Chemwatch Australian MSDS 18-3338

Total Page:16

File Type:pdf, Size:1020Kb

Chemwatch Australian MSDS 18-3338 RS STRUCTURAL ACRYLIC ADHESIVE - PART A #144-349 Chemwatch Independent Material Safety Data Sheet Issue Date: 12-Dec-2008 CHEMWATCH 18-3338 NA317TC Version No:4 CD 2009/3 Page 1 of 20 Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME RS STRUCTURAL ACRYLIC ADHESIVE - PART A #144-349 PROPER SHIPPING NAME FLAMMABLE LIQUID, CORROSIVE, N.O.S.(contains methyl methacrylate and methacrylic acid) PRODUCT USE Adhesive for high strength bonding applications. Base component of a two-part system. SUPPLIER Company: RS Components Company: RS Components Address: Address: Units 30 & 31 25 Pavesi Street Warehouse World Smithfield 761 Great South Road NSW2164 Penrose Auckland AUS Telephone: 1300 656 636 Emergency Tel: 1800 039 008 Emergency Tel: 03 9573 3112 Fax: 1300 656 696 Section 2 - HAZARDS IDENTIFICATION STATEMENT OF HAZARDOUS NATURE HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code. CHEMWATCH HAZARD RATINGS Flammability Toxicity Body Contact Reactivity Chronic SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4 continued... RS STRUCTURAL ACRYLIC ADHESIVE - PART A #144-349 Chemwatch Independent Material Safety Data Sheet Issue Date: 12-Dec-2008 CHEMWATCH 18-3338 NA317TC Version No:4 CD 2009/3 Page 2 of 20 Section 2 - HAZARDS IDENTIFICATION POISONS SCHEDULE S5 RISK SAFETY ■ Highly flammable. ■ Keep away from sources of ignition. No smoking. ■ Irritating to eyes respiratory system ■ Do not breathe gas/fumes/vapour/spray. and skin. ■ May cause SENSITISATION by skin ■ Use only in well ventilated areas. contact. ■ Vapours may cause drowsiness and ■ Keep container in a well ventilated place. dizziness. ■ Inhalation skin contact and/or ■ Avoid exposure - obtain special instructions before ingestion may produce health damage*. use. ■ Cumulative effects may result ■ Do not empty into drains. following exposure*. ■ Limited evidence of a carcinogenic ■ To clean the floor and all objects contaminated by effect*. this material use water and detergent. ■ Possible respiratory sensitiser*. ■ Keep container tightly closed. ■ May possibly affect fertility*. ■ In case of contact with eyes rinse with plenty of water and contact Doctor or Poisons Information Centre. * (limited evidence). ■ If swallowed IMMEDIATELY contact Doctor or Poisons Information Centre. (show this container or label). ■ This material and its container must be disposed of as hazardous waste. Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS NAME CAS RN % methyl methacrylate 80-62-6 50-60 methacrylic acid 79-41-4 <10 bisphenol A/ epichlorohydrin resin, liquid 25068-38-6 5 Section 4 - FIRST AID MEASURES SWALLOWED • For advice, contact a Poisons Information Centre or a doctor at once. • Urgent hospital treatment is likely to be needed. • If swallowed do NOT induce vomiting. • If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. • Observe the patient carefully. • Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. • Transport to hospital or doctor without delay. continued... RS STRUCTURAL ACRYLIC ADHESIVE - PART A #144-349 Chemwatch Independent Material Safety Data Sheet Issue Date: 12-Dec-2008 CHEMWATCH 18-3338 NA317TC Version No:4 CD 2009/3 Page 3 of 20 Section 4 - FIRST AID MEASURES EYE ■ If this product comes in contact with the eyes: • Immediately hold eyelids apart and flush the eye continuously with running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. • Transport to hospital or doctor without delay. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. SKIN ■ If skin contact occurs: • Immediately remove all contaminated clothing, including footwear. • Flush skin and hair with running water (and soap if available). • Seek medical attention in event of irritation. INHALED • If fumes or combustion products are inhaled remove from contaminated area. • Lay patient down. Keep warm and rested. • Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. • Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. • Transport to hospital, or doctor. • Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. • Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). • As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. • Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719). NOTES TO PHYSICIAN ■ Treat symptomatically. Depending on the degree of exposure, periodic medical examination is indicated. The symptoms of lung oedema often do not manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation is therefore essential. Immediate administration of an appropriate spray, by a doctor or a person authorised by him/her should be considered. (ICSC24419/24421. Section 5 - FIRE FIGHTING MEASURES EXTINGUISHING MEDIA • Foam. • Dry chemical powder. • BCF (where regulations permit). • Carbon dioxide. • Water spray or fog - Large fires only. FIRE FIGHTING • Alert Fire Brigade and tell them location and nature of hazard. • May be violently or explosively reactive. • Wear full body protective clothing with breathing apparatus. • Prevent, by any means available, spillage from entering drains or water course. • Consider evacuation (or protect in place). continued... RS STRUCTURAL ACRYLIC ADHESIVE - PART A #144-349 Chemwatch Independent Material Safety Data Sheet Issue Date: 12-Dec-2008 CHEMWATCH 18-3338 NA317TC Version No:4 CD 2009/3 Page 4 of 20 Section 5 - FIRE FIGHTING MEASURES • Fight fire from a safe distance, with adequate cover. • If safe, switch off electrical equipment until vapour fire hazard removed. • Use water delivered as a fine spray to control fire and cool adjacent area. • Avoid spraying water onto liquid pools. • Do not approach containers suspected to be hot. • Cool fire exposed containers with water spray from a protected location. • If safe to do so, remove containers from path of fire. • Equipment should be thoroughly decontaminated after use. FIRE/EXPLOSION HAZARD • Highly flammable. • Severe hazard when exposed to heat, flame or oxidizers. • Acids may react with metals to produce hydrogen, a highly flammable and explosive gas. • Vapour may travel a considerable distance to source of ignition. • Heating may cause expansion or decomposition leading to violent rupture of rigid containers. • May emit acrid, poisonous or corrosive fumes. Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material. FIRE INCOMPATIBILITY • Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result. HAZCHEM: 3WE Personal Protective Equipment Gas tight chemical resistant suit. Section 6 - ACCIDENTAL RELEASE MEASURES MINOR SPILLS • Remove all ignition sources. • Clean up all spills immediately. • Avoid breathing vapours and contact with skin and eyes. • Control personal contact by using protective equipment. • Contain and absorb small quantities with vermiculite or other absorbent material. • Wipe up. • Collect residues in a flammable waste container. MAJOR SPILLS • Clear area of personnel and move upwind. • Alert Fire Brigade and tell them location and nature of hazard. • May be violently or explosively reactive. • Wear full body protective clothing with breathing apparatus. • Prevent, by any means available, spillage from entering drains or water course. • Consider evacuation (or protect in place). • No smoking, naked lights or ignition sources. • Increase ventilation. • Stop leak if safe to do so. • Water spray or fog may be used to disperse vapour. • Contain or absorb spill with sand, earth or vermiculite. • Use only spark-free shovels and explosion proof equipment. • Collect recoverable product into labelled containers for recycling. • Collect solid residues and seal in labelled drums for disposal. • Wash area and prevent runoff into drains. • After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. continued... RS STRUCTURAL ACRYLIC ADHESIVE - PART A #144-349 Chemwatch Independent Material Safety Data Sheet Issue Date: 12-Dec-2008 CHEMWATCH 18-3338 NA317TC Version No:4 CD 2009/3 Page 5 of 20 Section 6 - ACCIDENTAL RELEASE MEASURES • If contamination of drains or waterways occurs, advise emergency services. PROTECTIVE ACTIONS FOR SPILL PROTECTIVE ACTION ZONE evacuation half direction downwind distance wind isolation down wind distance direction distance half evacuation downwind INITIAL direction ISOLATION distance
Recommended publications
  • Acid-Base Properties, Deactivation, and in Situ Regeneration of Condensation Catalysts for Synthesis of Methyl Methacrylate
    ACID-BASE PROPERTIES, DEACTIVATION, AND IN SITU REGENERATION OF CONDENSATION CATALYSTS FOR SYNTHESIS OF METHYL METHACRYLATE MAKARAND R. GOGATE', JAMES J. SPIVEY', AND JOSEPH R. ZOELLER2 'Research Triangle Institute, 3040 Cornwallis Road, RTP, NC 27709-2 194 2Eastman Chemical Company, Kingsport, TN, 37662-5 150 ABSTRACT Condensation reaction of a propionate with formaldehyde is a novel route for synthesis of methyl methacrylate (MMA). The reaction mechanism involves a proton abstraction from the propionate on the basic sites and activation of the aliphatic aldehyde on the acidic sites of the catalyst. The acid-base properties of ternary V-Si-P oxide catalysts and their relation to the MMA yield in the vapor phase condensation of formaldehyde with propionic anhydride has been studied for the first time. Five different V-Si-P catalysts with different atomic ratios of vanadium, silicon, and phosphorous were synthesized, characterized, and tested in a fixed-bed microreactor system. A V-Si-P 1:10:2.8 catalyst gave the maximum condensation yield of 56% based on HCHO fed at 300 "C and 2 atm and at a space velocity of 290 cc/g cateh. A parameter called the "q-ratio" has been defined to correlate the condensation yields to the acid-base properties. The correlation of q-ratio with the condensation yield shows that higher q-ratios are more desirable. The long-term deactivation studies on the V-Si-P 1: 10:2.8 catalyst at 300 "C and 2 atm and at a space velocity of 290 cc/g cat-h show that the catalyst activity drops by a factor of nearly 20 over a 180 h period.
    [Show full text]
  • Submitted To
    I 1 RTI PROJECT NO. 9611-6048 DOE Contract No. DE-AC22-94PC94065 January 1,1995 through March 31,1995 SYNTHESIS OF ACRYLATES AND METHACRLYATES FROM COAL-DERIVED SYNGAS Quarterly Technical Progress Report Submitted to US. Department of Energy Pittsburgh Energy Technology Center P. 0. Box 10940 Pittsburgh, Pennsylvania 15236-0940 Submitted by Research Triangle Institute P. 0. Box 12194 Research Triangle Park, NC 27709 DOE COR: Richard E. Tischer RTI Project Manager: James J. Spivey DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the DiCJTRlBfllQN THIS DOWMENT mm United States Government or any agency thereof. OF %”/ - DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Executive Summary Task 1-Synthesis of Propionates The objective of this Task is to develop the technology for the synthesis of low-cost propionates.
    [Show full text]
  • The Effect of Cation Type and H+ on the Catalytic Activity of the Keggin Anion [Pmo12o40]3- in the Oxidative Dehydrogenation Of
    Journal of Catalysis 195, 360–375 (2000) doi:10.1006/jcat.2000.2987, available online at http://www.idealibrary.com on The Effect of Cation Type and H+ on the Catalytic Activity 3 of the Keggin Anion [PMo12O40] in the Oxidative Dehydrogenation of Isobutyraldehyde Ji Hu and Robert C. Burns1 School of Biological and Chemical Sciences, The University of Newcastle, Callaghan 2308, Australia Received March 23, 2000; revised July 4, 2000; accepted July 5, 2000 such as the oxidative dehydrogenation of isobutyric acid The oxidative dehydrogenation of isobutyraldehyde to metha- and the oxidation of methacrolein, both of which yield 3 crolein over [PMo12O40] -containing catalysts has been shown to methacrylic acid (1–5). Methacrylic acid is, in turn, reacted proceed through bulk catalysis-type II, which depends on the rates with methanol to yield methyl methacrylate, an extremely + of diffusion of the redox carriers (H and e ) into the catalyst bulk. important acrylic monomer, which is then polymerized to Variations in catalyst behaviour have been shown to change with give poly(methyl methacrylate). Heteropolyoxometalates the countercation and appear to be related to the polarizing abil- are also active acid catalysts, and processes based both on ity of the cation, which can be represented by the ionic potential their redox and acid–base properties have found commer- (charge/ionic radius). This, in turn, may indicate that the active 3 cial applications (3–5). site at the [PMo12O40] ion is close to an attendant countercation. For the alkali metal ions Li+,Na+,K+,Rb+, and Cs+ as well as the The study of heteropolyoxometalates as oxidation– (isoelectronic) ions of the series Cs+,Ba2+,La3+, and Ce4+, the stud- reduction catalysts has involved primarily Keggin-based 3 ies have shown that conversion generally decreases with increasing structures, principally [PMo12O40] , as well as substi- ionic potential, while selectivity to methacrolein is less affected by tuted species involving replacement of one or more changes in this property.
    [Show full text]
  • Design and Optimization of a Process for the Production of Methyl Methacrylate Via Direct Methylation
    processes Article Design and Optimization of a Process for the Production of Methyl Methacrylate via Direct Methylation Taotao Liang 1,2, Xiaogang Guo 2,3,*, Abdulmoseen Segun Giwa 1,4, Jianwei Shi 3, Yujin Li 3, Yan Wei 3, Xiaojuan Wang 5, Xuansong Cao 3, Xiaofeng Tang 3 and Jialun Du 3 1 Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408003, China; [email protected] (T.L.); [email protected] (A.S.G.) 2 Faculty of Materials and Energy, Southwest University, Chongqing 400715, China 3 College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408003, China; [email protected] (J.S.); [email protected] (Y.L.); [email protected] (Y.W.); [email protected] (X.C.); [email protected] (X.T.); [email protected] (J.D.) 4 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China 5 College of chemistry and bioengineering, Guilin University of Technology, Guilin 541004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-023-72782170 Received: 25 April 2019; Accepted: 6 June 2019; Published: 18 June 2019 Abstract: Methyl methacrylate (MMA) plays a vital role in national productions with broad application. Herein, the production of MMA is realized by the improved eco-friendly direct methylation method using Aspen Plus software. Three novel kinds of energy-saving measures were proposed in this study, including the recycle streams of an aqueous solution, methacrolein (MAL), and methanol, the deployment of double-effect distillation instead of a normal one, and the design of a promising heat-exchange network.
    [Show full text]
  • PATENT OFFICE 2,101,820 PROCESS for the PREPARATION of POLYMERIZABLE UNSATURATED COM POUNDS John C
    Patented Dec. 7, 1937 2,101,820 UNITED STATES PATENT OFFICE 2,101,820 PROCESS FOR THE PREPARATION OF POLYMERIZABLE UNSATURATED COM POUNDS John C. Woodhouse, Wilmington, Del, assignor to E. I. du Pont de Nemours & Company, Will mington, Del, a corporation of Delaware No Drawing. Application December 5, 1933, Serial No. 701,053 10 Claims. (Cl. 260-106) This invention relates to a process for the prep included under the term aryl include benzyl, aration of unsaturated polymerizable organic naphthyl, and analogous aryl compounds. It will compounds and more particularly to the prepara be appreciated by those skilled in this art that tion of Such compounds from Saturated organic altho the Substitutions in the X and Y positions 5 compounds containing an isopropyl radical at Will alter the reaction rates and in many in 5 tached to a carbonyl group which likewise carries stances the by-products resulting from the de a hydrogen, hydroxy, aryl, or aralkyl group. hydrogenation, these substitutions are to be given An object of the present invention is to provide but secondary consideration for, generally speak an improved process for the preparation of poly ing, if the compound to be dehydrogenated has the O merizable unsaturated aliphatic and/or aromatic basic formula 10 organic compounds. Another object of the in vention is to provide an improved process for the chi-qi- - O preparation of esters of the unsaturated mono it may be dehydrogenated to an unsaturated poly carboxylic aliphatic organic acids. Another ob merizable compound. ject of the invention is to provide an improved The compounds containing an isobutyryl group, 15 process for the preparation of methacrylic acid.
    [Show full text]
  • Methacrylic Acid, CAS No. 79-41-4; March 1996ECETOC (1995A): Joint Assessment of Commodity Chemicals, Methacrylic Acid, CAS No
    N port O N N COMMISSIO 837 E INT RESEARCH CENTRE lic acid OH 3 EINECS No: 201-204-4 EUR 19 EUROPEA JO y CH methacr C 2 H CAS No: 79-41-4 European Union Risk Assessment Re Protection 25 : Substances Priority List st European Institute for Health and Consumer 1 Bureau Chemicals Existing Volume European Chemicals Bureau European Union Risk Assessment Report CAS: 79-41-4 EC: 201-204-4 methacrylic acid 25 PL-1 European Union Risk Assessment Report METHACRYLIC ACID CAS No: 79-41-4 EINECS No: 201-204-4 RISK ASSESSMENT LEGAL NOTICE Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa Server (http://europa.eu.int). Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 2002 ISBN 92-894-1273-9 © European Communities, 2002 Reproduction is authorised provided the source is acknowledged. Printed in Italy METHACRYLIC ACID CAS No: 79-41-4 EINECS No: 201-204-4 RISK ASSESSMENT Final Report, 2002 Germany The risk assessment of methacrylic acid (MAA) has been prepared by Germany on behalf of the European Union. Contact point: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin Anmeldestelle Chemikaliengesetz (BAuA) (Federal Institute for Occupational Safety and Health Notification Unit) Friedrich-Henkel-Weg 1-25 44149 Dortmund Germany Fax: +49 (231) 9071-679 e-mail: [email protected] Date of Last Literature Search: 1995 Review of report by MS Technical Experts finalised: 1999 Final report: 2002 (The last full literature survey was carried out in 1995 - targeted searches (for example on grouting) were carried out subsequently, and information found through scanning certain sources has also been included).
    [Show full text]
  • Methycryolic Acid and Esters, Supp. A
    Report No. 11 A METHACRYLIC ACID METHACRYLIC ESTERS Supplement A by DONALD C. THOMAS Contributions by Brij M. Sood and Leslie A. Carmichael May 1974 A private report by the PROCESS ECONOMICS PROGRAM I STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA I - - CONTENTS 1 INTRODUCTION . 1 2 SUMMARY................,.......... 3 Methyl Methacrylate via Acetone Cyanohydrin . 5 Methyl Methacrylate from Isobutylene via Methacrylonitrile . 6 Methyl Methacrylate from Isobutylene via Methacrylic Acid . 7 3 COMPARISON OF PROCESSES . 9 4 INDUSTRY STATUS . 15 5 METHYL METHACRYLATE VIA ACETONE CYANOHYDRIN ......... 19 Review of Processes ..................... 19 Hydrogen Cyanide Production ................ 19 Acetone Cyanohydrin Production .............. 21 Hydrolysis and Esterification ............... 24 Recovery of Methyl Methacrylate .............. 25 Handling and Disposition of Ammonium Bisulfate ...... 26 Process Description ..................... 29 Hydrogen Cyanide Production ................ 29 Acetone Cyanohydrin Production .............. 32 Hydrolysis and Esterification ............... 33 Purification ....................... 34 Sulfuric Acid Regeneration ................ 34 Process Discussion ..................... 49 Waste Treatment ....................... 50 Cost Estimates ....................... 52 6 METHYL METHACRYLATE FROM ISOBUTYLENE VIA METHACRYLONITRILE ...................... 61 Review of Processes ..................... 61 Methacrylonitrile Production ............... 61 Treatment of Ammoxidation By-Products ........... 65 Hydrolysis and
    [Show full text]
  • Toxicological Review of Methyl Methacrylate
    TOXICOLOGICAL REVIEW of METHYL METHACRYLATE (CAS No. 80-62-6) In Support of Summary Information on the Integrated Risk Information System (IRIS) January 1998 U.S. Environmental Protection Agency Washington, DC TABLE OF CONTENTS DISCLAIMER ............................................................ i FOREWORD ............................................................ ii CONTRIBUTORS AND REVIEWERS ........................................ iii 1. INTRODUCTION ....................................................... 1 2. CHEMICAL AND PHYSICAL INFORMATION RELEVANT TO ASSESSMENTS . 2 3. TOXICOKINETICS/TOXICODYNAMICS RELEVANT TO ASSESSMENTS ........ 4 3.1. ABSORPTION ...................................................... 4 3.2. DISTRIBUTION .................................................... 4 3.3. METABOLISM ..................................................... 6 3.4. EXCRETION ...................................................... 8 4. HAZARD IDENTIFICATION ............................................. 10 4.1. STUDIES IN HUMANS ............................................. 10 4.1.1. Human Noncancer Studies ....................................... 10 4.1.2. Human Cancer Studies .......................................... 15 4.2. PRECHRONIC, CHRONIC, AND CANCER BIOASSAYS IN ANIMALS ...... 16 4.2.1. Acute Inhalation Studies ......................................... 16 4.2.2. Subchronic and Chronic Inhalation Studies ........................... 19 4.2.3. Acute Oral Studies ............................................. 26 4.2.4. Subchronic and
    [Show full text]
  • Properties and Interactions of Oral Structures and Restorative Materials
    1 NBSIR 80-2168 Properties and Interactions of Oral Structures and Restorative Materials James M. Cassel, J. A. Tesk, G. M. Brauer, J. M. Antonucci, W. Wu, J. E. McKinney, R. P. Whitlock, and R. Hinman Dental and Medical Materials Polymer Science and Standards Division Center for Materials Science National Measurement Laboratory National Bureau of Standards Washington, DC 20234 Annual Report for Period October 1, 1979 thru September 30, 1980 November 1980 Interagency Agreement YOI-DE-4001 5-1 — r ed for QO nal Institute of Dental Research 100 isda, MD 20014 . U56 80-2163 1980 Ci 2 I 1 . national bureau of standards NBSIR 80-2168 LIBRARY AUG 7 1981 PROPERTIES AND INTERACTIONS OF not dec - c; rc ORAL STRUCTURES AND RESTORATIVE CXcfdo MATERIALS no- %0'c5/6# James M. Cassel, J. A. Tesk, G. M. Brauer, J. M. Antonucci, W. Wu, J. E. McKinney, R. P. Whitlock, and R. Hinman mo Dental and Medical Materials Polymer Science and Standards Division Center for Materials Science National Measurement Laboratory National Bureau of Standards Washington, DC 20234 Annual Report for Period October 1, 1979 thru September 30, 1980 November 1980 Interagency Agreement YOI-DE-4001 5-1 Certain commercial materials and equipment are identified in this report to specify the experimental procedure. In no instance does such identification imply recommendation or endorsement by the National Bureau of Standards or that the materials and equipment identified are necessarily the best available for the purpose. Prepared for National Institute of Dental Research Bethesda, MD 20014 U S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary Luther H.
    [Show full text]
  • Selective Oxidation of Isobutane to Methacrylic Acid and Methacrolein: a Critical Review
    catalysts Review Selective Oxidation of Isobutane to Methacrylic Acid and Methacrolein: A Critical Review Li Zhang ,Sébastien Paul , Franck Dumeignil * and Benjamin Katryniok * University Lille, CNRS, Centrale Lille, University Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; [email protected] (L.Z.); [email protected] (S.P.) * Correspondence: [email protected] (F.D.); [email protected] (B.K.) Abstract: Selective oxidation of isobutane to methacrolein (MAC) and methacrylic acid (MAA) has received great interest both in the chemical industry and in academic research. The advantages of this reaction originate not only from the low cost of the starting material and reduced process complexity, but also from limiting the use of toxic reactants and the production of wastes. Successive studies and reports have shown that heteropolycompounds (HPCs) with Keggin structure (under the form of partially neutralized acids with increased stability) can selectively convert isobutane to MAA and MAC due to their strong and tunable acidity and redox properties. This review hence aims to discuss the Keggin-type HPCs that have been used in recent years to catalyze the oxidation of isobutane to MAA and MAC, and to review alternative metal oxides with proper redox properties for the same reaction. In addition, the influence of the main reaction conditions will be discussed. Keywords: Keggin-type HPCs; isobutane; oxidation; methacrolein; methacrylic acid Citation: Zhang, L.; Paul, S.; 1. Introduction Dumeignil, F.; Katryniok, B. Selective Hydrocarbons are generally issued from coal, oil, and natural gas. They are still the Oxidation of Isobutane to Methacrylic main feedstock of the chemical industry.
    [Show full text]
  • Mechanism of the Hydroxyl Radical Oxidation of Methacryloyl Peroxynitrate (Mpan) and Its Pathway Toward Secondary Organic Aerosol Formation in the Atmosphere
    335 Appendix C MECHANISM OF THE HYDROXYL RADICAL OXIDATION OF METHACRYLOYL PEROXYNITRATE (MPAN) AND ITS PATHWAY TOWARD SECONDARY ORGANIC AEROSOL FORMATION IN THE ATMOSPHERE Nguyen, T. B., K. H. Bates, J. D. Crounse, R. H. Schwantes, X. Zhang, H. G. Kjaergaard, J. D. Surratt, P. Lin, A. Laskin, J. H. Seinfeld, and P. O. Wennberg (2015). “Mechanism of the hydroxyl radical oxidation of methacryloyl perox- ynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere”. In: Phys. Chem. Chem. Phys. 17.27, pp. 17914–17926. : 10.1039/C5CP02001H. Abstract Methacryloyl peroxynitrate (MPAN), the acyl peroxynitrate of methacrolein, has been suggested to be an important secondary organic aerosol (SOA) precursor from isoprene oxidation, but the mechanism by which MPAN produces SOA through re- action with the hydroxyl radical (OH) remains unclear. We systematically evaluate three proposed mechanisms in controlled chamber experiments and provide the first experimental support for the theoretically-predicted lactone formation pathway from the MPAN + OH reaction, producing hydroxymethyl-methyl-↵-lactone (HMML). The decomposition of the MPAN-OH adduct yields HMML + NO ( 75%) and 3 ⇠ hydroxyacetone + CO + NO ( 25%), out-competing its reaction with atmospheric 3 ⇠ oxygen. The production of other proposed SOA precursors, e.g. methacrylic acid epoxide (MAE), from MPAN and methacrolein are negligible (<2%). Furthermore, we show that the β-alkenyl moiety of MPAN is critical for lactone formation. Alkyl radicals formed cold via H-abstraction by OH do not decompose to HMML, even if they are structurally identical to the MPAN-OH adduct. The SOA formation from HMML, from polyaddition of the lactone to organic compounds at the particle in- terface or in the condensed phase, is close to unity under dry conditions.
    [Show full text]
  • Methacrylic Acid and Methacrylic Esters
    PROCESS ECONOMICS PROGRAM ..-. SRI INTERNATIONAL Mm10 Park, California Abstract 9402E Process Economics Program Report No. 11C METHACRYLIC ACID AND METHACRYLIC ESTERS (September 1984) For the last fifteen years, processes have been developed to supplant the established process for making methyl methacrylate from acetone, hydrogen cyanide, and methanol. The acetone cyanohydrin route suffers from production of acidic wastes; the newer processes avoid these wastes and offer lower costs. Since our most recent previous report on the subject (Report LlB, issued in July 1980), a methyl methacrylate process based on a C4 feed- stock has been commercialized in Japan. This process oxidizes a t-butanol feed to methacrolein and methacrylic acid in two stages, then esterifies the acid to methyl methacrylate. We have evaluated this process and several variations, including the alternative use of isobutane feed and the supplementary use of isobutyraldehyde (by-product from 0x0 alcohol plants). We have also evaluated an attractive process based on propylene hydrocarboxylation to isobutyric acid, followed by dehydrogenation to methacrylic acid. We have updated some of the processes evaluated in Report llB, including the acetone cyanohydrin process. For a newly constructed plant, and at market prices for HCN and acetone, the acetone cyanohydrin process is more expensive than several of the newer processes. PEP'83 RHS - ReportNo. 11C a METHACRYLIC ACID AND ESTERS SUPPLEMENT C by ROBERT H. SCHWAAR ETSUO MATSUNAGA SHOICHI KIKUCHI a- and WATARU NISHIMOTO September 1984 - Cl a A private report by the PROCESS ECONOMICS PROGRAM a m Menlo Park, California 94025 For detailed marketing data and information, the reader is referred to one of the SRI programs specializing in marketing research.
    [Show full text]