediate amateur astronomer Tom Trusock 10-Aug-2005 Figure 1: Widefield Map 2/16 Small Wonders: Cygnus Target List Object Type Size Mag RA Dec α (alpha) Cygni (Deneb) Star 1.3 20h 41m 38.7s 45 17' 59" β (beta) Cygni (Albireo) Star 3 19h 30m 57.9s 27 58' 18" NGC 7000 Bright Nebula 120.0'x100.0' 4 20h 59m 03.2s 44 32' 16" IC 5070 Bright Nebula 60.0'x50.0' 8 20h 51m 01.1s 44 12' 13" NGC 6960 Supernova Remnant 70.0'x6.0' 7 20h 45m 57.0s 30 44' 12" NGC 6979 Bright Nebula 7.0'x3.0' 20h 51m 14.9s 32 10' 14" NGC 6992 Bright Nebula 60.0'x8.0' 7 20h 56m 39.0s 31 44' 16" M 29 Open Cluster 10.0' 6.6 20h 24m 11.6s 38 30' 58" M 39 Open Cluster 31.0' 4.6 21h 32m 10.4s 48 26' 40" NGC 6826 Planetary Nebula 36" 8.8 19h 44m 58.8s 50 32' 21" NGC 7026 Planetary Nebula 45" 10.9 21h 06m 31.4s 47 52' 28" NGC 6888 Bright Nebula 18.0'x13.0' 10 20h 12m 20.0s 38 22' 18" NGC 6946 Galaxy 11.5'x9.8' 9 20h 35m 01.0s 60 10' 19" Challenge Objects Object Type Size Mag RA Dec PK 64+ 5.1 Planetary Nebula 5" 9.6 19h 35m 02.3s 30 31' 45" Sh2-112 9.0'x7.0' Cygnus ygnus is a spectacular summer constellation. -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study. -
Observing List
day month year Epoch 2000 local clock time: 4.00 Observing List for 24 7 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 60 75 Andromeda Gamma Andromedae (*266) 2.3 5.5 9.8 yellow & blue green double star 2 3.9 42 19 73 111 Andromeda Pi Andromedae 4.4 8.6 35.9 bright white & faint blue 0 36.9 33 43 72 71 Andromeda STF 79 (Struve) 6 7 7.8 bluish pair 1 0.1 44 42 58 80 Andromeda 59 Andromedae 6.5 7 16.6 neat pair, both greenish blue 2 10.9 39 2 89 34 Andromeda NGC 7662 (The Blue Snowball) planetary nebula, fairly bright & slightly elongated 23 25.9 42 32.1 75 84 Andromeda M31 (Andromeda Galaxy) large sprial arm galaxy like the Milky Way 0 42.7 41 16 75 85 Andromeda M32 satellite galaxy of Andromeda Galaxy 0 42.7 40 52 75 82 Andromeda M110 (NGC205) satellite galaxy of Andromeda Galaxy 0 40.4 41 41 60 84 Andromeda NGC752 large open cluster of 60 stars 1 57.8 37 41 57 73 Andromeda NGC891 edge on galaxy, needle-like in appearance 2 22.6 42 21 89 173 Andromeda NGC7640 elongated galaxy with mottled halo 23 22.1 40 51 82 10 Andromeda NGC7686 open cluster of 20 stars 23 30.2 49 8 47 200 Aquarius 55 Aquarii, Zeta 4.3 4.5 2.1 close, elegant pair of yellow stars 22 28.8 0 -1 35 181 Aquarius 94 Aquarii 5.3 7.3 12.7 pale rose & emerald 23 19.1 -13 28 30 173 Aquarius 107 Aquarii 5.7 6.7 6.6 yellow-white & bluish-white 23 46 -18 41 26 221 Aquarius M72 globular cluster 20 53.5 -12 32 27 220 Aquarius M73 Y-shaped asterism of 4 stars 20 59 -12 38 40 181 Aquarius NGC7606 Galaxy 23 19.1 -8 29 28 219 Aquarius NGC7009 -
Astronomical Coordinate Systems
Appendix 1 Astronomical Coordinate Systems A basic requirement for studying the heavens is being able to determine where in the sky things are located. To specify sky positions, astronomers have developed several coordinate systems. Each sys- tem uses a coordinate grid projected on the celestial sphere, which is similar to the geographic coor- dinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth’s equator). Each coordinate system is named for its choice of fundamental plane. The Equatorial Coordinate System The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the most closely related to the geographic coordinate system because they use the same funda- mental plane and poles. The projection of the Earth’s equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles onto the celestial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate sys- tems: the geographic system is fixed to the Earth and rotates as the Earth does. The Equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but it’s really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec. for short). It measures the angle of an object above or below the celestial equator. -
Search for Associations Containing Young Stars (SACY). V. Is
Astronomy & Astrophysics manuscript no. sacy˙1˙accepted˙arxiv˙2 c ESO 2018 October 2, 2018 Search for associations containing young stars (SACY) V. Is multiplicity universal? Tight multiple systems?;??;??? P. Elliott1;2, A. Bayo1;3;4, C. H. F. Melo1, C. A. O. Torres5, M. Sterzik1, and G. R. Quast5 1 European Southern Observatory, Alonso de Cordova 3107, Vitacura Casilla 19001, Santiago 19, Chile e-mail: [email protected] 2 School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL 3 Max Planck Institut fur¨ Astronomie, Konigstuhl¨ 17, 69117, Heidelberg, Germany 4 Departamento de F´ısica y Astronom´ıa, Facultad de Ciencias, Universidad de Valpara´ıso, Av. Gran Bretana˜ 1111, 5030 Casilla, Valpara´ıso, Chile 5 Laboratorio´ Nacional de Astrof´ısica/ MCT, Rua Estados Unidos 154, 37504-364 Itajuba´ (MG), Brazil Received 21 March 2014 / Accepted 5 June 2014 ABSTRACT Context. Dynamically undisrupted, young populations of stars are crucial in studying the role of multiplicity in relation to star formation. Loose nearby associations provide us with a great sample of close (<150 pc) pre-main sequence (PMS) stars across the very important age range (≈5-70 Myr) to conduct such research. Aims. We characterize the short period multiplicity fraction of the search for associations containing young stars (SACY) sample, accounting for any identifiable bias in our techniques and present the role of multiplicity fractions of the SACY sample in the context of star formation. Methods. Using the cross-correlation technique we identified double-lined and triple-lined spectroscopic systems (SB2/SB3s), in addition to this we computed radial velocity (RV) values for our subsample of SACY targets using several epochs of fiber-fed extended range optical spectrograph (FEROS) and ultraviolet and visual echelle spectrograph (UVES) data. -
The Birth and Evolution of Planetary Systems
CHAPTER 7 The Birth and Evolution of Planetary Systems hn hk io il sy SY hn hk io il sy SY hn hk io il sy SY Ideas about the origins of the Sun, the Moon, and Earth objects in the Solar System. It is important for the stu- hn hk io il sy SY are older than written history. Greek and Roman mythol- dents to realize that you can determine many of the prop- ogy, as well as creation myths of the Bible, represent some erties of a planet by knowing its mass, size, and distance hn hk io il sy SY of humanity’s earliest attempts to explain how the heav- from the Sun. hn hk io il sy SY ens and Earth were created. Thousands of years and Although planetary scientists are confident they have hn hk io il sy SY the scientific revolution have ultimately debunked many the big picture of Solar System formation correct, the ancient creation stories, but our new theories of solar sys- details are still in question. Questions remain concerning hn hk io il sy SY tem formation are still relatively in their infancy. Jupiter’s formation. It might not have been able to form hn hk io il sy SY The nebular model of solar system formation was first via accretion but may have formed similarly to the Sun. proposed by Immanuel Kant in 1755. It has undergone To complicate matters further, Uranus and Neptune significant revision in the last 250 years, but the details of appear to be too large to have formed at their current posi- the pro cess remain elusive. -
Discovery of Extremely Embedded X-Ray Sources in the R Coronae Australis Star Forming Core
Preparation for ApJ Discovery of Extremely Embedded X-ray Sources in the R Coronae Australis Star Forming Core Kenji Hamaguchi', Michael F. Corcoran2, Rob Petre, Nicholas E. White Laboratory for High Energy Astrophysics, Goddard Space Flight Center, Greenbelt, MD 20~1,USA [email protected] and Beate Stelzer INAF, Osservatorio Astronomic0 di Palermo, Piazza del Parlamento 1, 1-90134 Palermo, Italy and KO Nedachi, Naoto Kobayashi University of Tokyo, Japan ABSTRACT We detected three extremely embedded X-ray sources in the R Corona Aus- tralis (R CrA) star forming core, IRS 7 region. Two weak X-ray sources are associated with the VLA centimeter radio sources 10E & W, whereas the third brightest source detected in the two XMM-Newton observations on March 2003 has no counterpart at any wavelengths. The large K-band upper-limit (19.4m) measured with the University of Hawaii 88-inch Telescope and strong absorption derived in X-rays (NH -2.8~10~ equivalent to Av ~180~)indicate that the source is younger than typical Class I protostars, i.e. a Class 0 protostar or an intermittent phase between Class 0 and Class I protostars. The X-ray lumi- nosity was less than one thirtieth (log -Lx 529.3 ergs s-') in the former Chandra 'National Research Council, 500 Fifth Street, NW, Washington, DC 20001, USA 2Universities Space Research Association, 7501 Forbes BIvd, Ste 206, Seabrook, MD 20706, USA -2- observation in October 2000, which suggests that the X-ray activity, probably generated by magnetic activity, is triggered by an intermittent mass accretion episode such as FU Ori type outbursts. -
Part 1. Frequency Upshifting of Light Rays/Electromagnetic Radiation Near Stars in Dynamic Universe Model
Scan to know paper details and author's profile Cosmic Ray Origins: Part 1. Frequency Upshifting of Light Rays/Electromagnetic Radiation Near Stars in Dynamic Universe Model Satyavarapu Naga Parameswara Gupta (snp Gupta) ABSTRACT The high Energy Cosmic Rays can have multiple origins. In this paper we will consider their origins due to Frequency Upshifting of distant electro- magnetic radiation coming from distant galaxies or the radiation coming from stars inside the Milkyway, by using the Dynamic universe Model. We will see a simulation using a Subbarao path or Multiple bending of light rays, where a ray started at some star will go on bend and its frequency gets upshifted and gains energy at every star in its path. We also will present a table of types of stars that are existing in Milkyway which will be used in next subsequent papers. Keywords: cosmic rays, origins of cosmic rays, dynamic universe model, sita calculations, multiple bending of light, frequency upshifting of electromagnetic radiation, subbarao paths. Classification: FOR Code: 240102 Language: English LJP Copyright ID: 925624 Print ISSN: 2631-8490 Online ISSN: 2631-8504 London Journal of Research in Science: Natural and Formal 465U Volume 20 | Issue 3 | Compilation 1.0 © 2020. Satyavarapu Naga Parameswara Gupta (snp Gupta). This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncom-mercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Cosmic Ray Origins: Part 1. Frequency Upshifting of Light Rays/Electromagnetic Radiation Near Stars in Dynamic Universe Model Satyavarapu Naga Parameswara Gupta (snp Gupta) ____________________________________________ ABSTRACT 2018.[4][5] ); Dynamic Universe Model proposes three additional sources like frequency upshifting The high Energy Cosmic Rays can have multiple of light rays, astronomical jets from Galaxy origins.