The Design of Table-Centric Interactive Spaces by Daniel J. Wigdor a Thesis Submitted in Partial Conformity with the Requirement

Total Page:16

File Type:pdf, Size:1020Kb

The Design of Table-Centric Interactive Spaces by Daniel J. Wigdor a Thesis Submitted in Partial Conformity with the Requirement The Design of Table-Centric Interactive Spaces by Daniel J. Wigdor A thesis submitted in partial conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer Science University of Toronto © Copyright by Daniel J. Wigdor, 2008 Abstract The Design of Table-Centric Interactive Spaces, by Daniel J. Wigdor A thesis submitted in partial conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer Science, University of Toronto © Copyright by Daniel J. Wigdor, 2008 Direct-touch tabletops offer compelling uses as direct, multi-touch, multi-user displays for face to face collaborative work. As task complexity and group size increase, the addition to the tabletop of multiple, vertical displays allows for more information content, while reducing the need to multiplex the tabletop display area. We dub such systems table-centric interactive spaces . Although compelling, these spaces offer unique challenges. In particular, the displays in such spaces are seen by the users at angles not typically found in combination in other environments. First, the viewing imagery shown on a horizontal display by seated participants means that that imagery is distorted, receding away from the users’ eyes. Second, the sharing of information by users sitting around a horizontal display necessitates that on-screen content be oriented at non- optimal angles for some subset of those users. Third, positioning vertical displays around the table means that some subset of the seated users will be looking at those displays at odd angles. In this thesis, we investigate the challenges associated with these viewing angles. We begin with a examination of related work, including tabletop technology and interaction techniques. Next, we report the results of controlled experiments measuring performance of reading, graphical perception, and ancillary display control under the angles we identified. Next, we present a set of design issues encountered in our work with table-centric spaces. We then review a series of interaction techniques built to address those issues. These techniques are evaluated through the construction and validation of an application scenario. Through these examinations, we hope to provide designers with insights as to how to enable users to take full advantage of ancillary displays, while maintaining the advantages and affordances of collocated table-centric work. ii Acknowledgements A great number of people contributed significantly to my research over the last 4 years. The direction of Professor Ravin Balakrishnan provided invaluable guidance in helping me to graduate from young student to an independent researcher. Professors Mark Chignell and Ron Baecker provided a great deal of support in transitioning my work from a body of individual publications to a single, unified research thread. Professor Rob Jacob of Tufts University provided the challenge to recognize the greater context of the work, and freed me to expand my vision. Thank you. Research for my thesis was conducted at two labs: the Dynamic Graphics Project (DGP) lab at the University of Toronto (www.dgp.toronto.edu), and Mitsubishi Electric Research Labs (www.merl.com) in Cambridge, MA. Both of these labs are fabulous research environments, filled with keen minds with a thirst for ideas and knowledge. Many members of these institutions provided invaluable help and support. Two collaborators in particular have had a great influence on my research: Clifton Forlines, whose words make up more than a small part of this thesis from our many co-authored papers, taught me the value and importance of presentation and of thoroughly examining all details of a problem, as well as a great deal about how to find my voice in a choir. Tovi Grossman helped me to understand the importance of highly critical thinking, distilling ideas down to their basic research questions, and the value of the social side of the research community. I owe them both a great debt. At MERL, John Barnwell was my friend and frequent guide on late night hardware building marathons. Our hacking efforts were aided by frequent support (both technical and personal) from Paul Dietz, Darren Leigh, Jonathan Westhues, and Bill (Crash) Yerazunis. Alan Esenther, Kathy Ryall, Sam Shipman, Chris Wren, Yuri Ivanov, and Paul Beardsley were highly valued collaborators on various projects. Just about every other member of MERL provided invaluable insights into some otherwise unseen avenue; my time at MERL was a wonderful and treasured experience. iii In the DGP in Toronto, my research was aided at various points by Jonathan Deber, Michael McGuffin, and John Hancock, and by general discussion with the Interaction Research Group. I owe a great debt to my supportive family: in Canada, this is Robin, Irene (who were both a great help with the text of the thesis), Adam, and Noel Wigdor. In Boston, this has been Amy MacLearn, Jill Hirschen, and various other characters I encountered while living at 86 Kirkland Street. I love you all. Although she was not officially my supervisor, the majority of this work was conducted under the direct supervision of Dr. Chia Shen at MERL, and then at the Initiative in Innovative Computing at Harvard University. She served as my de facto advisor in the later years of my PhD, lending me her vision in areas of research, career development, professional conduct, and all manner of personal affairs. In appreciation of her maternal guidance, unfailing support, and loving friendship, I dedicate this thesis work to her. iv Copyright Notices and Disclaimers Several sections of this document have previously appeared in publications; in all cases, permission from the publisher has been granted for these works to appear in this thesis. Where appropriate, each chapter is marked with references to the relevant publication(s), each of which is listed below, along with the appropriate copyright notice or disclaimer for the given work. Springer © 2005 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. With kind permission of Springer Science and Business Media. Chapter 3 Wigdor, D., Balakrishnan, R. (2005). Empirical investigation into the effect of orientation on text readability in tabletop displays. Proceedings of the 9 th European Conference on Computer-Supported Cooperative Work (ECSCW 2005) , 205-224 Information Processing Society of Japan The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). This material is published in this thesis with the agreement of the author(s) and the IPSJ. Please be complied with Copyright Law of Japan and the Code of Ethics of IPSJ if any users wish to reproduce, make derivative work, distribute or make available to the public any part or whole thereof. All Rights Reserved, Copyright © Information Processing Society of Japan. Comments are welcome. Mail to address [email protected], please. Chapter 6 Wigdor, D., Shen, C., Forlines, C., Balakrishnan, R., (2006). Table-Centric Interactive Spaces for Real-Time Collaboration: Solutions, Evaluation, and Application Scenarios. Proceedings of the 2006 conference on Collaborative Technologies (CollabTech 2006), 9-15. v Association for Computing Machinery ACM COPYRIGHT NOTICE. Copyright © 2005, 2006, 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honoured. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or [email protected]. © 2005, 2006, 2007 ACM, Inc. Included here by permission. Chapter 4 Wigdor, D., Shen, C., Forlines, C., Balakrishnan, R. (2007). Perception of Elementary Graphical Elements in Tabletop and Multi-Surface Environments. Proceedings of the 2007 SIGCHI conference on human factors in computing systems (CHI 2007), 473-482. Chapter 5 Wigdor, D., Shen, C., Forlines, C., and Balakrishnan, R. (2006). Effects of display position and control space orientation on user preference and performance. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2006), 309-318. Chapter 6 Wigdor, D., Shen, C., Forlines, C., Balakrishnan, R., (2006). Table-Centric Interactive Spaces for Real-Time Collaboration. Proceedings of the 2006 conference on Advanced Visual Interfaces (AVI 2006), 103-107. ARDA and NGA This study was partially supported by the Advanced Research and Development Activity (ARDA) and the National Geospatial-intelligence Agency (NGA) under Contract Number HM1582-05-C- 0028. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official Department of Defence position, policy, or decision,
Recommended publications
  • Annual Report
    Mitsubishi Electric Research Laboratories (MERL) Annual Report July 2007 through June 2008 TR2008-00 (Published July 2009) Welcome to Mitsubishi Electric Research Laboratories (MERL), the North American corporate R&D arm of Mitsubishi Electric Corporation. In this report, you will find descriptions of MERL and our projects. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for another purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories. All rights reserved. Copyright© Mitsubishi Electric Research Laboratories, 2009 20 I Broadway, Cambridge, Massachusetts 02139 6 17.621.7500 Production: Karen Dickie, Janet O'Halloran, Janet McAndless, Richard C. Waters Table of Contents Mitsubishi Electric Research Laboratories ........................................................... 1 Awa rds and Commendations ........................... ........................................ ............ 7 Technical Staff .................................................................................................... 9 Publications ......................................................................................................
    [Show full text]
  • Thesis Explores How to Bridge the Gap Between the Power Provided by Current Desktop Com- Puter Interfaces and the Fluid Use of Whiteboards and Pin-Boards
    FLUID INTERACTION FOR HIGH RESOLUTION WALL-SIZE DISPLAYS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY François Guimbretière January 2002 2002 by François Guimbretière All Rights Reserved ii I certify that I have read this dissertation and that in my opinion it is fully ade- quate, in scope and quality, as a dissertation for the degree of Doctor of Philoso- phy. __________________________________ Terry Winograd (Principal Advisor) I certify that I have read this dissertation and that in my opinion it is fully ade- quate, in scope and quality, as a dissertation for the degree of Doctor of Philoso- phy. __________________________________ Pat Hanrahan I certify that I have read this dissertation and that in my opinion it is fully ade- quate, in scope and quality, as a dissertation for the degree of Doctor of Philoso- phy. __________________________________ David Kelley I certify that I have read this dissertation and that in my opinion it is fully ade- quate, in scope and quality, as a dissertation for the degree of Doctor of Philoso- phy. __________________________________ Maureen Stone (StoneSoup Consulting) Approved for the University Committee on Graduate Studies: __________________________________ iii Abstract As computers become more ubiquitous, direct interaction with wall-size, high-resolution dis- plays will become commonplace. The familiar desktop computer interface is ill-suited to the affor- dances of these screens, such as size, and capacity for using pen or finger as primary input device. Current Graphical User Interfaces (GUIs) do not take into account the cost of reaching for a far- away menu bar, for example, and they rely heavily on the keyboard for rapid interactions.
    [Show full text]
  • Using Multiuser Multi-Touch Tables to Visualize GIS Data
    MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts, USA Using Multi-User Multi-Touch Tables to Visualize GIS Data Alan Esenther, Kathy Ryall Technology Lab Mitsubishi Electric Research Labs, Cambridge, MA, USA Masakazu Furuichi Modeling & Simulation, Information Systems Dept Mitsubishi Electric Corp, Kamakura, Japan Petroleum User Group 2007 MITSUBISHI ELECTRIC RESEARCH LABORATORIES DiamondTouch (DT): Novel Technology Platform Overcoming limitations of the mouse… – Multi-user • Simultaneous multiple users • Supports up to four users at a time –Multi-touch • Each user can touch with multiple fingers at the same time • Enables rich gestures (unlike mouse/stylus) – Toucher identification • It doesn’t just allow multiple touchers – it distinguishes them • Identifies which user is touching each point (unlike tables based on cameras, IR, or pressure) – Direct-input • Input and Display spaces are superimposed • Allows simplicity of directly touching and MITSUBISHI interacting with content ELECTRIC Changes for the better Petroleum User Group 2007 MITSUBISHI ELECTRIC RESEARCH LABORATORIES DiamondTouch: Hardware Overview • Basic Components – Table (touch surface) is a transmitter array Receiver – Chairs (or a conductive pad) Transmitters are receivers • User capacitively couples a signal between the table and the receiver – Supports seated or standing interaction – Stylus-based interaction also possible – Transmitter signals are interpolated to 2736x2048 input resolution • DT most-often used as horizontal tabletop display – Front-projection
    [Show full text]
  • Technical Program
    Technical Program IS&T/SPIE 18th Annual Symposium 15-19 January 2006 San Jose Marriott and San Jose Convention Center • San Jose, California USA Sponsored by: electronicimaging.org • Tel: +1 703 642 9090 • [email protected] 1 Technical Program IS&T/SPIE 18th Annual Symposium 15–19 January 2006 San Jose Marriott and San Jose Convention Center • San Jose, California USA Conferences • Continuing Education • Technical Exhibition • Demonstrations Welcome We are all too busy. If your jobs are like ours, then you are expected to produce more innovation, more products, more research, more students, more money, but all with less time. So how does participating in EI 2006 fit into this picture? Well, here is the straight answer as to why the Electronic Imaging Symposium is a great investment of your time and resources. • Defines the cutting edge in imaging research - The EI symposium, and its associated publication the Journal of Electronic Imaging, have been defining the envelope of high impact digital imaging research since their inception. Because of its leading role, EI is where the innovation leaders in imaging research go to find out about the newest imaging systems, methods, instrumentation, and algorithms. • Provides broad coverage with tremendous technical depth - The unique structure of EI leads to a rich marketplace of ideas where a broad range of topics are discussed in great technical depth. Each year, the EI symposium starts new conferences on important new topics and reinvigorates highly respected existing conferences through the incorporation of new research and participants. • Promotes an atmosphere for professional networking - Because of its organization into primarily single-tracked conferences, the symposium has a very personal and friendly atmosphere that gives technical experts and researchers an opportunity to learn what they need and also, to efficiently network on a professional level.
    [Show full text]
  • Multimodal Interaction with Mobile Devices: Fusing a Broad Spectrum of Modality Combinations
    Multimodal Interaction with Mobile Devices: Fusing a Broad Spectrum of Modality Combinations Dissertation zur Erlangung des Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.) der Naturwissenschaftlich-Technischen Fakultat¨ I der Universitat¨ des Saarlandes vorgelegt von Rainer Wasinger Saarbrucken¨ 20. November 2006 ii Datum des Kolloquiums: Montag den 20. November 2006 Dekan und Vorsitzender: Prof. Dr. Thorsten Herfet Gutachter: 1. Prof. Dr. Dr. h.c. mult. Wolfgang Wahlster 2. Prof. Dr. Elisabeth Andre´ Akademischer Beisitzer: Dr. Dominik Heckmann Eidesstattliche Erklarung¨ Hiermit erklare¨ ich, dass ich die vorliegende Arbeit ohne unzulassige¨ Hilfe Dritter und ohne Be- nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen oder indirekt ubernommenen¨ Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Diese Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ahnlicher¨ Form in anderen Prufungsverfahren¨ vorgelegt. Saarbrucken,¨ den 20. November 2006 iii iv Acknowledgements Most of all, I would like to thank Professor Wahlster for providing the funds, the time, and the environment, for any and all of this to have been possible. I also thank you for permitting me to work on such an interesting topic at the DFKI. I value your advice, which is always relevant, and your ability to see the interesting aspect of practically any research field. I also thank Elisabeth Andre´ for being the second corrector of this work, and the German Federal Ministry for Education and Research (BMBF), which has funded this work under the contract number 01 IN C02 as part of the projects COLLATE and COLLATE II. I would like to dearly thank my wife Emma and my son Xavier for making everything wor- thwhile.
    [Show full text]
  • Grasping Gestures: Gesturing with Physical Artifacts
    Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 255–271. # Cambridge University Press 2011 0890-0604/11 $25.00 doi:10.1017/S0890060411000072 Grasping gestures: Gesturing with physical artifacts 1 2 ELISE VAN DEN HOVEN AND ALI MAZALEK 1User-Centered Engineering Group, Industrial Design Department, Eindhoven University of Technology, Eindhoven, The Netherlands 2Synaesthetic Media Lab, Digital Media Program, Georgia Institute of Technology, Atlanta, Georgia, USA (RECEIVED July 19, 2010; ACCEPTED October 6, 2010) Abstract Gestures play an important role in communication. They support the listener, who is trying to understand the speaker. How- ever, they also support the speaker by facilitating the conceptualization and verbalization of messages and reducing cog- nitive load. Gestures thus play an important role in collaboration and also in problem-solving tasks. In human–computer interaction, gestures are also used to facilitate communication with digital applications, because their expressive nature can enable less constraining and more intuitive digital interactions than conventional user interfaces. Although gesture re- search in the social sciences typically considers empty-handed gestures, digital gesture interactions often make use of hand- held objects or touch surfaces to capture gestures that would be difficult to track in free space. In most cases, the physical objects used to make these gestures serve primarily as a means of sensing or input. In contrast, tangible interaction makes use of physical objects as embodiments of digital information. The physical objects in a tangible interface thus serve as representations as well as controls for the digital information they are associated with. Building on this concept, gesture interaction has the potential to make use of the physical properties of hand-held objects to enhance or change the function- ality of the gestures made.
    [Show full text]
  • User Interaction in Hybrid Multi-Display Environments
    User Interaction in Hybrid Multi-Display Environments Hrvoje Benko Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2007 © 2007 Hrvoje Benko All Rights Reserved ABSTRACT User Interaction in Hybrid Multi-Display Environments Hrvoje Benko This dissertation presents the design, implementation, and evaluation of novel pointer-based and gesture-based interaction techniques for multi-display environments (MDEs). These techniques transcend the constraints of a single display, allowing users to combine multiple displays and interaction devices in order to benefit from the advan- tages of each. First, we introduce a set of pointer warping techniques, which improve existing mouse pointer interaction in an MDE, by allowing users to instantaneously relocate the cursor to an adjacent display, instead of traversing the bezel. Formal evaluations show significant improvements in user performance when compared to standard mouse be- havior. Next, we focus on a particular kind of MDE, in which 3D head-worn augmented re- ality displays are combined with handheld and stationary displays to form a hybrid MDE. A key benefit of hybrid MDEs is that they integrate and utilize the 3D space in which the 2D displays are embedded, creating a seamless visualization environment. We describe the development of a complex hybrid MDE system, called Visual Interac- tion Tool for Archaeology (VITA), which allows for collaborative off-site analysis of archaeological excavation data by distributing the presentation of data among several head-worn, handheld, projected tabletop, and large high-resolution displays. Finally, inspired by the lack of freehand interactions for hybrid MDEs, we designed gestural techniques that address the important issues of interacting across and within 2D and 3D displays.
    [Show full text]
  • Hand-And-Finger-Awareness for Mobiletouch Interaction Using
    Hand-and-Finger-Awareness for Mobile Touch Interaction using Deep Learning Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik und dem Stuttgart Research Centre for Simulation Technology der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Huy Viet Le aus Nürtingen Hauptberichter: Prof. Dr. Niels Henze Mitberichter: Prof. Antti Oulasvirta Mitprüfer: Jun.-Prof. Dr. Michael Sedlmair Tag der mündlichen Prüfung: 28.03.2019 Institut für Visualisierung und Interaktive Systeme der Universität Stuttgart 2019 2 Zusammenfassung Mobilgeräte wie Smartphones und Tablets haben mittlerweile Desktop Compu- ter für ein breites Spektrum an Aufgaben abgelöst. Nahezu jedes Smartphone besitzt einen berührungsempfindlichen Bildschirm (Touchscreen), welches die Ein- und Ausgabe zu einer Schnittstelle kombiniert und dadurch eine intuitive Interaktion ermöglicht. Mit dem Erfolg sind Anwendungen, die zuvor nur für Desktop Computer verfügbar waren, nun auch für Mobilgeräte verfügbar. Dieser Wandel steigerte die Mobilität von Computern und erlaubt es Nutzern dadurch Anwendungen auch unterwegs zu verwenden. Trotz des Erfolgs von Touchscreens sind traditionelle Eingabegeräte, wie Tastatur und Maus, aufgrund ihrer Eingabemöglichkeiten immer noch überlegen. Eine Maus besitzt mehrere Tasten, mit denen verschiedene Funktionen an dersel- ben Zeigerposition aktiviert werden können. Zudem besitzt eine Tastatur mehrere Hilfstasten, mit denen die Funktionalität anderer Tasten vervielfacht werden. Im Gegensatz dazu beschränken sich die Eingabemöglichkeiten von Touchscreens auf zweidimensionale Koordinaten der Berührung. Dies bringt einige Herausfor- derungen mit sich, die die Benutzerfreundlichkeit beeinträchtigen. Unter anderem sind Möglichkeiten zur Umsetzung von Kurzbefehlen eingeschränkt, was Sheider- mans goldene Regeln für das Interface Design widerspricht. Zudem wird meist nur ein Finger für Eingabe verwendet, was die Interaktion verlangsamt.
    [Show full text]
  • Supporting Medical Conversations Between Deaf and Hearing Individuals with Tabletop Displays Anne Marie Piper and James D
    Supporting Medical Conversations between Deaf and Hearing Individuals with Tabletop Displays Anne Marie Piper and James D. Hollan Distributed Cognition and Human-Computer Interaction Laboratory Department of Cognitive Science, University of California, San Diego 9500 Gilman Dr., La Jolla, CA 92093 {apiper, hollan}@ucsd.edu ABSTRACT language interpreter to facilitate communication between a This paper describes the design and evaluation of Shared deaf patient and hearing doctor. Deaf patients must plan Speech Interface (SSI), an application for an interactive ahead to ensure that an interpreter is available. For most multitouch tabletop display designed to facilitate medical patients, privacy is a central concern. Some deaf patients, conversations between a deaf patient and a hearing, non- depending on their comfort level with interpreters, prefer signing physician. We employ a participatory design and actually use an alternate communication channel (e.g., process involving members of the deaf community as well email or instant messenger to discuss sensitive medical as medical and communication experts. We report results issues with their physician). Increasing communication from an evaluation that compares conversation when privacy is one motivation behind the work reported here. facilitated by: (1) a digital table, (2) a human sign language While other viable communication tools for the deaf interpreter, and (3) both a digital table and an interpreter. community exist, tabletop displays with speech recognition Our research reveals that tabletop displays have valuable have potential to facilitate medical conversations between properties for facilitating discussion between deaf and deaf and hearing individuals. Consultations with physicians hearing individuals as well as enhancing privacy and often involve discussion of visuals such as medical records, independence.
    [Show full text]
  • Diamondtouch: a Multi-User Touch Technology
    MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com DiamondTouch: A Multi-User Touch Technology Paul Dietz and Darren Leigh TR2003-125 October 2003 Abstract A technique for creating touch sensitive surfaces is proposed which allows multiple, simul- taneous users to interact in an intuitive fashion. Touch location information is determined independently for each user, allowing each touch on the common surface to be associated with a particular user. The surface gnerates location dependent electric fields, which are capaci- tively coupled through the users to receivers installed in the work environment. We describe the design of these sytems and their applications. Finally, we conclude with a description of the results we have obtained with a first generation prototype. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Copyright c Mitsubishi Electric Research Laboratories, Inc., 2003 201 Broadway, Cambridge, Massachusetts 02139 Published in Proceedings of UIST 2001, the 14th Annual ACM Symposium on User Interface Soft- ware and Technology, November 11-14, 2001, Orlando, Florida USA, pages 219-226.
    [Show full text]
  • Diamondtouch SDK:Support for Multi-User, Multi-Touch Applications
    MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com DiamondTouch SDK:Support for Multi-User, Multi-Touch Applications Alan Esenther, Cliff Forlines, Kathy Ryall, Sam Shipman TR2002-48 November 2002 Abstract DiamondTouch is a multi-touch input technology that supports multiple, simultaneous users; it can distinguish who is touching where. We present the DiamondTouch SDK; it provides sup- port for the development of applications that utilize DiamondTouch s capabilities to implement computer-supported collaboration and rich input modalities (such as gestures). Our first demo illustrates the basic utilities and functionality of our system. Our second demo, a multi-user map application, highlights DiamondTouch s ability to sup-port input from multiple, simultane- ous users and exploits Di-amondTouch s ability to identify the owner of each touch. Our third demo illustrates DiamondTouch s ability to run with existing applications by providing a mouse emulation mode. DiamondTouch is well-suited to shared-display applications. It is suitable for front-projected video of the computer display, which facilitates direct manipulation of user interface elements and provides a shared focus of attention for collab-orating users. Possible applications include command-and-control command posts, control rooms, business or technical meetings, and a variety of casual applications in the home, at schools, and in retail settings. CSCW 2002 Demo This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice.
    [Show full text]
  • Vision and Visual Interfaces 1
    PART Vision and Visual Interfaces 1 CHAPTER Face-to-Face Collaborative Interfaces 1 Aaron J. Quigley and Florin Bodea School of Computer Science and Informatics, Complex & Adaptive Systems Laboratory, University College, Dublin, Ireland 1.1 Introduction .................................................................................................................. 4 1.2 Background .................................................................................................................. 7 1.3 Surface User Interface ................................................................................................ 10 1.4 Multitouch .................................................................................................................. 12 1.4.1 Camera-Based Systems............................................................................. 13 1.4.2 Capacitance-Based Systems ...................................................................... 18 1.5 Gestural Interaction..................................................................................................... 20 1.6 Gestural Infrastructures ............................................................................................... 24 1.6.1 Gestural Software Support......................................................................... 25 1.7 Touch Versus Mouse ................................................................................................... 26 1.8 Design Guidelines for SUIs for Collaboration ...............................................................
    [Show full text]