Multimodal Interaction with Mobile Devices: Fusing a Broad Spectrum of Modality Combinations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving E-Learning Environments for Pen and Multi-Touch Based Interaction a Study Case on Blog Tools and Mobile Devices
eLmL 2014 : The Sixth International Conference on Mobile, Hybrid, and On-line Learning Improving e-Learning Environments for Pen and Multi-touch Based Interaction A study case on blog tools and mobile devices André Constantino da Silva Heloísa Vieira da Rocha Institute of Computing (PG) Institute of Computing, NIED UNICAMP, IFSP UNICAMP Campinas, Brazil, Hortolândia, Brazil Campinas, Brazil [email protected] [email protected] Abstract — e-Learning environments are applications that use power to process Web pages. So, it is possible to access blog the Web infra-structure to support teaching and learning tools, read the messages, post new messages and write activities; they are designed to have good usability using a comments through mobile devices. But, it is important to desktop computer with keyboard, mouse and high resolution consider that these tools (and so their Web pages) are medium-size display. Devices equipped with pen and touch developed to be accessed by desktop computers equipped sensitive screen have enough computational power to render with keyboard, mouse and a medium size display; in your Web pages and allow users to navigate through the e-learning previous work we described that when a user interface environments. But, pen-based or touch sensitive devices have a designed for a set of interaction styles is accessed by a different input style; decreasing the usability of e-learning different set of interaction styles the users face interaction environments due the interaction modality change. To work on problems [5]. Another problem is that it is not possible to mobile contexts, e-learning environments must be improved to consider the interaction through pen and touch. -
Mobile Pen-And-Paper Interaction
Mobile Pen-and-Paper Interaction Infrastructure Design, Conceptual Frameworks of Interaction and Inter- action Theory Dissertation genehmigt zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) vorgelegt von Dipl.-Inform. Farid Hamza Felix Heinrichs geb. in Frankfurt am Main am Fachbereich Informatik der Technischen Universit at¨ Darmstadt Gutachter Prof. Dr. Max M uhlh¨ auser¨ (TU Darmstadt) Prof. Dr. Johannes Sch oning¨ (Universiteit Hasselt) Tag der Einreichung 26. August 2015 Tag der Disputation 12. November 2015 Darmstadt 2015 D17 ÕækQË @ á ÔgQË @ é <Ë @ Õ æ . ”In the name of God, the Most Gracious, the Most Merciful” Abstract Although smartphones, tablets and other mobile devices become increasingly popu- lar, pen and paper continue to play an important role in mobile settings, such as note taking or creative discussions. However, information on paper documents remains static and usage practices involving sharing, researching, linking or in any other way digitally processing information on paper are hindered by the gap between the digi- tal and physical worlds. A considerable body of research has leveraged digital pen technology in order to overcome this problem with respect to static settings, however, systematically neglecting the mobile domain. Only recently, several approaches began exploring the mobile domain and develop- ing initial insights into mobile pen-and-paper interaction (mPPI), e.g., to publish digi- tal sketches, [Cowan et al., 2011], link paper and digital artifacts, [Pietrzak et al., 2012] or compose music, [Tsandilas, 2012]. However, applications designed to integrate the most common mobile tools pen, paper and mobile devices, thereby combining the benefits of both worlds in a hybrid mPPI ensemble, are hindered by the lack of sup- porting infrastructures and limited theoretical understanding of interaction design in the domain. -
Annual Report
Mitsubishi Electric Research Laboratories (MERL) Annual Report July 2007 through June 2008 TR2008-00 (Published July 2009) Welcome to Mitsubishi Electric Research Laboratories (MERL), the North American corporate R&D arm of Mitsubishi Electric Corporation. In this report, you will find descriptions of MERL and our projects. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for another purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories. All rights reserved. Copyright© Mitsubishi Electric Research Laboratories, 2009 20 I Broadway, Cambridge, Massachusetts 02139 6 17.621.7500 Production: Karen Dickie, Janet O'Halloran, Janet McAndless, Richard C. Waters Table of Contents Mitsubishi Electric Research Laboratories ........................................................... 1 Awa rds and Commendations ........................... ........................................ ............ 7 Technical Staff .................................................................................................... 9 Publications ...................................................................................................... -
Official Minutes Cattaraugus-Allegany-Erie-Wyoming BOCES Regular Meeting
Official Minutes Cattaraugus-Allegany-Erie-Wyoming BOCES Regular Meeting DATE: December 9, 2015 TIME: 4:30 PM PLACE: Center at Olean BOARD MEMBERS PRESENT: Lou Nicol, President Brad Sande, Vice President Candace Clemens Michael Conroy Gilbert Green Charles Joyce Robert Keenan Susan Potter BOARD MEMBERS ABSENT: Maxine Dowler STAFF PRESENT: Lynda Quick, District Superintendent Sally Nenno, District Clerk Tim Cox, Assistant Superintendent for ISS Carol Fial, Assistant Superintendent for Special Education Tracie Preston, Assistant Superintendent for CTE Thomas Potter, Controller Mike Graf, Director for Technology Pam Kirkwood, Director for Personnel & Labor Relations Karen Coleman, Treasurer Kathleen Brisky, Principal Steve Dieteman, Principal Noel Sheehy, Principal Dean McKnight, Manager Facility Services Tim Clarke, Program Manager Jen Spong, Program Manager Mary Morris, Program Manager President L. Nicol called the meeting to order at 4:41 p.m. with the Pledge of Allegiance. Welding & Metal Fabrications teachers were introduced and introduced their students Presentations present. Students told of their experiences in the program, projects and areas studied. 4:49 B. Sande arrived T. Preston passed out a report with an overview of CTE enrollment history and reviewed it with the Board. Carol Fial reported on the special opportunity that some of our students got to Citizen’s Input experience last week. They went to the Bills stadium and watched the Bills practice, received t-shirts, had lunch with the Bills and were given $125 to spend in the Bills gift shop. They then went to 716, received another $125 to spend in the Sabres gift shop, watched a Sabres game, went on the ice and then into the locker room after the game. -
Thesis Explores How to Bridge the Gap Between the Power Provided by Current Desktop Com- Puter Interfaces and the Fluid Use of Whiteboards and Pin-Boards
FLUID INTERACTION FOR HIGH RESOLUTION WALL-SIZE DISPLAYS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY François Guimbretière January 2002 2002 by François Guimbretière All Rights Reserved ii I certify that I have read this dissertation and that in my opinion it is fully ade- quate, in scope and quality, as a dissertation for the degree of Doctor of Philoso- phy. __________________________________ Terry Winograd (Principal Advisor) I certify that I have read this dissertation and that in my opinion it is fully ade- quate, in scope and quality, as a dissertation for the degree of Doctor of Philoso- phy. __________________________________ Pat Hanrahan I certify that I have read this dissertation and that in my opinion it is fully ade- quate, in scope and quality, as a dissertation for the degree of Doctor of Philoso- phy. __________________________________ David Kelley I certify that I have read this dissertation and that in my opinion it is fully ade- quate, in scope and quality, as a dissertation for the degree of Doctor of Philoso- phy. __________________________________ Maureen Stone (StoneSoup Consulting) Approved for the University Committee on Graduate Studies: __________________________________ iii Abstract As computers become more ubiquitous, direct interaction with wall-size, high-resolution dis- plays will become commonplace. The familiar desktop computer interface is ill-suited to the affor- dances of these screens, such as size, and capacity for using pen or finger as primary input device. Current Graphical User Interfaces (GUIs) do not take into account the cost of reaching for a far- away menu bar, for example, and they rely heavily on the keyboard for rapid interactions. -
Getting Back on the Trail, Combating Information Overload with Topic Maps Thesis for the Cand
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives UNIVERSITY OF OSLO Faculty of Humanities Department of Linguistics and Scandinavian Studies (Humanistic Informatics) Getting back on the trail, combating information overload with Topic Maps Thesis for the Cand. Philol. degree Rolf B. Guescini May 8, 2006 Contents 1 Historical overview and contributions 1 1.1 Vannevar Bush . 1 1.1.1 Memex . 2 1.1.2 Sequential vs. Associative . 2 1.1.3 From Memex to hypertext . 3 1.2 Theodore Nelson . 4 1.2.1 Literary Machines . 4 1.2.2 Project XANADU . 5 1.2.3 Embedded markup . 6 1.2.4 Other visions and projects on the way . 8 1.3 Douglas Engelbart . 12 1.4 Hypertext before the World Wide Web . 14 1.4.1 Modularity, juxtaposing, and editing . 14 1.4.2 Hierarchical structure vs. non-hierarchical link structures . 15 1.4.3 Filtering of information . 16 1.4.4 Extended link functionality . 16 1.4.5 Paths . 17 1.4.6 High level info to combat overload . 18 1.4.7 Tim Berners-Lee and the World Wide Web . 18 1.4.8 Development of the World Wide Web . 19 1.4.9 WWW becomes commercial . 20 1.4.10 The World Wide Web Consortium . 21 2 The World Wide Web and HTML: What is wrong with hypertext at this point? 23 2.1 The hyper in hypertext . 24 2.1.1 Associative links . 25 2.1.2 Link directionality . 26 2.1.3 Broken links . -
Introduction and Background
Home 1 2 3 4 5 1. Introduction and Background 1. XML 2. MathML 3. XSL 4. Browser Support The purpose of this article is to show how Content MathML can be customized and extended. Together with an associated XSL stylesheet and processor, the customized MathML markup can be converted into standard Presentation MathML for display in a browser or for other purposes. Displayed documents with Presentation MathML can be further converted to PDF. Thus, in a sense, customized Content MathML can be viewed as an authoring platform for Presentation MathML. Quite a bit of background information is necessary to understand this article: XML, MathML (in both its versions), and XSL. We will review these markup languages briefly in this introductory section, but it is well beyond the scope of this article to give exhaustive descriptions. Thus, this article will be most valuable to readers who have a basic knowledge of markup languages. 1.1 XML All of the markup languages that we will discuss are members of the eXtensible Markup Language (XML) family. XML is a standard of the World Wide Web Consortium (W3C), the official standards body for web technologies. XML is perhaps best thought of as a meta-language for the creation of customized markup languages that are designed to encode specialized types of information and data. Particular XMLs of this type are often called XML applications. XML is rapidly becoming ubiquitous in the information technology world. A few examples of XML applications are XHTML (eXtensible HyperText Markup Language), the rigorous, XML version of HTML, which in turn is the basic language of the web. -
At-A-Glance.Pdf
W3C Is an International Consortium Organizations located all over the world and involved in many different fi elds join W3C to participate in a vendor-neutral forum for the creation of Web standards. W3C Members and a dedicated full-time staff of technical experts have earned W3C international recognition for its contributions to the Web. W3C Members, staff, and Invited Experts work together to W3C’s global initiatives also include nuturing liaisons with over design technologies to ensure that the Web will continue to forty national, regional and international organizations around thrive in the future, accommodating the growing diversity the globe. These contacts help W3C maintain a culture of global of people, hardware, and software. participation in the development of the World Wide Web. W3C Members � Organizations join W3C to work and exchange ideas with more than 350 Members, including the world’s foremost��������������� technology companies. W3C Members take a leadership role in the future of the Web, and governments, all of whom work to reach consensus on promote their image��������������������� as innovators participating in a standards a direction for the Web. Adoption of W3C standards and body international in mission and impact, and gain early reliance of global commerce and information exchange upon insight into market trends. W3C Members include vendors W3C Web standards continue to grow. Members have a of technology products and services, content providers, unique opportunity to participate directly in the revolution corporate users, research laboratories, standards bodies, that contines to change the way the world works. W3C Team “W3C is where the future of the The W3C Team includes more than sixty researchers and engineers from around the world who lead the technical Activities at W3C and manage the operations of the Consortium. -
Achieving Interoperability of Pen Computing Among Heterogeneous
Achieving Interoperability of Pen Computing with Heterogeneous Devices and Digital Ink Formats (Spine Title: Achieving Interoperability of Pen Computing) (Thesis Format: Monograph) by Xiaojie Wu Graduate Program in Computer Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Faculty of Graduate Studies The University of Western Ontario London, Ontario December 2004 Xiaojie Wu 2004 THE UNIVERSITY OF WESTERN ONTARIO FACULTY OF GRADUATE STUDIES CERTIFICATE OF EXAMINATION Supervisor Examining Board ______________________________ ________________________________ Supervisory Committee ________________________________ ______________________________ ________________________________ The thesis by Xiaojie Wu entitled: Achieving Interoperability of Pen Computing with Heterogeneous Devices and Digital Ink Formats is accepted in partial fulfillment of the requirements for the degree of Master of Science Date__________________________ _______________________________ Chair of the Thesis Examination Board ii Abstract Pen-based computing has and continues to become accepted and increasingly used. Hardware and software vendors have typically stored and represented digital ink using proprietary or restrictive ink formats, and have provided software development toolkits to access or manipulate ink for user development on their devices. The variety of digital ink formats and device-dependent software toolkits has limited the ink exchange and application among heterogeneous devices. Our objective is to explore the interoperability of pen computing among heterogeneous devices and digital ink formats. Our investigation has two aspects: digital ink formats and pen computing application programming interfaces (APIs). We consider three ink formats: UNIPEN, Jot and InkML, and two ink APIs: the IBM CrossPad API and the Microsoft Tablet PC API. Our objectives are twofold: (1) to accomplish conversions among UNIPEN, Jot and InkML; (2) and to develop a common abstract API for the CrossPad and the Tablet PC. -
Using Multiuser Multi-Touch Tables to Visualize GIS Data
MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts, USA Using Multi-User Multi-Touch Tables to Visualize GIS Data Alan Esenther, Kathy Ryall Technology Lab Mitsubishi Electric Research Labs, Cambridge, MA, USA Masakazu Furuichi Modeling & Simulation, Information Systems Dept Mitsubishi Electric Corp, Kamakura, Japan Petroleum User Group 2007 MITSUBISHI ELECTRIC RESEARCH LABORATORIES DiamondTouch (DT): Novel Technology Platform Overcoming limitations of the mouse… – Multi-user • Simultaneous multiple users • Supports up to four users at a time –Multi-touch • Each user can touch with multiple fingers at the same time • Enables rich gestures (unlike mouse/stylus) – Toucher identification • It doesn’t just allow multiple touchers – it distinguishes them • Identifies which user is touching each point (unlike tables based on cameras, IR, or pressure) – Direct-input • Input and Display spaces are superimposed • Allows simplicity of directly touching and MITSUBISHI interacting with content ELECTRIC Changes for the better Petroleum User Group 2007 MITSUBISHI ELECTRIC RESEARCH LABORATORIES DiamondTouch: Hardware Overview • Basic Components – Table (touch surface) is a transmitter array Receiver – Chairs (or a conductive pad) Transmitters are receivers • User capacitively couples a signal between the table and the receiver – Supports seated or standing interaction – Stylus-based interaction also possible – Transmitter signals are interpolated to 2736x2048 input resolution • DT most-often used as horizontal tabletop display – Front-projection -
Multimodal Interaction Standards at the World Wide Web Consortium
Multimodal Interaction Standards at the World Wide Web Consortium User interfaces for natural interaction Deborah Dahl Chair, W3C Multimodal Interaction Working Group Conversational Technologies LDC Institute December 4, 2015 Natural Interaction Most human-computer interaction is semantically very simple “I want that” . Check a radio button . Select a choice from a pulldown menu . Fill in a field in a form . Select text . Scroll What about more complex semantics? . We want to go from Philadelphia to Miami on January 15 for the three of us in the morning. Will this be one-way or round trip? . Round trip, and we’ll need a car, too . Express an intent including several fields at once . Engage in an interactive dialog Multimodal Interaction Natural language, speech, pointing, camera… Standards for Multimodal Interaction Why? . Complex technologies . Interoperability . New modalities should be pluggable Standards improve component interoperability: • Even a small organization can contribute to a complex project that uses standards • Keep focus on innovation and key features Proprietary systems prevent other developers from contributing Standards leverage thinking of many participants and points of view Standards stimulate tools development Standards help developers take advantage of other people’s work: Codify best practices and avoid repeating work Standards reduce the need to learn multiple proprietary interfaces Technical Standards Organizations . The World Wide Web Consortium . Develops standards for the Web . Founded in 1994 by Tim Berners-Lee, the inventor of the World Wide Web . 407 member organizations . Other relevant organizations . ISO . IETF . IANA . Unicode Consortium . TEI . DAISY Consortium W3C Multimodal Interaction Working Group . Started in 2002 . Standards for user input . -
Technical Program
Technical Program IS&T/SPIE 18th Annual Symposium 15-19 January 2006 San Jose Marriott and San Jose Convention Center • San Jose, California USA Sponsored by: electronicimaging.org • Tel: +1 703 642 9090 • [email protected] 1 Technical Program IS&T/SPIE 18th Annual Symposium 15–19 January 2006 San Jose Marriott and San Jose Convention Center • San Jose, California USA Conferences • Continuing Education • Technical Exhibition • Demonstrations Welcome We are all too busy. If your jobs are like ours, then you are expected to produce more innovation, more products, more research, more students, more money, but all with less time. So how does participating in EI 2006 fit into this picture? Well, here is the straight answer as to why the Electronic Imaging Symposium is a great investment of your time and resources. • Defines the cutting edge in imaging research - The EI symposium, and its associated publication the Journal of Electronic Imaging, have been defining the envelope of high impact digital imaging research since their inception. Because of its leading role, EI is where the innovation leaders in imaging research go to find out about the newest imaging systems, methods, instrumentation, and algorithms. • Provides broad coverage with tremendous technical depth - The unique structure of EI leads to a rich marketplace of ideas where a broad range of topics are discussed in great technical depth. Each year, the EI symposium starts new conferences on important new topics and reinvigorates highly respected existing conferences through the incorporation of new research and participants. • Promotes an atmosphere for professional networking - Because of its organization into primarily single-tracked conferences, the symposium has a very personal and friendly atmosphere that gives technical experts and researchers an opportunity to learn what they need and also, to efficiently network on a professional level.