The Effect of Cation Type and H+ on the Catalytic Activity of the Keggin Anion [Pmo12o40]3- in the Oxidative Dehydrogenation Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acid-Base Properties, Deactivation, and in Situ Regeneration of Condensation Catalysts for Synthesis of Methyl Methacrylate
ACID-BASE PROPERTIES, DEACTIVATION, AND IN SITU REGENERATION OF CONDENSATION CATALYSTS FOR SYNTHESIS OF METHYL METHACRYLATE MAKARAND R. GOGATE', JAMES J. SPIVEY', AND JOSEPH R. ZOELLER2 'Research Triangle Institute, 3040 Cornwallis Road, RTP, NC 27709-2 194 2Eastman Chemical Company, Kingsport, TN, 37662-5 150 ABSTRACT Condensation reaction of a propionate with formaldehyde is a novel route for synthesis of methyl methacrylate (MMA). The reaction mechanism involves a proton abstraction from the propionate on the basic sites and activation of the aliphatic aldehyde on the acidic sites of the catalyst. The acid-base properties of ternary V-Si-P oxide catalysts and their relation to the MMA yield in the vapor phase condensation of formaldehyde with propionic anhydride has been studied for the first time. Five different V-Si-P catalysts with different atomic ratios of vanadium, silicon, and phosphorous were synthesized, characterized, and tested in a fixed-bed microreactor system. A V-Si-P 1:10:2.8 catalyst gave the maximum condensation yield of 56% based on HCHO fed at 300 "C and 2 atm and at a space velocity of 290 cc/g cateh. A parameter called the "q-ratio" has been defined to correlate the condensation yields to the acid-base properties. The correlation of q-ratio with the condensation yield shows that higher q-ratios are more desirable. The long-term deactivation studies on the V-Si-P 1: 10:2.8 catalyst at 300 "C and 2 atm and at a space velocity of 290 cc/g cat-h show that the catalyst activity drops by a factor of nearly 20 over a 180 h period. -
Conversion of Synthesis Gas to Oxygenates by Using Keggin-Type Structure Heteropoly Compound-Based Catalyst Compositions
(19) TZZ _T (11) EP 2 627 445 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: B01J 37/03 (2006.01) B01J 37/08 (2006.01) 07.01.2015 Bulletin 2015/02 B01J 37/02 (2006.01) B01J 27/188 (2006.01) C07C 29/158 (2006.01) C07C 29/157 (2006.01) (2006.01) (2006.01) (21) Application number: 11768222.9 C07C 29/16 C07C 31/04 C07C 31/08 (2006.01) C07C 31/10 (2006.01) (22) Date of filing: 26.09.2011 (86) International application number: PCT/US2011/053202 (87) International publication number: WO 2012/050806 (19.04.2012 Gazette 2012/16) (54) CONVERSION OF SYNTHESIS GAS TO OXYGENATES BY USING KEGGIN- TYPE STRUCTURE HETEROPOLY COMPOUND-BASED CATALYST COMPOSITIONS UMWANDLUNG VON SYNTHESEGAS IN OXYGENATE MITTELS VERWENDUNG VON KATALYSATOREN AUF DER BASIS VON HETEROPOLYVERBINDUNGEN MIT KEGGIN- STRUKTUR CONVERSION DE GAZ DE SYNTHÈSE EN OXYGÉNATS À L’AIDE DE COMPOSITIONS DE CATALYSEUR À BASE D’UN COMPOSÉ HÉTÉROPOLY À STRUCTURE DE TYPE KEGGIN (84) Designated Contracting States: • RAO, Sreenivasa AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Pune 411007 (IN) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • BARTON, David, G. PL PT RO RS SE SI SK SM TR Midland, MI 48642 (US) (30) Priority: 11.10.2010 US 391739 P (74) Representative: Beck Greener Fulwood House (43) Date of publication of application: 12 Fulwood Place 21.08.2013 Bulletin 2013/34 London WC1V 6HR (GB) (73) Proprietor: Dow Global Technologies LLC (56) References cited: Midland, MI 48674 (US) US-A- 4 210 597 US-A- 6 127 432 US-B1- 6 278 030 (72) Inventors: • MANIKANDAN, Palanichamy Pune 411014 (IN) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. -
Submitted To
I 1 RTI PROJECT NO. 9611-6048 DOE Contract No. DE-AC22-94PC94065 January 1,1995 through March 31,1995 SYNTHESIS OF ACRYLATES AND METHACRLYATES FROM COAL-DERIVED SYNGAS Quarterly Technical Progress Report Submitted to US. Department of Energy Pittsburgh Energy Technology Center P. 0. Box 10940 Pittsburgh, Pennsylvania 15236-0940 Submitted by Research Triangle Institute P. 0. Box 12194 Research Triangle Park, NC 27709 DOE COR: Richard E. Tischer RTI Project Manager: James J. Spivey DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the DiCJTRlBfllQN THIS DOWMENT mm United States Government or any agency thereof. OF %”/ - DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Executive Summary Task 1-Synthesis of Propionates The objective of this Task is to develop the technology for the synthesis of low-cost propionates. -
Equilibrium and Structure Studies of Aqueous Vanadophosphates and Molybdovanadophosphates
Equilibrium and structure studies of aqueous vanadophosphates and molybdovanadophosphates by Anna Selling <5 °< c/> ■O • V AKADEMISK AVHANDLING som med tillstånd av rektorsämbetet vid Umeå Universitet för erhållande av filosofie doktorsexamen framlägges till offentlig granskning vid Kemiska instutitionen, Sal C, LuO, Naturvetarhuset, fredagen den 7 juni 1996, kl. 13.00. Fakultetsopponent: Dr. Atsushi Yagasaki, Kwansei Gakuin University, Japan. U m eå 1996 Title: Equilibrium and structure studies of aqueous vanadophosphates and molybdovanadophosphates. Author: Anna Selling Address: Department of Inorganic Chemistry, Umeå University, S -901 87 Umeå, Sweden. Abstract: This thesis comprises a summary and discussion of four papers, where heteropolyanions containing phosphorus as heteroatom and molybdenum and/or vanadium as addenda atoms have been studied. The ultimate goal was to study the equilibrium spéciation in the reduced molybdovanadophosphate system. The latter is a good catalyst in the selective oxidation of olefins to carbonyls. The studies were been performed in 0.6 M Na(Cl) medium at 25 °C. The main techniques employed included potentiometry, NMR- and ESR spectrometry, complemented with FTIR, X-ray diffraction and cyclic voltammetry. Experimental data were treated with the computer program LAKE, which is capable of simultaneously handling multimethod data. Before the reduced molybdovanadophosphate system could be studied, the subsystems needed to be known. Since the spéciation in most of the oxidised subsystems has been reported earlier in the same ionic medium, only the binary phosphate and the ternary vanadophosphate systems had to be studied. These are reported in this thesis. All three pXa values for the phosphate system have been determined with high precision. In the vanadophosphate system, equilibrium species with the formula [HzPVi40 42](9 z) and the trans-bicapped Keggin structure were formed. -
Location of Protons in Anhydrous Keggin Heteropolyacids H3pmo12o40 and H3PW12O40 by 1H{31P}/31P{1H} REDOR NMR and DFT Quantum Ch
Published on Web 06/11/2002 Location of Protons in Anhydrous Keggin Heteropolyacids 1 31 31 1 H3PMo12O40 and H3PW12O40 by H{ P}/ P{ H} REDOR NMR and DFT Quantum Chemical Calculations S. Ganapathy,†,‡ M. Fournier,§ J. F. Paul,§ L. Delevoye,⊥ M. Guelton,§ and J. P. Amoureux*,‡ Contribution from the National Chemical Laboratory, 411 008 Pune, India, LCPS, CNRS-8012, UniVersite´ de Lille1, 59655 VilleneuVe d’Ascq, France, Laboratoire de Catalyse, CNRS-8010, UniVersite´ de Lille1, 59655 VilleneuVe d’Ascq, France, and Bruker-France, 67166 Wissembourg, France Received December 21, 2001 Abstract: HeteroPolyAcids (HPA’s) are a class of solid acids that have broad applications in many fields of science and technology, including catalysis and chemical engineering. The proton locations within the thermally stable and commonly known Keggin unit, which is the primary structure building unit/block, has remained undetermined in anhydrous HPAs, despite numerous theoretical and experimental efforts. However, Rotational Echo DOuble Resonance (REDOR) NMR and Density Functional Theory (DFT) quantum chemical calculations offer a new opportunity to determine the exact locations of protons within the Keggin unit. The crucial experimental evidence is provided for the basic and very extensively studied n+ acidic form of H8-nX M12O40,X) Si, P and M ) Mo, W, belonging to the Keggin structure. While showing that the acidic protons are located in the bridging oxygen positions (RP-H ) 520 ( 20 pm) in H3PMo12O40 and in the terminal oxygen positions (RP-H ) 570 ( 20 pm) in H3PW12O40, REDOR measurements also provide for the first time the structural basis to consistently rank the acid strength for the important class of Keggin solid catalysts. -
POM@MOF Hybrids: Synthesis and Applications
catalysts Review POM@MOF Hybrids: Synthesis and Applications Jiamin Sun 1, Sara Abednatanzi 1 , Pascal Van Der Voort 1,* , Ying-Ya Liu 2 and Karen Leus 1 1 COMOC—Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium; [email protected] (J.S.); [email protected] (S.A.); [email protected] (K.L.) 2 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; [email protected] * Correspondence: [email protected]; Tel.: +32-(0)9-264-44-42 Received: 4 May 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: The hybrid materials that are created by supporting or incorporating polyoxometalates (POMs) into/onto metal–organic frameworks (MOFs) have a unique set of properties. They combine the strong acidity, oxygen-rich surface, and redox capability of POMs, while overcoming their drawbacks, such as difficult handling, a low surface area, and a high solubility. MOFs are ideal hosts because of their high surface area, long-range ordered structure, and high tunability in terms of the pore size and channels. In some cases, MOFs add an extra dimension to the functionality of hybrids. This review summarizes the recent developments in the field of POM@MOF hybrids. The most common applied synthesis strategies are discussed, together with major applications, such as their use in catalysis (organocatalysis, electrocatalysis, and photocatalysis). The more than 100 papers on this topic have been systematically summarized in a handy table, which covers almost all of the work conducted in this field up to now. -
Ii ION-PAIR BEHAVIOR BETWEEN POLYOXOMETALATES ANION
ION-PAIR BEHAVIOR BETWEEN POLYOXOMETALATES ANION AND ALKALI METAL CATION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirement for the Degree Master of Science Songtao Ye May 2018 ii ION-PAIR BEHAVIOR BETWEEN POLYOXOMETALATES ANION AND ALKALI METAL CATION Songtao Ye Thesis Approved Accepted: ______________________________ ____________________________ Advisor Dean of the College Dr. Tianbo Liu Dr. Eric Amis ______________________________ ____________________________ Committee Member Dean of the Graduate School Dr. Toshikazu Miyoshi Dr. Chand Midha ______________________________ ____________________________ Department Chair Date Dr. Colleen Pugh iii ABSTRACT Ion-pair behavior describes the partial association of oppositely charged ions in electrolyte solutions. Previous study mainly focused on the ion-pair behavior between simple ions, such as ion pairing in NaCl solution as well as ion-pair interactions in supramolecular complexes and biological associations. However, very few attentions have been placed on the solution system with particle sizes in between. Recently, a group of well-defined, huge anionic cluster named polyoxometalates (POMs) have been synthesized and well characterized. The size of POMs is around nanometer scale, which is exactly between simple ions and large colloids. The solution behavior for POMs is much different form simple electrolyte solutions or large colloids. As a result, it is interesting to study the ion-pair behavior for POMs in solution. Herein, ion-pairs between Lacunary Keggin type POMs and alkali metal cations are investigated. The result showed that ion-pairs are formed between alkali cations and the “pocket” area on the surface of Lacunary Keggin type POMs – K7PW11O39. Electrostatic interaction and the entropy gain during the solvation shell lost were considered major driving forces during the ion-pair formation. -
Design and Optimization of a Process for the Production of Methyl Methacrylate Via Direct Methylation
processes Article Design and Optimization of a Process for the Production of Methyl Methacrylate via Direct Methylation Taotao Liang 1,2, Xiaogang Guo 2,3,*, Abdulmoseen Segun Giwa 1,4, Jianwei Shi 3, Yujin Li 3, Yan Wei 3, Xiaojuan Wang 5, Xuansong Cao 3, Xiaofeng Tang 3 and Jialun Du 3 1 Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408003, China; [email protected] (T.L.); [email protected] (A.S.G.) 2 Faculty of Materials and Energy, Southwest University, Chongqing 400715, China 3 College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408003, China; [email protected] (J.S.); [email protected] (Y.L.); [email protected] (Y.W.); [email protected] (X.C.); [email protected] (X.T.); [email protected] (J.D.) 4 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China 5 College of chemistry and bioengineering, Guilin University of Technology, Guilin 541004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-023-72782170 Received: 25 April 2019; Accepted: 6 June 2019; Published: 18 June 2019 Abstract: Methyl methacrylate (MMA) plays a vital role in national productions with broad application. Herein, the production of MMA is realized by the improved eco-friendly direct methylation method using Aspen Plus software. Three novel kinds of energy-saving measures were proposed in this study, including the recycle streams of an aqueous solution, methacrolein (MAL), and methanol, the deployment of double-effect distillation instead of a normal one, and the design of a promising heat-exchange network. -
Thesis Final
TRANSITION METAL CONTAINING SILICO- AND GERMANOTUNGSTATES BY BASSEM S. BASSIL A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Approved, Thesis Committee: Prof. Dr. Ulrich Kortz (chair, Jacobs University, Germany) Prof. Dr. Horst Elias (Technische Universität Darmstadt, Germany) Prof. Dr. Emmanuel Cadot (Université de Versailles, France) Dr. Michael H. Dickman (Jacobs University, Germany) Date of defense: 27 th of June 2008 School of Engineering and Science Abstract Polyoxotungstates (POTs) are anionic tungsten-oxide clusters with a wide structural variety and interesting properties. Thus, POTs exhibit potential applications in diverse areas such as catalysis, magnetism, bio- and nanotechnology, and materials science. POTs are usually synthesized via condensation reactions in aqueous, acidic solution. These reactions can be influenced by careful variation of the synthesis conditions, e.g. ratio and concentration of reagents, solvent, pH, counter cations, and temperature. Having identified the proper synthesis conditions, POTs usually form quickly in what is often described as a self- assembly process. This work focuses on the interaction of the versatile dilacunary silicotungstate [γ- 8- SiW 10 O36 ] with different metal cations leading to novel compounds interesting for magnetic and catalytic applications. Also this work reports two new lanthanide containing polytungstates, a sandwich type silicotungstate and a dimeric-pentameric germanotungstate. The 15-cobalt-substituted polyoxotungstate [Co 6(H 2O) 30 {Co 9Cl 2(OH) 3(H 2O) 9(β- 5- SiW 8O31 )3}] (1) has been characterized by single crystal XRD, elemental analysis, IR, electrochemistry, magnetic measurements and EPR. Single-crystal X-ray analysis was carried β out on Na 5[Co 6(H 2O) 30 {Co 9Cl 2(OH) 3(H 2O) 9( -SiW 8O31 )3}]·37H 2O, which crystallizes in the hexagonal system, space group P6 3/m , with a = 19.8754(17) Å, b = 19.8754(17) Å, c = 22.344(4) Å, α = 90 °, β = 90 °, γ = 120 °, and Z = 2. -
Structure and Functional Properties of Heteropolyoxomolybdates Supported on Silica SBA-15
Structure and functional properties of heteropolyoxomolybdates supported on silica SBA-15 vorgelegt von Dipl.-Chem. Rafael Zubrzycki geb. in Berent von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischem Grades Doktor der Naturwissenschaften -Dr. rer. nat.- genehmigte Dissertation Promotionsausschuss Vorsitzender: Prof. Dr. rer. nat Thomas Friedrich Berichter/Gutachter: Prof. Dr. rer. nat. Thorsten Ressler Berichter Gutachter: Prof. Dr. rer. nat. Malte Behrens Tag der wissenschaftlichen Aussprache: 20. März 2015 Berlin 2015 Abstract Heteropolyoxomolybdates with Keggin structure (HPOM) were supported on SBA-15 and introduced as model catalysts for investigating structure-property correlations during selective propene oxidation. The chemical composition of the HPOM was varied by substituting molybdenum with vanadium or tungsten. Subsequently, the various heteropolyoxomolybdates were supported on nanostructured silica SBA-15. Additionally, unsubstituted HPOM were deposited on SBA-15 with different pore radii. Unsupported and supported heteropolyoxomolybdates were characterized by ex situ techniques yielding a detailed knowledge about structure and chemical composition of the model catalysts. Afterwards, the unsupported and supported heteropolyoxomolybdates were characterized by in situ techniques and tested for their catalytic properties in the partial oxidation of propene. HPOM supported on SBA-15 were investigated to elucidate the influence of addenda atoms, the silanol groups of SBA-15, the pore radii of SBA-15, and the HPOM loading on the resulting structures forming during propene oxidation conditions. The initial Keggin structure was retained after supporting HPOM on SBA-15. The removal of adsorbed water and a following dehydroxylation of silanol groups of SBA-15 lead to a destabilizing effect on the Keggin ion during propene oxidation conditions. -
Energetics of Heterometal Substitution in Ε-Keggin [Mo4al12(OH)24(OH2
6/7/8+ 1 Energetics of heterometal substitution in -Keggin [MO4Al12(OH)24(OH2)12] ions 2 (Revision 2) 3 Dana Reusser1, William H. Casey2, and Alexandra Navrotsky1* 4 1Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, 5 Davis, California 95616, U.S.A. *E-mail: [email protected] 6 2Department of Chemistry, Department of Geology, University of California at Davis, Davis, 7 California 95616, U.S.A. 8 Abstract: Aluminum hydroxide ions in the -Keggin structure provide geochemical models for 9 how structure affects reactivity, and consequently, how aqueous ions evolve to bulk precipitates. 10 Here we report a systematic comparison of heterometal substitution into the MAl12 -Keggin 11 structure, where M = GaIII, AlIII, or GeIV. We use direct solution calorimetric techniques to 12 compare the energetics of these substituted structures and complement these measurements with 13 density functional theory, DFT, calculations to further examine this structure as a host to 14 alternative heterometals. The measured enthalpy of solution, ΔHsoln, at 28 °C in 5 N HCl for the 7+ 7+ 15 selenate salts of GaAl12 and AlAl12 , was measured as -869.71 ± 5.18 and -958.04 ± 2.79 -1 ° 16 kJ∙mol , respectively. The enthalpies of formation from the elements, ΔH f,el, for the selenate 7+ 7+ -1 17 salts of GaAl12 and AlAl12 , are -23334.18 ± 60.38 and -23075.02 ± 61.68 kJ∙mol , 18 respectively, supplanting previous values. We compare structural relationships to both 19 experimental and calculated energies to identify the driving forces that control these substitutions 20 and stability, and establish that tetrahedral M-O bond lengths are closely related to the strain and 21 stability of the structure. -
PATENT OFFICE 2,101,820 PROCESS for the PREPARATION of POLYMERIZABLE UNSATURATED COM POUNDS John C
Patented Dec. 7, 1937 2,101,820 UNITED STATES PATENT OFFICE 2,101,820 PROCESS FOR THE PREPARATION OF POLYMERIZABLE UNSATURATED COM POUNDS John C. Woodhouse, Wilmington, Del, assignor to E. I. du Pont de Nemours & Company, Will mington, Del, a corporation of Delaware No Drawing. Application December 5, 1933, Serial No. 701,053 10 Claims. (Cl. 260-106) This invention relates to a process for the prep included under the term aryl include benzyl, aration of unsaturated polymerizable organic naphthyl, and analogous aryl compounds. It will compounds and more particularly to the prepara be appreciated by those skilled in this art that tion of Such compounds from Saturated organic altho the Substitutions in the X and Y positions 5 compounds containing an isopropyl radical at Will alter the reaction rates and in many in 5 tached to a carbonyl group which likewise carries stances the by-products resulting from the de a hydrogen, hydroxy, aryl, or aralkyl group. hydrogenation, these substitutions are to be given An object of the present invention is to provide but secondary consideration for, generally speak an improved process for the preparation of poly ing, if the compound to be dehydrogenated has the O merizable unsaturated aliphatic and/or aromatic basic formula 10 organic compounds. Another object of the in vention is to provide an improved process for the chi-qi- - O preparation of esters of the unsaturated mono it may be dehydrogenated to an unsaturated poly carboxylic aliphatic organic acids. Another ob merizable compound. ject of the invention is to provide an improved The compounds containing an isobutyryl group, 15 process for the preparation of methacrylic acid.