The Epistemological Status of Scientific Theories: an Investigation of the Structural Realist Account

Total Page:16

File Type:pdf, Size:1020Kb

The Epistemological Status of Scientific Theories: an Investigation of the Structural Realist Account THE EPISTEMOLOGICAL STATUS OF SCIENTIFIC THEORIES: AN INVESTIGATION OF THE STRUCTURAL REALIST ACCOUNT Ioannis Votsis LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE PhD Thesis UMI Number: U185100 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U185100 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 2 To my mother andfather 3 ABSTRACT In this dissertation, I examine a view called ‘Epistemic Structural Realism’, which holds that we can, at best, have knowledge of the structure of the physical world. Put crudely, we can know physical objects only to the extent that they are nodes in a structure. In the spirit of Occam’s razor, I argue that, given certain minimal assumptions, epistemic structural realism provides a viable and reasonable scientific realist position that is less vulnerable to anti-realist arguments than any of its rivals. The first chapter presents an overview of the scientific realism debate, concentrating on the epistemological dimension. The second chapter tracks the development of structural realism, differentiates between several versions, and outlines the objections that have been raised against it. The third chapter provides answers to a large subset of these objections, namely those launched by Stathis Psillos, who spearheads the critique of epistemic structural realism. The fourth chapter offers an attempted solution to M.H.A. Newman’s objection that the epistemic structural realist view, if true, trivialises scientific knowledge. The fifth chapter presents a historical case study of the caloric theory of heat. I utilise the study to answer the pessimistic meta-induction argument. The sixth chapter addresses the argument from the underdetermination of theory by evidence. I argue that epistemic structural realism can potentially restrict the impact of the argument by imposing structural constraints on the set of all possible theories compatible with the evidence. The seventh and final chapter outlines briefly some promising avenues for future research. 4 CONTENTS 1. THE SCIENTIFIC REALISM DEBATE §1. Introduction 8 §2. The Origins and Boundaries of the Debate 8 §3. Scientific Realism 11 • First Approximation • Second Approximation • Third Approximation • General Formulation §4. Arguments in Support of Scientific Realism 17 §5. Scientific Anti-Realism 20 • Constructive Empiricism §6. Arguments in Support of Scientific Anti-Realism 22 • Underdetermination of Theory by Evidence • The Damning Historical Record of Science §7. The Main Realist Obstacles 29 §8. Conclusion 30 2. TRACING THE DEVELOPMENT OF STRUCTURAL REALISM § 1. Introduction 32 §2. The Prehistory of Structuralism 34 § 3. The Early Years 35 • Poincare • Duhem • Russell • The Newman Objection §4. The Years in Between 47 §5. Epistemic Structural Realism, Ramsey-Style 51 • Maxwell • Worrall and Zahar §6. Psillos' Objections 60 §7. Ontic Structural Realism §8. Empiricist Structuralism §9. The Main Structural Realist Obstacles §10. Conclusion 3. RECENT OBJECTIONS § 1. Introduction §2. Terminological Issues §3. The Objections Against the Poincarean/Worrallian ESR • Objection PS 1 • Objections PS2 & PS3 • Objection PS4 §4. The Objections Against the Russellian ESR • Russell’s Principles Revisited • Percepts, Phenomena and Observation Sentences • Objection PS5 ■ The First Horn of the Dilemma ■ The Second Horn of the Dilemma • Objection PS6 • Objection PS7 §5. Conclusion 4. THE NEWMAN OBJECTION § 1. Introduction §2. Newman's Bifurcated Challenge • The First Fork: ESR Knowledge Claims are Trivial • The Second Fork: ESR cannot be Salvaged • A Note on the Ramsey-Sentence § 3. Various Replies to the Obj ection • Psillos • Redhead • French and Ladyman • Worrall and Zahar 6 §4. Overcoming Newman's Objection 122 §5. Conclusion 128 5. HISTORICAL CASE STUDY: THE CALORIC THEORY OF HEAT § 1. Introduction 130 §2. The Rise and Fall of the Caloric Theory of Heat 131 • The Pre-Caloric Era • The Caloric Theory of Heat • The Vibratory Theory of Heat • The Demise of the Caloric Theory §3. Scientific Realism and the Caloric 146 • Is ‘Caloric’ a Referential Term? • Is Caloric Central to the Caloric Theory? §4. Structural Realism and the Caloric 162 • The Phenomenological Character of L1-L5 §5. Structural Realism and the History of Science 169 • Is Everything Structural Preserved? • Does Structure Always Survive Intact? • The Criterion of the Maturity of Science §6. What the History of Science Cannot Teach Us 175 §7. Conclusion 178 6. UNDERDETERMINATION §1. Introduction 181 §2. Does Every Theory have Empirically Equivalent Rivals? 182 • Algorithmically Produced Rivals §3. Can we Justifiably Choose between Empirically Equivalent Theories? 188 • Evidential Equivalence §4. Structural Realism and Underdetermination 195 • The Inverse Relation of Epistemic Commitments to Underdetermination 7 • Epistemic Warrant: Structural Realism vs. Rivals ■ Historical Considerations ■ Other Considerations • Taking Stock §5. Conclusion 209 7. SOME PROMISING AVENUES FOR FUTURE RESEARCH §1. Introduction 213 §2. Outstanding Issues 213 • From Within • From Without §3. Conclusion 219 BIBLIOGRAPHY 220 8 1 THE SCIENTIFIC REALISM DEBATE 1. Introduction A question in the philosophy of science that has engrossed the minds of many eminent thinkers is the epistemological one of what kind of knowledge, if any, science reveals of the physical world. Answers to this question are typically classified as either realist or anti-realist.1 Structural Realism, as part of its name suggests, is a position on the realist side of the divide. In very simple terms, its advocates hold that our epistemic access to the world, so far as its non-observable part is concerned, is restricted to its structural features. The position can be traced back at least to the beginning of the twentieth century and has recently been attracting renewed interest. My main aim in this dissertation is to evaluate the structural realist answer to the aforementioned question. It seems only prudent then to devote the first chapter to an examination of the scientific realism debate. In what follows, I will delineate the boundaries of the debate, articulate the various positions and identify the protagonists. I will also sketch the main arguments and the corresponding objections and counter-objections. Finally, I will set out the main obstacles for realism. In doing so, I hope to set the stage for structural realism, explain its role in this debate as well as reveal more about the conditions of its inception and its reincarnation about a decade and a half ago. 2. The Origins and Boundaries of the Debate3 Arguably, the scientific realism debate did not really come into its own, i.e. was not independent from general debates about realism, until the twentieth century. The first quarter of the century was marked by a somewhat unsophisticated general realism, 1 Unless otherwise noted, the terms ‘realism’ and ‘anti-realism’ will denote the more specific viewpoints of scientific realism and scientific anti-realism respectively. 2 This widely held impression is confirmed by the recent increase in the number o f publications dealing with structural realism. Note also that in the latest conference o f the American Philosophy of Science Association (PSA 2002), structural realism was central to three out of five papers in the realism section. 3 Detailed overviews of the debate can be found in Boyd (1984: 41-82; 2002) and Psillos (2000b). 9 most memorably the critical realism of Roy Wood Sellars, formed in reaction to the rampant idealism of the nineteenth century. The logical positivists came to dominate the second quarter of the century. In view of the quantum and relativistic revolutions in physics, they found much support for their instrumentalist version of anti-realism. It was not until the 1960s, after a multifaceted attack on logical positivism, that realism was revived under the guidance of such figures as Karl Popper, Grover Maxwell, and J.J.C. Smart. At around the same time, the historically motivated work of Thomas Kuhn and Paul Feyerabend inspired new converts to, and new versions of, anti-realism. Realist voices were not kept at bay, however, with Hilary Putnam and Richard Boyd, among others, keeping the debate alive in the seventies. In the early eighties, the independent but equally powerful critiques by Bas van Fraassen and Larry Laudan shaped old problems into new challenges for the scientific realist. The debate as it is carried out today owes much to these developments, especially those that emerged after 1960. The twentieth century gave birth and rebirth to a plethora of realisms and anti­ realisms. The current debate is so wonderfully varied that I would be unable to justly review in one chapter, or indeed pursue in the rest of the dissertation. For this reason I will concentrate on one particular comer of the debate, something that will make my task more manageable. Three threads common to the central realist and anti­ realist positions in this comer of the current debate are the following:
Recommended publications
  • Ramsification and Inductive Inference
    Forthcoming in: SYNTHESE Ramsification and Inductive Inference Panu Raatikainen Abstract. An argument, different from the Newman objection, against the view that the cognitive content of a theory is exhausted by its Ramsey sentence is reviewed. The crux of the argument is that Ramsification may ruin inductive systematization between theory and observation. The argument also has some implications concerning the issue of underdetermination. 1. Introduction Scientific realism proposes that we are justified in believing that successful theories of mature science are at least approximately true, and that the unobservable theoretical entities they postulate really exist. The standard argument in favour of this view is the so•called “no• miracles argument”: the practical and observational success of science would be miraculous if scientific theories were not at least approximately true descriptions of the world, and the theoretical objects they postulate did not exist. Then again, arguments exist which seem to undermine scientific realism, and the no•miracles argument. Most importantly, perhaps, there are arguments which lean on the actual history of science and radical theory changes therein – for example, the notorious “pessimistic meta•induction”, and also various less general arguments to the same effect. Roughly, the thesis is that many past theories in science have turned out to be to a large extent false, and their theoretical terms non•referring; therefore – it is concluded – it is not justified to expect that the theoretical entities postulated by present theories exist either (see Laudan 1981). The view known asStructural Realism has emerged over the past two decades and seems to enjoy some popularity among philosophers of science.
    [Show full text]
  • Curriculum Vitae
    BAS C. VAN FRAASSEN Curriculum Vitae Last updated 3/6/2019 I. Personal and Academic History .................................................................................................................... 1 List of Degrees Earned ........................................................................................................................................................ 1 Title of Ph.D. Thesis ........................................................................................................................................................... 1 Positions held ..................................................................................................................................................................... 1 Invited lectures and lecture series ........................................................................................................................................ 1 List of Honors, Prizes ......................................................................................................................................................... 4 Research Grants .................................................................................................................................................................. 4 Non-Academic Publications ................................................................................................................................................ 5 II. Professional Activities .................................................................................................................................
    [Show full text]
  • @)"'*"'O' See Fiont Matter 0039-3681/00$
    Stud.Hist. Phil. Sci.,Vol. 31, No. I, pp. l5l-112,20o0 @ 20fi) Elsevier ScienceLtd. All rights reserved Printed in Great Britain @)"'*"'o' see fiont matter www.elswier.com/locate/shpsa 0039-3681/00$ - Rudolf Carnap's oTheoreticalConcepts in Sciencet Stathis Psillos* 1. Editor's Introduction Rudolf Camapdelivered the hitherto unpublishedlecture 'TheoreticalConcepts in Science' at the meeting of the American Philosophical Association, Pacific Division, at SantaBarbarg Califomia, on 29 December1959. It was part of a symposiumon 'Camap'sviews on TheoreticalConcepts in Science'.In the bibli- ographythat appearsin the end of the volume, 'The Philosophyof Rudolf Camap', edited by Faul Arthur Schilpp, a revised version of this addressappears to be amongCamap's forthcoming papers.But although Camap startedto revise it, he never finisfusdthe revision,r and never publishedthe unrevisedtranscript. Perhaps this is becausevariants of the approachto theoreticalconcepts presented for the first time in the SantaBarbara lecture have appearedin other papersof his (cf. the editorial footnotesin Carnap'slecture). Still, I thinlq the SantaBarbara address is a little philosophical gem that needsto see the light of day. The documentthat follows is the unrevisedtanscript of Carnap's lecture.2lts style, then, is tbat of an oral presentation.I decidedto leave it as it is, making only very minor stylistic chonges-which, exceptthose related to punctuation,are indicatedby curly brack- ets.3I think that reading this lecture is a rewarding experience,punctuated as the lechne is with odd remarksand autobiographicalpoints. One can alnost envisage I Department of Philosophy and History of Science, University of Athens, Athens, Greece Received 28 Apil 1998; in revkedform I September 1998.
    [Show full text]
  • A Humean Analysis of Scientific Realism 1
    Published in Ensaios sobre Hume, Lívia Guimarães (org.), Belo Horizonte (Brazil), Segrac Editora, 2005b. Pp. 89-108. ____________________________________________________________________ A Humean analysis of scientific realism 1 SILVIO SENO CHIBENI Departamento de Filosofia, IFCH Universidade Estadual de Campinas Caixa Postal 6110 – 13083050, Campinas, SP, Brazil web-site: www.unicamp.br/~chibeni – e-mail: [email protected] Abstract: In their criticism of scientific realism, contemporary philosophers of science often assume that this position is incompatible with empiricism, the epistemological thesis according to which all factual knowledge is grounded on experience. Little attention is paid, however, to the roots of empiricism in modern philosophy. The present article aims to contribute to filling this gap, by examining the implications of Hume’s version of empiricism to the issue of scientific realism. It is shown, first, how scientific realism is negatively affected by Hume’s theories of ideas and causality. Secondly, the prospects of overcoming these difficulties by appealing to the method of hypotheses are examined, first through a survey of Hume’s own stand concerning hypotheses, and then by direct philosophical analysis. 1. Introduction In contemporary philosophy of science, scientific realism is commonly thought of as being challenged either by “constructivism” or by “empiricism” (see e.g. Boyd 1984). However, the use of the word ‘empiricism’ in this context is somewhat misleading. The term has originally been coined to designate an epistemological thesis concerning the problem of the sources of knowledge, paradigmatically defended by philosophers such as Locke and Hume. In this 1 Parts of this work were first presented in a conference given in the 3rd Encontro de Filosofia Analítica, held in Florianópolis, Brazil, in October 1997.
    [Show full text]
  • Quantum Logical Causality, Category Theory, and the Metaphysics of Alfred North Whitehead
    Quantum Logical Causality, Category Theory, and the Metaphysics of Alfred North Whitehead Connecting Zafiris’ Category Theoretic Models of Quantum Spacetime and the Logical-Causal Formalism of Quantum Relational Realism Workshop Venue: Swiss Federal Institute of Technology (ETH) Chair for Philosophy (building RAC) Raemistrasse 36, 8001 Zurich Switzerland January 29 – 30, 2010 I. Aims and Motivation Recent work in the natural sciences—most notably in the areas of theoretical physics and evolutionary biology—has demonstrated that the lines separating philosophy and science have all but vanished with respect to current explorations of ‘fundamental’ questions (e.g., string theory, multiverse cosmologies, complexity-emergence theories, the nature of mind, etc.). The centuries-old breakdown of ‘natural philosophy’ into the divorced partners ‘philosophy’ and ‘science,’ therefore, must be rigorously re- examined. To that end, much of today’s most groundbreaking scholarship in the natural sciences has begun to include explicit appeals to interdisciplinary collaboration among the fields of applied natural sciences, mathematics and philosophy. This workshop will be dedicated to the question of how a philosophical-metaphysical theory can be fruitfully applied to basic conceptualizations in the natural sciences. More narrowly, we will explore the process oriented metaphysical scheme developed by philosopher and mathematician Alfred North Whitehead (1861-1947) and Michael Epperson’s application of this scheme to recent work in quantum mechanics, and the relation of these to Elias Zafiris’s category theoretic model of quantum event structures. Our aim is to give participants from various fields of expertise (see list below) the opportunity to exchange their specialized knowledge in the context of a collaborative exploration of the fundamental questions raised by recent scholarship in physics and mathematics.
    [Show full text]
  • Spinoza and the Sciences Boston Studies in the Philosophy of Science
    SPINOZA AND THE SCIENCES BOSTON STUDIES IN THE PHILOSOPHY OF SCIENCE EDITED BY ROBERT S. COHEN AND MARX W. WARTOFSKY VOLUME 91 SPINOZA AND THE SCIENCES Edited by MARJORIE GRENE University of California at Davis and DEBRA NAILS University of the Witwatersrand D. REIDEL PUBLISHING COMPANY A MEMBER OF THE KLUWER ~~~.'~*"~ ACADEMIC PUBLISHERS GROUP i\"lI'4 DORDRECHT/BOSTON/LANCASTER/TOKYO Library of Congress Cataloging-in-Publication Data Main entry under title: Spinoza and the sciences. (Boston studies in the philosophy of science; v. 91) Bibliography: p. Includes index. 1. Spinoza, Benedictus de, 1632-1677. 2. Science- Philosophy-History. 3. Scientists-Netherlands- Biography. I. Grene, Marjorie Glicksman, 1910- II. Nails, Debra, 1950- Ill. Series. Q174.B67 vol. 91 OOI'.Ols 85-28183 101 43.S725J 100 I J ISBN-13: 978-94-010-8511-3 e-ISBN-13: 978-94-009-4514-2 DOl: 10.1007/978-94-009-4514-2 Published by D. Reidel Publishing Company, P.O. Box 17, 3300 AA Dordrecht, Holland. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, Holland. 2-0490-150 ts All Rights Reserved © 1986 by D. Reidel Publishing Company Softcover reprint of the hardcover 1st edition 1986 and copyright holders as specified on appropriate pages within No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner FROM SPINOZA'S LETTER TO OLDENBURG, RIJNSBURG, APRIL, 1662 (Photo by permission of Berend Kolk) TABLE OF CONTENTS ACKNOWLEDGEMENTS ix MARJORIE GRENE I Introduction xi 1.
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • 2 Tracing the Development of Structural Realism
    1 2 TRACING THE DEVELOPMENT OF STRUCTURAL REALISM Ioannis Votsis 1. Introduction This chapter traces the development of structural realism within the scientific realism debate and the wider current of structuralism that has swept the philosophy of the natural sciences in the twentieth century. 1 The primary aim is to make perspicuous the many manifestations of structural realism and their underlying claims. Among other things, I will compare structural realism’s various manifestations in order to throw more light onto the relations between them. At the end of the chapter, I will identify the main objections raised against the epistemic form of structural realism. This last task will pave the way for the evaluation of the structural realist answer to the main epistemological question, an evaluation that will be central to the rest of this dissertation. Generally construed, structuralism is a point of view that emphasises the importance of relations. It takes the structure, i.e. the nexus of relations, of a given domain of interest to be the foremost goal of research and holds that an understanding of the subject matter has to be, and most successfully is, achieved in structural terms. The following quote from Redhead (2001a) nicely conveys this intuition: “Informally a structure is a system of related elements, and structuralism is a point of view which focuses attention on the relations between the elements as distinct from the elements themselves”(74). This vision has shaped research programmes in fields as diverse as mathematics, linguistics, literary criticism, aesthetics, anthropology, psychology, and philosophy of science. It is the last-mentioned that I am concerned with in this chapter.
    [Show full text]
  • Conversations with Alan Musgrave
    Rationality and Reality STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE VOLUME 20 General Editor: S. GAUKROGER, University of Sydney Editorial Advisory Board: RACHEL ANKENY, University of Sydney STEVEN FRENCH, University of Leeds DAVID PAPINEAU, King’ s College London NICHOLAS RASMUSSEN, University of New South Wales JOHN SCHUSTER, University of New South Wales RICHARD YEO, Griffith University RATIONALITY AND REALITY Conversations with Alan Musgrave Edited by COLIN CHEYNE University of Otago, DDunedin, New Zealand and JOHN WORRALL London School of Economics, London, UK A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-4206-X (HB) ISBN-13 978-1-4020-4206-X (HB) ISBN-10 1-4020-4207-8 (e-book) ISBN-13 978-1-4020-4207-8 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Cover: Photograph of Alan Musgrave used with kind permission of Gudrun Perin, Guelph, Canada Printed on acid-free paper All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. TABLE OF CONTENTS Acknowledgements vii Notes on Contributors ix COLIN CHEYNE / Introduction 1 GREGORY CURRIE / Where Does the Burden of Theory Lie? 7 COLIN CHEYNE / Testimony, Induction and Reasonable Belief 19 JOHN WORRALL / Theory-Confirmation and History 31 DEBORAH G.
    [Show full text]
  • Models, Perspectives, and Scientific Realism
    MODELS, PERSPECTIVES, AND SCIENTIFIC REALISM: ON RONALD GIERE'S PERSPECTIVAL REALISM A thesis submitted to Kent State University in partial fulfillment of the requirements for the Degree of Master of Arts by Brian R. Huth May, 2014 Thesis written by Brian R. Huth B.A., Kent State University 2012 M.A., Kent State University 2014 Approved by Frank X. Ryan, Advisor Linda Williams, Chair, Department of Philosophy James L. Blank, Dean, College of Arts and Sciences ii TABLE OF CONTENTS ACKNOWLEDGEMENTS................................................................................................. iv INTRODUCTION............................................................................................................... 1 CHAPTER I. FROM THE RECEIVED VIEW TO THE MODEL-THEORETIC VIEW........................................................................................................... 7 Section 1.1.................................................................................................... 9 Section 1.2.................................................................................................... 16 II. RONALD GIERE'S CONSTRUCTIVISM AND PERSPECTIVAL REALISM.................................................................................................... 25 Section 2.1.................................................................................................... 25 Section 2.2.................................................................................................... 31 Section 2.3...................................................................................................
    [Show full text]
  • The Newton-Leibniz Controversy Over the Invention of the Calculus
    The Newton-Leibniz controversy over the invention of the calculus S.Subramanya Sastry 1 Introduction Perhaps one the most infamous controversies in the history of science is the one between Newton and Leibniz over the invention of the infinitesimal calculus. During the 17th century, debates between philosophers over priority issues were dime-a-dozen. Inspite of the fact that priority disputes between scientists were ¡ common, many contemporaries of Newton and Leibniz found the quarrel between these two shocking. Probably, what set this particular case apart from the rest was the stature of the men involved, the significance of the work that was in contention, the length of time through which the controversy extended, and the sheer intensity of the dispute. Newton and Leibniz were at war in the later parts of their lives over a number of issues. Though the dispute was sparked off by the issue of priority over the invention of the calculus, the matter was made worse by the fact that they did not see eye to eye on the matter of the natural philosophy of the world. Newton’s action-at-a-distance theory of gravitation was viewed as a reversion to the times of occultism by Leibniz and many other mechanical philosophers of this era. This intermingling of philosophical issues with the priority issues over the invention of the calculus worsened the nature of the dispute. One of the reasons why the dispute assumed such alarming proportions and why both Newton and Leibniz were anxious to be considered the inventors of the calculus was because of the prevailing 17th century conventions about priority and attitude towards plagiarism.
    [Show full text]
  • Quasi-Truth As Truth of a Ramsey Sentence
    Quasi-Truth as Truth of a Ramsey Sentence Sebastian Lutz∗ Draft: 2011–08–07 Abstract I show the quasi-truth of a sentence in a partial structure to be equivalent to the truth of a specific Ramsey sentence in a structure that corresponds naturally to the partial structure. Hence quasi-truth, the core notion of the partial structures approach, can be captured in the terms of the received view on scientific theories as developed by Carnap and Hempel. I further show that a mapping is a partial homomorphism/isomorphism between two partial structures if and only if it is a homomorphism/isomorphism between their corresponding structures. It is a corollary that the partial structures approach can be expressed in first or second order model theory. Keywords: partial structure; quasi-truth; pragmatic truth; partial truth; subtruth; partial homomorphism; partial isomorphism; model theory; expansion; Ramsey sentence; received view; logical empiricism The partial structures approach is in the vanguard of the semantic view on scientific theories and models (da Costa and French 2000; Le Bihan 2011, n. 3, §5), and is one of the main reasons why the received view on scientific theories as developed by, for example, Carnap(1966) and Hempel(1958) within logical empiricism is considered inferior to the semantic view (French and Ladyman 1999). I will show that the core notion of the partial structures approach, quasi-truth, can be captured very naturally within the received view. The partial structures approach is motivated by a simple epistemological point: Most of the time, scientists do not have enough information about a domain to determine its structure with arbitrary precision.
    [Show full text]