Methacrylic Acid and Methacrylic Esters

Total Page:16

File Type:pdf, Size:1020Kb

Methacrylic Acid and Methacrylic Esters PROCESS ECONOMICS PROGRAM ..-. SRI INTERNATIONAL Mm10 Park, California Abstract 9402E Process Economics Program Report No. 11C METHACRYLIC ACID AND METHACRYLIC ESTERS (September 1984) For the last fifteen years, processes have been developed to supplant the established process for making methyl methacrylate from acetone, hydrogen cyanide, and methanol. The acetone cyanohydrin route suffers from production of acidic wastes; the newer processes avoid these wastes and offer lower costs. Since our most recent previous report on the subject (Report LlB, issued in July 1980), a methyl methacrylate process based on a C4 feed- stock has been commercialized in Japan. This process oxidizes a t-butanol feed to methacrolein and methacrylic acid in two stages, then esterifies the acid to methyl methacrylate. We have evaluated this process and several variations, including the alternative use of isobutane feed and the supplementary use of isobutyraldehyde (by-product from 0x0 alcohol plants). We have also evaluated an attractive process based on propylene hydrocarboxylation to isobutyric acid, followed by dehydrogenation to methacrylic acid. We have updated some of the processes evaluated in Report llB, including the acetone cyanohydrin process. For a newly constructed plant, and at market prices for HCN and acetone, the acetone cyanohydrin process is more expensive than several of the newer processes. PEP'83 RHS - ReportNo. 11C a METHACRYLIC ACID AND ESTERS SUPPLEMENT C by ROBERT H. SCHWAAR ETSUO MATSUNAGA SHOICHI KIKUCHI a- and WATARU NISHIMOTO September 1984 - Cl a A private report by the PROCESS ECONOMICS PROGRAM a m Menlo Park, California 94025 For detailed marketing data and information, the reader is referred to one of the SRI programs specializing in marketing research. The CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS Program covers major hydrocarbons and their derivatives on a worldwide basis. In addition, the SRI DIRECTOKY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, prod- uct, and plant for the United States and Western Europe. ii CONTENTS 1 INTRODUCTION. 1 2 SUMMARY . 3 General Aspects ...................... 3 Economic Aspects ...................... 4 Technical Aspects ..................... 9 t-Butanol Oxidation ................... 9 Isobutane Dehydrogenation ................ 10 Dehydrogenation of Isobutyraldehyde ........... 11 Dehydrogenation of Isobutyric Acid ............ 12 Oxidation of Isobutyraldehyde .............. 13 Other Processes for Making Methyl Methacrylate ...... 13 Isobutylene Oxidation ................. 14 Mixed Butylenes Oxidation ............... 14 Methyl Propionate Route from Ethylene ......... 14 Acetone Cyanohydrin Route ............... 14 Hydroformylation of Ally1 Acetate ........... 15 Liquid-Phase Oxidation of Methacrolein to Methyl Methacrylate ................. 15 3 INDUSTRY STATUS . 17 United States ....................... 18 Western Europe ....................... 21 Japan ........................... 23 Asahi Chemical ...................... 23 Mitsubishi Rayon ..................... 25 Japan Methacryl Monomer ................. 25 4 ROUTES TO METHYL METHACRYLATE AND METHACRYLIC ACID .... 29 Isobutylene Routes ..................... 29 Propylene Routes ...................... 32 Ethylene Routes ...................... 34 5 METHYL MRTHACRYLATE PROM t-BUTANOL VIA METHACROLEIN . 37 Review of Patents . 37 Oxidation of t-Butanol or Isobutylene to Methacrolein . 37 Catalyst Preparation . , . 38 a iii CONTENTS - 5 METHYL METHACRYLATE FROM t-BUTANOL VIA METHACROLEIN (continued) Liquid-Phase Process for Methacrolein ............ 38 Methacrolein Recovery .................... 39 0- Oxidation of Methacrolein to Methacrylic Acid ........ 40 Liquid-Phase Processes ................. 1 41 Methacrylic Acid Recovery .................. 42 Esterification of Methacrylic Acid with Methanol ...... 43 t-Butanol Feedstock ..................... 45 Process Description ...................... 47 Oxidation of t-Butanol to Methacrolein (Section 100) L ... 47 Oxidation of Methacrolein to Methacrylic Acid (Section 200) . 50 Esterification of Methacrylic Acid with Methanol (Section 300) ........................ 51 Process Discussion ...................... 61 Oxidation of t-Butanol to Methacrolein ........... 61 Recovery of Methacrolein .................. 63 a- Oxidation of Methacrolein to Methacrylic Acid ........ 64 Recovery of Methacrylic Acid ................ 64 Esterification ....................... 66 Waste Streams ........................ 66 Materials of Cohstruction ................... 67 Cost Estimates ........................ 69 Capital Costs ........................ 69 Production Costs ...................... 70 6 VARIATIONS OF THE t-BUTANOL PROCESS .............. 81 Other C4 Feedstocks ...................... 82 Isobutylene Feed. ...................... 82 Mixed C4 Olefin Feed .................... 83 a- MIBEFeed..........................8 4 Isobutane Feed ....................... 84 Isobutyraldehyde Feed .................... 87 Isobutane Process Description ................. 88 Dehydrogenation of Isobutane to Isobutylene (Section 100) . 89 Oxidation of Isobutylene to Methacrolein (Section 200) ... 91 a- Oxidation of Methacrolein to Methacrylic Acid (Section 300) Esterification and MMA Refining (Section 400) ........ 92 a iv CONTENTS 6 VARIATIONS OF THE t-BDTANOL PROCESS (continued) Isobutane Process Discussion ................ 98 - Dehydrogenation of Isobutane to Isobutylene ....... 98 Oxidation of Isobutylene to Methacrolein ......... 98 Waste Streams ...................... 99 Materials of Construction ................ 99 Isobutane Process Cost Estimates .............. 102 Capital Costs ...................... 102 Production Costs ..................... 102 Isobutyraldehyde Process Description ............ 112 Oxidation of Isobutyraldehyde to Methacrylic Acid (Section 400) ...................... 112 Oxidation of t-Butanol to Methacrolein (Section 100) Oxidation of Methacrolein to Methacrylic Acid (Section 200) Esterification of Methacrylic Acid with Methanol (Section 300) ...................... 114 a- Isobutyraldehyde Process Discussion ............ 123 Isobutyraldehyde Process Cost Estimates .......... 123 Capital Costs ...................... 123 Production Costs. .................... 126 Other Process Variations .................. 136 Methacrolein Isolation Omitted .............. 136 Methacrylic Acid from t-Butanol or Isobutylene in a Single Step ..................... 137 Methyl Methacrylate from Isobutylene in a Single Step . 137 Methyl Methacrylate by Esterification of Methacrolein . 138 Methyl Methacrylate from Isobutylene via Methacrylonitrile .................... 141 Methacrylic Acid from Methacrylonitrile ........ 142 a Methyl Methacrylate from Methacrylonitrile ....... 142 7 METHYL METEACRYLATE FROM PROPYLENE VIA ISOBDTYRIC ACID ... 143 Review of Patents ..................... 143 Production of Isobutyric Acid from Propylene ....... 143 Dehydrogenation of Isobutyric Acid to Methacrylic Acid . 144 a Recovery and Purification of Methacrylic Acid ...... 145 Esterification of Methacrylic Acid with Methanol ..... 146 Purification of Methyl Methacrylate. ........... 148 V CONTENTS 7 METHYL METHACRYLATE FROM PROPYLENE VIA ISOBUTYRIC ACID (Continued) Chemistry .......................... 149 Hydrocarboqlation of Propylene to Isobutyric Acid .... 149 Hydrolysis of By-Products .................. 150 Carboxylation of Isopropanol to Isobutyric Acid ...... 150 Process Description ..................... 151 Hydrocarboxylation of Propylene to Isobutyric Acid (Section 100) ....................... 151 Dehydrogenation of Isobutyric Acid to Methacrylic Acid (Section 200) ....................... 155 Esterification of Methacrylic Acid with Methanol (Section 300) ....................... 156 Process Discussion ..................... 166 Hydrocarboqlation of Propylene to Isobutyric Acid .... 166 Isopropanol Formation and Handling ........... 167 2-Fluoropropane Formation and Handling ......... 167 Removal of Light By-Products from Isobutyric Acid .... 168 Dehydrogenation of Isobutyric Acid to Methacrylic Acid . 169 Recovery of Methacrylic Acid ............... 169 Esterification of Methacrylic Acid ............ 170 Waste Streams ....................... 170 Materials of Construction ................. 170 Cost Estimates ....................... 173 Capital Costs ...................... ; 173 Production Costs ..................... 173 8 SUPPLEMENTARY PRODUCTION OF ISOBUTYRIC ACID FROM ISOBUTYRALDEHYDE ...................... 185 Review of Patents ...................... 185 a Process Description ..................... 186 Oxidation of Isobutyraldehyde to Isobutyric Acid (Section 400) ....................... 187 Hydrocarboxylation of Propylene to Isobutyric Acid (Section 100) ....................... 189 Dehydrogenation of Isobutyric Acid to Methacrylic Acid (Section 200) . Esterification of Methacrylic Acid to Methyl Methacrylate (Section 300) . 189 Vi CONTENTS 8 SUPPLEMENTARY PRODUCTION OF ISOBUNRIC ACID PROM ISOBUNRALDEHYDE (Continued) Process Discussion . 199 Cost Estimates. 202 Capital Costs . 202 Production Costs . 202 APPENDIX A DESIGN AND COST BASES . 213 APPENDIX B CONVERSION, SELECTIVITY, AND YIELD . 221 APPENDIX C AZEOTROPES . 223 PATENTSUMMARYTABLES .:.................... 225 CITEDREFERENCES . 257 PATENTREFERENCES . 271 Vii ILLUSTRATIONS 2.1 Manufacture of Methyl Methacrylate Effect of Plant Capacity
Recommended publications
  • Acid-Base Properties, Deactivation, and in Situ Regeneration of Condensation Catalysts for Synthesis of Methyl Methacrylate
    ACID-BASE PROPERTIES, DEACTIVATION, AND IN SITU REGENERATION OF CONDENSATION CATALYSTS FOR SYNTHESIS OF METHYL METHACRYLATE MAKARAND R. GOGATE', JAMES J. SPIVEY', AND JOSEPH R. ZOELLER2 'Research Triangle Institute, 3040 Cornwallis Road, RTP, NC 27709-2 194 2Eastman Chemical Company, Kingsport, TN, 37662-5 150 ABSTRACT Condensation reaction of a propionate with formaldehyde is a novel route for synthesis of methyl methacrylate (MMA). The reaction mechanism involves a proton abstraction from the propionate on the basic sites and activation of the aliphatic aldehyde on the acidic sites of the catalyst. The acid-base properties of ternary V-Si-P oxide catalysts and their relation to the MMA yield in the vapor phase condensation of formaldehyde with propionic anhydride has been studied for the first time. Five different V-Si-P catalysts with different atomic ratios of vanadium, silicon, and phosphorous were synthesized, characterized, and tested in a fixed-bed microreactor system. A V-Si-P 1:10:2.8 catalyst gave the maximum condensation yield of 56% based on HCHO fed at 300 "C and 2 atm and at a space velocity of 290 cc/g cateh. A parameter called the "q-ratio" has been defined to correlate the condensation yields to the acid-base properties. The correlation of q-ratio with the condensation yield shows that higher q-ratios are more desirable. The long-term deactivation studies on the V-Si-P 1: 10:2.8 catalyst at 300 "C and 2 atm and at a space velocity of 290 cc/g cat-h show that the catalyst activity drops by a factor of nearly 20 over a 180 h period.
    [Show full text]
  • Final Scope of the Risk Evaluation for Formaldehyde CASRN 50-00-0
    EPA Document# EPA-740-R-20-014 August 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Final Scope of the Risk Evaluation for Formaldehyde CASRN 50-00-0 August 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................6 ABBREVIATIONS AND ACRONYMS ..................................................................................................7 EXECUTIVE SUMMARY .....................................................................................................................11 1 INTRODUCTION ............................................................................................................................14 2 SCOPE OF THE EVALUATION ...................................................................................................14 2.1 Reasonably Available Information ..............................................................................................14 Search of Gray Literature ...................................................................................................... 15 Search of Literature from Publicly Available Databases (Peer-reviewed Literature) ........... 16 Search of TSCA Submissions ................................................................................................ 24 2.2 Conditions of Use ........................................................................................................................25 Conditions of Use
    [Show full text]
  • Guidelines to Achieving High Selectivity for the Hydrogenation of Α
    Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts − A review Mathilde Luneau,†,a Jin Soo Lim,†,a Dipna A. Patel,‡,a E. Charles H. Sykes,‡ Cynthia M. Friend,† and Philippe Sautet*,,§ † Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA ‡ Department of Chemistry, Tufts University, Medford, MA 02155, USA Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA § Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA * Email: [email protected] a These three authors contributed equally to this review. Abstract Selective hydrogenation of α,ß-unsaturated aldehydes to unsaturated alcohols is a challenging class of reactions, yielding valuable intermediates for the production of pharmaceuticals, perfumes, and flavorings. On monometallic heterogeneous catalysts, the formation of the unsaturated alcohols is thermodynamically disfavored over the saturated aldehydes. Hence, new catalysts are required to achieve the desired selectivity. Herein, the literature of three major research areas in catalysis is integrated as a step toward establishing the guidelines for enhancing the selectivity: reactor studies of complex catalyst materials at operating temperature and pressure; surface science studies of crystalline surfaces in ultrahigh vacuum; and first-principles modeling using density functional theory calculations. Aggregate analysis shows that bimetallic and dilute alloy catalysts significantly enhance the selectivity to the unsaturated alcohols compared to monometallic catalysts. This com- prehensive review focuses primarily on the role of different metal surfaces as well as the factors that promote the adsorption of the unsaturated aldehyde via its C=O bond, most notably by elec- tronic modification of the surface and formation of the electrophilic sites.
    [Show full text]
  • Submitted To
    I 1 RTI PROJECT NO. 9611-6048 DOE Contract No. DE-AC22-94PC94065 January 1,1995 through March 31,1995 SYNTHESIS OF ACRYLATES AND METHACRLYATES FROM COAL-DERIVED SYNGAS Quarterly Technical Progress Report Submitted to US. Department of Energy Pittsburgh Energy Technology Center P. 0. Box 10940 Pittsburgh, Pennsylvania 15236-0940 Submitted by Research Triangle Institute P. 0. Box 12194 Research Triangle Park, NC 27709 DOE COR: Richard E. Tischer RTI Project Manager: James J. Spivey DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the DiCJTRlBfllQN THIS DOWMENT mm United States Government or any agency thereof. OF %”/ - DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Executive Summary Task 1-Synthesis of Propionates The objective of this Task is to develop the technology for the synthesis of low-cost propionates.
    [Show full text]
  • Qt4p41x6ph.Pdf
    UC Irvine UC Irvine Previously Published Works Title Rate constants for the reactions of chlorine atoms with a series of unsaturated aldehydes and ketones at 298 K: structure and reactivity Permalink https://escholarship.org/uc/item/4p41x6ph Journal Physical Chemistry Chemical Physics, 4(10) ISSN 14639076 14639084 Authors Wang, Weihong Ezell, Michael J Ezell, Alisa A et al. Publication Date 2002-05-01 DOI 10.1039/b111557j Peer reviewed eScholarship.org Powered by the California Digital Library University of California View Article Online / Journal Homepage / Table of Contents for this issue PCCP Rate constants for the reactions of chlorine atoms with a series of unsaturated aldehydes and ketones at 298 K: structure and reactivity Weihong Wang, Michael J. Ezell, Alisa A. Ezell, Gennady Soskin and Barbara J. Finlayson-Pitts* Department of Chemistry, University of California, Irvine, CA 92697-2025. E-mail: bjfi[email protected]; Fax: 949 824-3168; Tel: 949 824-7670 Received 2nd January 2002, Accepted 31st January 2002 First published as an Advance Article on the web 18th April 2002 The kinetics and mechanisms of chlorine atom reactions with the products of organic oxidations in the atmosphere are of interest for understanding the chemistry of coastal areas. We report here the first kinetics measurements of the reactions of atomic chlorine with 4-chlorocrotonaldehyde and chloromethyl vinyl ketone, recently identified as products of the reaction of chlorine atoms with 1,3-butadiene. The reactions with acrolein, methacrolein, crotonaldehyde, methyl vinyl ketone and crotyl chloride were also studied to probe structure- reactivity relationships. Relative rate studies were carried out at 1 atm and 298 K using two different approaches: long path FTIR for the acrolein, methacrolein, crotonaldehyde and methyl vinyl ketone reactions with acetylene as the reference compound, and a collapsible Teflon reaction chamber with GC-FID detection of the organics using n-butane or n-nonane as the reference compounds for the entire series.
    [Show full text]
  • Oxidation of Isobutyraldehyde
    Indlan Journal of Chemlstry Vol. 15A, August 1977, pp. 705-708 Kinetics & Mechanism of Cr(VI) Oxidation of Isobutyraldehyde A. A. BHALEKAR, R. SHANKER & G. V. BAKORE Department of Chemistry, University of Udaipur, Udaipur 313001 Received 16 August 1976; accepted 26 March 1977 Cr(VI) oxidation of isobutyraldehyde has been found to take place through the following mechanism: (i) 70% of isobutyraldehyde oxidation occurs via the hydrated form and (ii) 30% of isobutyraldebyde undergoes oxidation via enol intermediate. The reaction follows the rate law: ~d[Cr(VI)]/dt = k'kE[Aldehyde][H+J[HCrO,]/(kA+k'[H+][HCrO-])+k"Kh[Aldehyde][H+][HCrO&] where kh, k', k', kE and kA are equilibrium constant for hydration of aldehyde, rate of oxidation of enol, rate of oxidation of ketone, rate of enolization and the rate of ketonization, respectively. kE obtained from the oxidation of isobutyraldehyde by V(V) under identical conditions as used in chromic acid oxidation, is of the same order. ARNARD and Karayannis! while investigating Results and Discussion chromic acid oxidation of propionaldehyde B and t.-butyraldehyde made some interesting Stoichiometry and identification oj products - These observations. They found that propionaldehyde ~ere carried out in aq. solution keeping [Cr(VI)] reduced 170% of the expected amount of chromic In large excess over [isobutyraldehyde]. It was acid and that besides propionic acid, acetic acid found that 0·94 mole (2·8 equivalents) of C r(VI) was also produced while n-butyraldehyde consumed was consumed per mole of the aldehyde. Under 190% of the theoretical amount of chromic acid stoichiometric conditions, the excess Cr(VI) was and that both propionic acid and to a lesser extent reduced with Fe (II) ions and the solution steam- acetic acid were produced.
    [Show full text]
  • Alkene Metathesis for Transformations of Renewables Christian Bruneau, Cedric Fischmeister
    Alkene Metathesis for Transformations of Renewables Christian Bruneau, Cedric Fischmeister To cite this version: Christian Bruneau, Cedric Fischmeister. Alkene Metathesis for Transformations of Renewables. Organometallics for Green Catalysis, Springer, pp.77-102, 2018, 10.1007/3418_2018_18. hal- 01940683 HAL Id: hal-01940683 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01940683 Submitted on 30 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Alkene Metathesis for Transformations of Renewables Christian Bruneau and Cédric Fischmeister 1 Introduction With the depletion of fossil resources and the concerns about climate chang- ing and environment protection, biomass is intensively considered as a sus- tainable source of raw material for the chemical industry and for the produc- tion of biofuels.[1-4] Beside the very abundant carbohydrate and lignocellulosic biomass, lipids and to a lesser extend terpenes are envisioned as promising candidates for the production of bio-sourced compounds with a broad range of applications.[5,6] Terpenes are of most importance in fra- grance composition whereas fats and oils have already found application as bio-diesel fuel and they are also foreseen as a renewable source of polymers.
    [Show full text]
  • Efficient Synthesis of Methyl Methacrylate by One Step Oxidative
    catalysts Article Efficient Synthesis of Methyl Methacrylate by One Step Oxidative Esterification over Zn-Al-Mixed Oxides Supported Gold Nanocatalysts Huayin Li 1, Yuan Tan 1,* , Xingkun Chen 1, Wenshao Yang 1, Chuanqi Huang 1, Jie Li 1 and Yunjie Ding 1,2,3,* 1 Hangzhou Institute of Advanced studies, Zhejiang Normal University, Hangzhou 311231, China; [email protected] (H.L.); [email protected] (X.C.); [email protected] (W.Y.); [email protected] (C.H.); [email protected] (J.L.) 2 Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China 3 The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China * Correspondence: [email protected] (Y.T.); [email protected] (Y.D.); Tel.: +86-571-82257902 (Y.T.); +86-411-84379143 (Y.D.) Abstract: Methyl methacrylate (MMA) is an important monomer in fine chemicals. The synthesis of MMA by one-step oxidative esterification from methacrolein with methanol over a heterogeneous catalyst with high activity, selectivity and stability is highly desirable. Herein, Zn-Al-hydrotalcites 2+ 3+ (HTs)-supported atomically precise Au25 nanoclusters with different molar ratios of Zn /Al were prepared and used as the precursors for this reaction. They exhibited good performances in com- parison with the gold catalysts prepared by the deposition precipitation method. The structural and electronic properties were evaluated by various characterization technologies, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), in situ diffuse re- Citation: Li, H.; Tan, Y.; Chen, X.; Yang, W.; Huang, C.; Li, J.; Ding, Y.
    [Show full text]
  • View of Bacterial Expression Systems for Heterologous 74
    Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites Lang et al. Lang et al. Microbial Cell Factories 2014, 13:2 http://www.microbialcellfactories.com/content/13/1/2 Lang et al. Microbial Cell Factories 2014, 13:2 http://www.microbialcellfactories.com/content/13/1/2 RESEARCH Open Access Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites Karsten Lang, Jessica Zierow, Katja Buehler* and Andreas Schmid Abstract Background: Over the recent years the production of Ehrlich pathway derived chemicals was shown in a variety of hosts such as Escherichia coli, Corynebacterium glutamicum, and yeast. Exemplarily the production of isobutyric acid was demonstrated in Escherichia coli with remarkable titers and yields. However, these examples suffer from byproduct formation due to the fermentative growth mode of the respective organism. We aim at establishing a new aerobic, chassis for the synthesis of isobutyric acid and other interesting metabolites using Pseudomonas sp. strain VLB120, an obligate aerobe organism, as host strain. Results: The overexpression of kivd, coding for a 2-ketoacid decarboxylase from Lactococcus lactis in Ps. sp. strain VLB120 enabled for the production of isobutyric acid and isobutanol via the valine synthesis route (Ehrlich pathway). This indicates the existence of chromosomally encoded alcohol and aldehyde dehydrogenases catalyzing
    [Show full text]
  • Biotransformation of Isobutyraldehyde to Isobutanol by an Engineered Escherichia Coli Strain
    Journal of Archive of SID J Appl Biotechnol Rep. 2020 Sep;7(3):159-165 Applied Biotechnology doi 10.30491/JABR.2020.117885 Reports Original Article Biotransformation of Isobutyraldehyde to Isobutanol by an Engineered Escherichia coli Strain Mostafa Hosseini1, Morvarid Ebrahimi2, Ensieh Salehghamari3, Amir Salehi Najafabadi4, Bagher Yakhchali1* 1National Institute of Genetic Engineering and Biotechnology, Tehran, Iran 2Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran 3Department of Cell and Molecular Science, School of Biological Science, Kharazmi University, Tehran, Iran 4Department of Microbiology, School of Biology, University College of Science, University of Tehran, Tehran, Iran Corresponding Author: Bagher Yakhchali, PhD, Professor, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran. Tel: +98-2144787391, Email: [email protected] Received October 20, 2019; Accepted December 8, 2019; Online Published June 13, 2020 Abstract Introduction: Biotransformation process has been used in various industries due to its ability to produce valuable chemicals and address environmental concerns. Propylene hydroformylation is a process in which n-butyraldehyde and isobutyraldehyde are produced. N-butyraldehyde is a high valuable chemical with many industrial applications, while isobutyraldehyde produced as a by-product is an environmental pollutant. This study offers a biotechnological approach for conversion of isobutyraldehyde into a high-value substance. An engineered strain of Escherichia coli was developed by genomic insertion of alcohol-dehydrogenase gene (adhA) from Lactococcus lactis which can convert isobutyraldehyde into isobutanol. Materials and Methods: The adhA gene was engineered to substitute some of its amino acids to result in a more efficient enzyme.
    [Show full text]
  • The Effect of Cation Type and H+ on the Catalytic Activity of the Keggin Anion [Pmo12o40]3- in the Oxidative Dehydrogenation Of
    Journal of Catalysis 195, 360–375 (2000) doi:10.1006/jcat.2000.2987, available online at http://www.idealibrary.com on The Effect of Cation Type and H+ on the Catalytic Activity 3 of the Keggin Anion [PMo12O40] in the Oxidative Dehydrogenation of Isobutyraldehyde Ji Hu and Robert C. Burns1 School of Biological and Chemical Sciences, The University of Newcastle, Callaghan 2308, Australia Received March 23, 2000; revised July 4, 2000; accepted July 5, 2000 such as the oxidative dehydrogenation of isobutyric acid The oxidative dehydrogenation of isobutyraldehyde to metha- and the oxidation of methacrolein, both of which yield 3 crolein over [PMo12O40] -containing catalysts has been shown to methacrylic acid (1–5). Methacrylic acid is, in turn, reacted proceed through bulk catalysis-type II, which depends on the rates with methanol to yield methyl methacrylate, an extremely + of diffusion of the redox carriers (H and e ) into the catalyst bulk. important acrylic monomer, which is then polymerized to Variations in catalyst behaviour have been shown to change with give poly(methyl methacrylate). Heteropolyoxometalates the countercation and appear to be related to the polarizing abil- are also active acid catalysts, and processes based both on ity of the cation, which can be represented by the ionic potential their redox and acid–base properties have found commer- (charge/ionic radius). This, in turn, may indicate that the active 3 cial applications (3–5). site at the [PMo12O40] ion is close to an attendant countercation. For the alkali metal ions Li+,Na+,K+,Rb+, and Cs+ as well as the The study of heteropolyoxometalates as oxidation– (isoelectronic) ions of the series Cs+,Ba2+,La3+, and Ce4+, the stud- reduction catalysts has involved primarily Keggin-based 3 ies have shown that conversion generally decreases with increasing structures, principally [PMo12O40] , as well as substi- ionic potential, while selectivity to methacrolein is less affected by tuted species involving replacement of one or more changes in this property.
    [Show full text]
  • Design and Optimization of a Process for the Production of Methyl Methacrylate Via Direct Methylation
    processes Article Design and Optimization of a Process for the Production of Methyl Methacrylate via Direct Methylation Taotao Liang 1,2, Xiaogang Guo 2,3,*, Abdulmoseen Segun Giwa 1,4, Jianwei Shi 3, Yujin Li 3, Yan Wei 3, Xiaojuan Wang 5, Xuansong Cao 3, Xiaofeng Tang 3 and Jialun Du 3 1 Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408003, China; [email protected] (T.L.); [email protected] (A.S.G.) 2 Faculty of Materials and Energy, Southwest University, Chongqing 400715, China 3 College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408003, China; [email protected] (J.S.); [email protected] (Y.L.); [email protected] (Y.W.); [email protected] (X.C.); [email protected] (X.T.); [email protected] (J.D.) 4 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China 5 College of chemistry and bioengineering, Guilin University of Technology, Guilin 541004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-023-72782170 Received: 25 April 2019; Accepted: 6 June 2019; Published: 18 June 2019 Abstract: Methyl methacrylate (MMA) plays a vital role in national productions with broad application. Herein, the production of MMA is realized by the improved eco-friendly direct methylation method using Aspen Plus software. Three novel kinds of energy-saving measures were proposed in this study, including the recycle streams of an aqueous solution, methacrolein (MAL), and methanol, the deployment of double-effect distillation instead of a normal one, and the design of a promising heat-exchange network.
    [Show full text]