Ramsey Sentence Realism As an Answer to the Pessimistic Meta-Induction

Total Page:16

File Type:pdf, Size:1020Kb

Ramsey Sentence Realism As an Answer to the Pessimistic Meta-Induction Ramsey Sentence Realism as an Answer to the Pessimistic Meta-Induction Mark Newman†‡ John Worrall recently provided an account of epistemic structural realism, which ex- plains the success of science by arguing for the correct mathematical structure of our theories. He accounts for the historical failures of science by pointing to bloated on- tological interpretations of theoretical terms. In this paper I argue that Worrall’s ac- count suffers from five serious problems. I also show that Pierre Cruse and David Papineau have developed a rival structural realism that solves all of the problems faced by Worrall. This Ramsey sentence realism is a significant advance in the debate, but still ultimately fails for its incomplete account of reference 1. Introduction. The No Miracles Argument for scientific realism states that scientific realism is the only philosophy of science that doesn’t make the success of science a miracle. Without adopting realism concerning the entities, processes and theoretical laws of mature and successful contem- porary scientific theories, we are left with no explanation for scientific accomplishments (such as our remarkable ability to predict the outcome of certain quantum phenomena to ten decimal places). We should there- fore accept scientific realism. On the other hand, the pessimistic meta- induction reminds us that the history of science shows that most of what we previously considered to be mature, successful scientific theories were to a greater or lesser extent, false. The historical evidence should lead us to conclude that our inference methods in the sciences are not reliable, and hence we should also conclude that our current theories are most likely false; scientific realism should be rejected. Philosophers who advocate either one of these arguments are hard †To contact the author, please write to: Department of Philosophy, University of Minnesota, Duluth, 1121 University Drive, Duluth, MN 55812-3027; e-mail: [email protected]. ‡Many thanks to Craig Callender for his critical comments on this paper, as well as many hours of extremely helpful discussion on this topic in general. I would also like to thank Stathis Psillos. Philosophy of Science, 72 (December 2005) pp. 1373–1384. 0031-8248/2005/7205-0059$10.00 Copyright 2005 by the Philosophy of Science Association. All rights reserved. 1373 1374 MARK NEWMAN pressed to explain away the cogency of the opposing view. Those who advocate a full blooded scientific realism are stymied by examples from the history of science of very successful, yet false theories. Examples in- clude the caloric theory of heat, phlogiston theory, and theories of the luminiferous ether. Antirealists are hard pressed to give an explanation for the tremendous success of theories which are, they believe, false. Progress has been made. Realists have recognized the need for a more sophisticated view that doesn’t argue for the truth of whole theories, but rather sees their success as due to their being only mostly correct. Theories are permitted a degree of inaccuracy in descriptions of theoretical entities, while still ultimately qualifying as approximately true. Antirealists object that such notions are vague and unsatisfactory. They argue that using a rule that infers from the success to the truth of our best theories is ille- gitimate. Not only does success fail to license claims to correct reference of theoretical entities, which is a necessary condition for the truth of a theory, but also approximate truth is a hopelessly vague concept that encourages realists to generate ad hoc historical accounts of anomalous cases like phlogiston or the ether. In response to such accusations realists have further refined their ac- counts of what it is that we are justified as claiming to be true in our scientific theories. Some have moved to entity realism, and argue that we can infer from empirical success to the existence of the entities of a theory, just not to all of the theoretical claims attached to those entities. Some have adopted what I shall call ‘essential’ realism, arguing that a theory’s success is due to its correctly referring to just those elements (entities, processes, etc.) that were essential to the derivation of its predictions. Others have adopted a structural realism, where what is right in scientific claims is just the structure of those theories. It is this last view that concerns us here. 2. Structural Realism. Structural realism comes in at least two forms: epistemic and ontic. In what follows I shall focus only on the former (the latter is far more contentious, and as yet overly restrictive). John Worrall recently provided an account of epistemic structural re- alism (Worrall 1989). On his view, the history of science does indeed show dramatic discontinuities at the theoretical level, and hence we are justified in our skeptical attitude toward theoretical entities posited by past and current science. However, these interpretive blunders are offset by re- markable continuities in mathematical structure, the equations of our theories. It is in virtue of such mathematical continuity, which goes beyond the merely empirical level, that our optimistic No Miracles Argument is justified. Since our scientific theories seem to exhibit significant continuity RAMSEY SENTENCE REALISM 1375 not just empirically, but also structurally, we should not be surprised that science has in general been a very successful endeavor. Structural realism not only points out the structural continuity apparent in theoretical transitions, it also provides an explanation of these conti- nuities. The claim is that structural realism provides an epistemic con- straint on what it is possible for us to know about the world. This idea obviously relies upon a clear distinction between the structure and content of our theories. It is this distinction that separates out those parts of a theory which we are justified in believing as true from those that are mere conjecture. Worrall views the dichotomy as that between a theory’s math- ematical equations and the theoretical interpretation of its ontology. Where there exists mathematical continuity across theory transitions and revolutions, we are justified in believing we have accurately hooked onto the world. His claim is that it would be an error to believe in theoretically interpreted ontology because it is just this kind of thing we find suffering radical discontinuity across theory transitions. Thus, structural realism adopts a realist position to the degree that it believes in structure, which is beyond the empirical. It rejects traditional realism by drawing an ep- istemic line at structure and discarding all theoretical interpretation. On the other hand, structural realism avoids instrumentalism because it views the mathematical structure in our theories to be a true representation of relations between unobservable entities, not merely a calculational device for generating predictions. Worrall’s aim is to overcome the pessimistic induction with an account of successful science that marks out what is true, and at the same time explains radical theoretical discontinuity. To illustrate what he means he uses as an example the transition from Fresnel’s to Maxwell’s theory of light. The structural realist claims that Fresnel’s theory made correct predic- tions because it accurately identified certain relations between optical phe- nomena, and especially because these phenomena depend upon something or other undergoing periodic change at right angles to the light—even though he was utterly wrong about the theoretical mechanisms involved. The point Worrall wants to emphasize is that Fresnel’s theory didn’t just accidentally make some correct predictions, it made them because it had accurately identified certain relations between optical phenomena. However, one might ask, is this example idiosyncratic? Will structural realism be able to account for other revolutionary changes in science? Well, no not exactly. This case is peculiar in that the equations were transmitted entirely in tact. Worrall thinks that in other cases the equations will be limiting cases of the new equations, and hence, strictly speaking inconsistent. To defend this idea he appeals to what he calls the ‘Corre- spondence Principle’: mathematical equations of the old theory are limiting 1376 MARK NEWMAN cases of those in the new. This principle actually acts as a heuristic in developing new theories. It is applicable purely to mathematics, and not to the theoretical terms that might be used when interpreting the math- ematics. It is a rule that seems to be at play in the history of physics, and is one that legitimizes structural realism over traditional realism. Worrall also rejects the requirement that entire theories make the world comprehensible, claiming that it is a mistake to think we can ever ‘un- derstand’ the nature of the basic furniture of the universe. The structural realist embraces instances where a theory is so successful that we are required to adopt a problematic concept (like action at a distance) as a primitive part of our ontology. Our desire to explain is merely a symptom of our antecedent metaphysical prejudices. Structural realism therefore rejects the metaphysics of theoretical interpretation while embracing a formal realism. 3. Problems with Worrall’s Account. The account given by Worrall is an advance over traditional realism in some respects, but suffers from at least five serious problems. First, there is ambiguity in Worrall’s use of the term ‘structure’. If we take ‘structure’
Recommended publications
  • Ramsification and Inductive Inference
    Forthcoming in: SYNTHESE Ramsification and Inductive Inference Panu Raatikainen Abstract. An argument, different from the Newman objection, against the view that the cognitive content of a theory is exhausted by its Ramsey sentence is reviewed. The crux of the argument is that Ramsification may ruin inductive systematization between theory and observation. The argument also has some implications concerning the issue of underdetermination. 1. Introduction Scientific realism proposes that we are justified in believing that successful theories of mature science are at least approximately true, and that the unobservable theoretical entities they postulate really exist. The standard argument in favour of this view is the so•called “no• miracles argument”: the practical and observational success of science would be miraculous if scientific theories were not at least approximately true descriptions of the world, and the theoretical objects they postulate did not exist. Then again, arguments exist which seem to undermine scientific realism, and the no•miracles argument. Most importantly, perhaps, there are arguments which lean on the actual history of science and radical theory changes therein – for example, the notorious “pessimistic meta•induction”, and also various less general arguments to the same effect. Roughly, the thesis is that many past theories in science have turned out to be to a large extent false, and their theoretical terms non•referring; therefore – it is concluded – it is not justified to expect that the theoretical entities postulated by present theories exist either (see Laudan 1981). The view known asStructural Realism has emerged over the past two decades and seems to enjoy some popularity among philosophers of science.
    [Show full text]
  • Quasi-Truth As Truth of a Ramsey Sentence
    Quasi-Truth as Truth of a Ramsey Sentence Sebastian Lutz∗ Draft: 2011–08–07 Abstract I show the quasi-truth of a sentence in a partial structure to be equivalent to the truth of a specific Ramsey sentence in a structure that corresponds naturally to the partial structure. Hence quasi-truth, the core notion of the partial structures approach, can be captured in the terms of the received view on scientific theories as developed by Carnap and Hempel. I further show that a mapping is a partial homomorphism/isomorphism between two partial structures if and only if it is a homomorphism/isomorphism between their corresponding structures. It is a corollary that the partial structures approach can be expressed in first or second order model theory. Keywords: partial structure; quasi-truth; pragmatic truth; partial truth; subtruth; partial homomorphism; partial isomorphism; model theory; expansion; Ramsey sentence; received view; logical empiricism The partial structures approach is in the vanguard of the semantic view on scientific theories and models (da Costa and French 2000; Le Bihan 2011, n. 3, §5), and is one of the main reasons why the received view on scientific theories as developed by, for example, Carnap(1966) and Hempel(1958) within logical empiricism is considered inferior to the semantic view (French and Ladyman 1999). I will show that the core notion of the partial structures approach, quasi-truth, can be captured very naturally within the received view. The partial structures approach is motivated by a simple epistemological point: Most of the time, scientists do not have enough information about a domain to determine its structure with arbitrary precision.
    [Show full text]
  • How to Define Theoretical Terms Author(S): David Lewis Reviewed Work(S): Source: the Journal of Philosophy, Vol
    Journal of Philosophy, Inc. How to Define Theoretical Terms Author(s): David Lewis Reviewed work(s): Source: The Journal of Philosophy, Vol. 67, No. 13 (Jul. 9, 1970), pp. 427-446 Published by: Journal of Philosophy, Inc. Stable URL: http://www.jstor.org/stable/2023861 . Accessed: 14/10/2012 20:19 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Journal of Philosophy, Inc. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Philosophy. http://www.jstor.org THE JOURNAL OF PHILOSOPHY VOLUME LXVII, NO. I3, JULY 9, 19-0 HOW TO DEFINE THEORETICAL TERMS M OST philosophers of science agree that, when a newly proposed scientific theory introduces new terms, we usually cannot define the new terms using only the old terms we understood beforehand. On the contrary, I contend that there is a general method for defining the newly introduced theo- retical terms. Most philosophers of science also agree that, in order to reduce one scientific theory to another, we need to posit bridge laws: new laws, independent of the reducing theory, which serve to identify phenomena described in terms of the reduced theory with phe nomena described in terms of the reducing theory.
    [Show full text]
  • Carnap on Empirical Significance
    Carnap on Empirical Significance Sebastian Lutz∗ Preprint: 2014–04–30 Abstract Carnap’s search for a criterion of empirical significance is usually con- sidered a failure. I argue that the results from two out of his three different approaches are at the very least problematic, but that one approach led to success. Carnap’s criterion of translatability into logical syntax is too vague to allow definite results. His criteria for terms—introducibility by reduction sentences and his criterion from “The Methodological Character of Theoretical Concepts”—are almost trivial and have no clear relation to the empirical significance of sentences. However, his criteria for sentences— translatability, verifiability, falsifiability, confirmability—are usable, and under assumption of the Carnap sentence, verifiability, falsifiability, and translatability become equivalent. The price for the Carnap sentence approach is that metaphysics cannot always be shown to be non-significant. Keywords: empirical significance; cognitive significance; meaningfulness; Carnap; logical empiricism; Ramsey sentence; Carnap sentence; verifiabil- ity; falsifiability; testability; translatability Contents 1 Introduction 2 2 Informal Translatability 3 3 Europe 6 3.1 Criteria for Sentences............................. 6 3.2 Criteria for Terms............................... 15 ∗Munich Center for Mathematical Philosophy, Ludwig-Maximilians-Universität München. se- [email protected]. A previous version was presented in 2013 at the workshop Carnap on Logic at the Ludwig-Maximilians-Universität München, some aspects were presented in 2013 at the work- shop Formal Epistemology and the Legacy of Logical Empiricism at the University of Texas at Austin and in 2012 at the Groningen/Munich Summer School Formal Methods in Philosophy. I thank the audiences for helpful comments and discussions.
    [Show full text]
  • Logical Positivism, Operationalism, and Behaviorism
    This dissertation has been microfilmed exactly as received 70-6878 SHANAB, Robert E lias Abu, 1939- LOGICAL POSITIVISM, OPERATIONALISM, AND BEHAVIORISM. The Ohio State University, Ph.D., 1969 Philosophy University Microfilms, Inc., Ann Arbor, Michigan LOGICAL POSITIVISM, OPERATIONALISM, AND BEHAVIORISM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robert Elias Abu Shanab, B.A., A.M. ******** The Ohio State University 1969 Approved by / Adviser Department of Philosophy Dedicated to Professor Virgil Hinshaw, ACKNOWLEDGMENTS I am especially indebted to my adviser, Professor Virgil Hinshaw, Jr. Several of his suggestions have been incorporated in the final manuscript. I wish also to express my thanks to Professor Charles F. Kielkopf. Finally I wish to extend affection and gratitude to my wife for encouragement, patience and for the hours spent typing and retyping manuscripts. ii VITA September 29, 1939 B o m - Jerusalem, Palestine 1962 ........ ........... B.A. , San Jose State College, San Jose, California 1964 ................... M.A., San Jose State College, San Jose, California 1965-1966 ............. Instructor, College of San Mateo, San Mateo, California 1967-1968 ....... Teaching Assistant, Department of Philosophy, The Ohio State University, Columbus, Ohio 1969 ................... Lecturer, The Ohio State University, Newark, Ohio iii CONTENTS. Page ACKNOWLEDGMENTS ..... ....................... ii V I T A ..............................................iii
    [Show full text]
  • The Representational Inadequacy of Ramsey Sentences
    The Representational Inadequacy of Ramsey Sentences by ARNOLD KOSLOW Department of Philosophy, CUNY Abstract: We canvas a number of past uses of Ramsey sentences which have yielded disappointing results, and then consider three very interesting recent attempts to deploy them for a Ramseyan Dialetheist theory of truth, a modal account of laws and theories, and a criterion for the existence of factual properties. We think that once attention is given to the specific kinds of theories that Ramsey had in mind, it becomes evident that their Ramsey sentences are not the best ways of presenting those theories. Keywords: Ramsey sentence, Ramseyan theoretical truth, Dialetheism, modal theories, factual properties. 1. Ramsey Sentences Old Replacement Problems. Ever since Frank P. Ramsey’s views on the- ories became known through Richard B. Braithwaite’s publication of a collection of his papers, the use of Ramsey sentences has been a simple yet powerful source of solutions to philosophically hard problems. In the first section we review several important early uses of Ramsey sentences and the loss of interest in those problems and the consequent loss of inter- est in the sentences themselves. In the second section we review a kind of revival: some recent uses of Ramsey sentences to settle problems about truth (Dialetheism), laws (their modal character), and to help determine what (factual) properties exist. Despite the real interest that these new uses of Ramsey sentences generates, we want to argue that that interest is seriously diminished once it is realized that there are reasons not to take the Ramsey sentence as a good representation of a theory.
    [Show full text]
  • Carnap Visits Canberra: Updating the Logical Positivist Criteria of Cognitive Significance
    CARNAP VISITS CANBERRA: UPDATING THE LOGICAL POSITIVIST CRITERIA OF COGNITIVE SIGNIFICANCE A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Arts by Andrew Whiteley Magrath May 2012 Thesis written by Andrew Whiteley Magrath B.A., Oberlin College, 2004 M.A., Kent State University, 2012 Approved by Deborah C. Smith___________________________, Advisor David Odell-Scott___________________________, Chair, Department of Philosophy Timothy Moerland___________________________, Dean, College of Arts and Sciences ii TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………………………………………………v CHAPTER I. INTRODUCTION .................................................................................................. 1 Logical Positivism and the Canberra Plan: A Brief Introduction............... 1 Guiding Question & Structure of the Thesis............................................... 3 My Motivation ............................................................................................ 4 Structure & Methodological Considerations .............................................. 6 II. CARNAP AND LOGICAL POSITIVISM............................................................. 8 The Use of Logic in Positivism .................................................................. 8 The Positivists' Reductionism & Expressibility.......................................... 9 A Theory of Meaning: Analytic a Priori and Synthetic a Posteriori......... 11 Ramsification: Observation Terms and Theory Terms............................
    [Show full text]
  • The Philosophy of Logical Positivism ______
    The Philosophy of Logical Positivism ________________________________________________ Mauro Murzi Member of Società Filosofica Italiana [email protected] http://www.murzim.net 1 2 Table of Contents 1. Introduction.................................................................................................5 2. The Main Philosophical Tenets of Logical Positivism...............................7 a. Verifiability Principle.............................................................................7 b. Elimination of Metaphysics...................................................................7 c. The Language of Science.......................................................................8 d. Observational and Theoretical Terms..................................................10 e. Synthetic and Analytic Statements.......................................................11 f. Probability and Inductive Logic...........................................................12 g. Ethics....................................................................................................14 3. History of Logical Positivism...................................................................15 a. Before Logical Positivism....................................................................15 b. Early Research in Europe.....................................................................17 c. The American Period............................................................................17 d. Influences on European Philosophy.....................................................18
    [Show full text]
  • Logic in General Philosophy of Science: Old Things and New Things
    Synthese (2011) 179:339–350 DOI 10.1007/s11229-010-9776-5 Logic in general philosophy of science: old things and new things Hannes Leitgeb Received: 23 March 2009 / Accepted: 7 September 2009 / Published online: 8 October 2010 © Springer Science+Business Media B.V. 2010 Abstract This is a personal, incomplete, and very informal take on the role of logic in general philosophy of science, which is aimed at a broader audience. We defend and advertise the application of logical methods in philosophy of science, starting with the beginnings in the Vienna Circle and ending with some more recent logical developments. Keywords Logic · Philosophy of science · Vienna circle 1 Old things: the Vienna circle and other success stories ...the logical clarification of scientific concepts, sentences, and methods releases us from inhibitory prejudices. Logical and epistemological analysis does not want to impose constraints on scientific research; on the contrary: it provides science with a scope of formal possibilities that is as complete as possible and from which the possibility that corresponds to the experience in question is to be selected1 (Wissenschaftliche Weltauffassung. Der Wiener Kreis, 1929) These days, a quote such as the above one typically prompts the following reaction: nice but naive—philosophy of science cannot be faithful to science if it is done in a manner that is intended to be abstract, idealizing, simplifying, and ahistorical. Haven’t we known this at least since the late 1960s or so when logical empiricism had finally 1 I will be using my own translations from the original German text in Verein Ernst Mach (1929) throughout this article.
    [Show full text]
  • Philosophy 5340 – Epistemology Topic 3: Analysis, Analytically Basic
    Philosophy 5340 – Epistemology Topic 3: Analysis, Analytically Basic Concepts, Direct Acquaintance, and Theoretical Terms Part 3: David Lewis’s “How to Define Theoretical Terms” Introductory Section 1. Here Lewis starts by advancing the following claims: (1) There is a general method for defining theoretical terms. (2) Reduction of one theory to another does not involve independent bridge laws. 2. As Lewis points out, what he is doing is not best described as eliminating theoretical terms. It is best described as a vindication of theoretical terms: “for to define them is to show that there is no good reason to want to do without them.” (427) 3. Lewis’s goal is not to define theoretical terms within an observation language. 4. Lewis contends that the idea of there being a part of the language that is observational, and non-theoretical, is obscure. Comments (1) This is to hold, it seems to me, that there are no analytically basic terms or concepts. (2) The latter, in turn, is only plausible, I suggest, if one thinks – as Lewis does – that there are no qualitative properties, no qualia, of which one is directly aware. ********************************************************************************* 5. Consequently, rather than phrasing things in terms of a distinction between observational terms and theoretical terms, Lewis suggests that one need merely distinguish between terms that are already understood – O-terms – and terms that are introduced by the theory under consideration – T-terms. 6. Lewis’s goal is not to dispense with theoretical entities: “I am also not planning to ‘dispense with theoretical entities’. Quite the opposite. The defining of theoretical terms serves the cause of scientific realism.
    [Show full text]
  • Wissenschaftslogik: the Role of Logic in the Philosophy of Science
    Synthese (2008) 164:385–400 DOI 10.1007/s11229-008-9356-0 Wissenschaftslogik: The role of logic in the philosophy of science Michael Friedman Received: 12 March 2008 / Accepted: 2 June 2008 / Published online: 1 July 2008 © Springer Science+Business Media B.V. 2008 Abstract Carl Hempel introduced what he called “Craig’s theorem” into the philosophy of science in a famous discussion of the “problem of theoretical terms.” Beginning with Hempel’s use of ‘Craig’s theorem,” I shall bring out some of the key differences between Hempel’s treatment of the “problem of theoretical terms” and Carnap’s in order to illuminate the peculiar function of Wissenschaftslogik in Carnap’s mature philosophy. Carnap’s treatment, in particular, is fundamentally anti- metaphysical—he aims to use the tools of mathematical logic to dissolve rather solve traditional philosophical problems—and it is precisely this point that is missed by his logically-minded contemporaries such as Hempel and Quine. Keywords Logic · Philosophy of science · Theoretical terms · Ramsey-sentences Hempel’s well-known paper, “The Theoretician’s Dilemma” (1958), famously introduced what Hempel calls “Craig’s theorem” into the philosophy of science. In particular, Hempel considers “Craig’s theorem” and the method of Ramsey-sentences as the two main logical strategies for systematizing science without using theoretical terms. Hempel’s discussion proceeds within a broadly Carnapian framework, and, as we know, Carnap himself began devoting particular attention to the Ramsey-sentence approach around the same time. Beginning with Hempel’s use of “Craig’s theorem,” I shall bring out some key differences between Hempel’s attitude towards the “prob- lem of theoretical terms” and Carnap’s in order to illuminate the peculiar function of Wissenschaftslogik in Carnap’s mature philosophy.
    [Show full text]
  • Ramsey Equivalence
    Ramsey equivalence April 17, 2017 In the literature over the Ramsey-sentence approach to structural real- ism, there is often debate over whether structural realists can legitimately restrict the range of the second-order quantifiers, in order to avoid the Newman problem. In this paper, I argue that even if they are allowed to, it won’t help: even if the Ramsey sentence is interpreted using such re- stricted quantifiers, it is still an implausible candidate to capture a theory’s structural content. To do so, I use the following observation: if a Ramsey sentence did encode a theory’s structural content, then two theories would be structurally equivalent just in case they have logically equivalent Ram- sey sentences. I then argue that this criterion for structural equivalence is implausible, even where frame or Henkin semantics are used. 1 Introduction In the literature over the Ramsey-sentence approach to structural realism, there is often debate over whether structural realists can legitimately restrict the range of the second-order quantifiers, in order to avoid the Newman problem. In this paper, I argue that even if they are allowed to, it won’t help: even if the Ramsey sentence is interpreted using such restricted quantifiers, it is still an implausible candidate to capture a theory’s structural content. The structure of the argument is as follows. In section 2, I introduce the Ramsey sentence and the standard semantics used to interpret it. In section 3, I explain how the Newman problem poses difficulties for the realist credentials of a view that wants to use the Ramsey sentence as the content of a theory.
    [Show full text]