Sulfur Speciation in the Surface Sediments of Lakes from Different Regions, China: Characterization by S K-Edge XANES Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Sulfur Speciation in the Surface Sediments of Lakes from Different Regions, China: Characterization by S K-Edge XANES Spectroscopy Hindawi Publishing Corporation Journal of Chemistry Volume 2016, Article ID 3672348, 9 pages http://dx.doi.org/10.1155/2016/3672348 Research Article Sulfur Speciation in the Surface Sediments of Lakes from Different Regions, China: Characterization by S K-Edge XANES Spectroscopy Wang Jingfu,1 Chen Jingan,1 Dai Zhihui,2 Yang Haiquan,1 and Ma Chenyan3 1 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China 2State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China 3Institute of High Energy Physics, Chinese Academy of Science, Beijing Synchrotron Radiation Facility, Beijing 100049, China Correspondence should be addressed to Chen Jingan; [email protected] Received 9 March 2016; Accepted 28 April 2016 Academic Editor: Stanislav Franciˇ ˇskovic-Bilinski´ Copyright © 2016 Wang Jingfu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. X-ray absorption near edge structure (XANES) spectroscopy affords the opportunity to determine redox status for element S in the aquatic ecosystems. However, there have been relatively few studies of S XANES spectroscopy in the terrestrial aquatic ecosystems. In this study, XANES technology was used to examine changes in S speciation in the sediments collected from Taihu Lake, Qinghai Lake, Dianchi Lake, Caohai Lake, and Hongfeng Lake located in distinct geological background areas of China. The results showed that sedimentary S in Qinghai Lake has a high proportion of sulfate averaged 88.9% due to physical weathering of watershed rocks, while deposited S in Taihu Lake has a high fraction of intermediate S (36.5%), which may be the response of the agricultural nonpoint source pollution in drainage basin. The three lakes located in Southwest China have similar composition characteristics of S species, indicating similar S sources including chemical weathering of carbonate and atmospheric deposition. 60–90% of S compounds in the surface sediments were in the form of sulfate and FeS. In deeper layers, the ratio of FeS2 and the intermediate S significantly increased, suggesting rapid processes of sulfate reduction and sulfide reoxidation with the increasing depths. 1. Introduction determine redox status and coordination environment for a wide variety of elements, including sulfur, carbon, and nitro- Sediment is an important repository and sink for sulfur (S) gen within these sediments [13]. The method has become [1]. The biogeochemical cycles of S in sediments were highly especially attractive for the speciation of S in sediments and complex, because the aquatic ecosystems have anaerobic other environmental samples, most prominently at the S K- zones which strongly affect the chemical forms of S [2, 3]. In edge [10, 12, 14, 15]. the previous studies, the wet-chemical speciation method was In previous investigations, XANES spectroscopy has been generally used to analyze the S speciation in sediments and applied to the analysis of the chemical form and oxidation revealitsgeochemicalprocessesintheaquaticecosystems[4– state of S in soil and marine sediments [10, 12, 16], providing 9]. In fact and often neglected, S in natural samples existed in information about the deposition and diagenesis of organic a large variety of organic and inorganic forms with different matter and S mineralogy. However, there have been relatively electronic oxidation states, ranging from −2 (inorganic sul- few studies of S XANES spectroscopy in sediments of the fide) to +6 (sulfate) [10]. This made traditional wet-chemical terrestrial aquatic ecosystems [17]. Particularly, comparative S speciation complicated [11]. Therefore, sensitive analytical studies of the oxidation states of sedimentary S in different methods are needed to analyze and monitor many functions types of lakes from distinct geological background areas and transformations of S species in biochemical reactions are scarce. In this study, we used the K-edge XANES to and in our environment [12]. X-ray absorption near edge determine S speciation in the sediments collected from structure (XANES) spectroscopy affords the opportunity to Taihu Lake (Eastern China), Qinghai Lake (Western China), 2 Journal of Chemistry QH N (km) 060 TH 40∘ (km) Beijing 030 Qinghai Lake DC (km) ∘ 30 Taihu Lake 020 CH (km) Caohai Lake 05 Hongfeng Lake Dianchi Lake (km) 20∘ 0 1000 HF (km) ∘ ∘ ∘ ∘ 010 90 E 100 110 120 Figure 1: Location of the studied lakes. Hongfeng Lake (Southwest China), Caohai Lake (Southwest 30 cm length and 6 cm diameter Plexiglas cylinder tube was China), and Dianchi Lake (Southwest China). The object employed to obtain the sediment cores. The core samples is to understand the S speciation and its transformation in were sliced with intervals of 2 cm, with the exception of the sediments of the terrestrial aquatic ecosystems. core from Qinghai Lake sectioned at 1 cm intervals. Sedi- ments were handled under protective nitrogen atmospheres 2. Materials and Methods (purity 99.9%, Guiyang Shenjian Gas Co., Ltd.). All samples were put in sealed plastic bag and immediately transferred ∘ 2.1. Area Description. In this study, five lakes were chosen to laboratory in iceboxes (<4 C) and freeze-dried. After that, based on economic and geographic status in the Yangtze the samples were frozen with liquid nitrogen. Before XANES River region, Southwest Plateau, and Qinghai-Tibet Plateau, analysis, dry samples were ground and sieved with a standard China (Figure 1). Geographic and limnological features for 100-mesh sieve. thefiveselectedlakesareshowninTable1[18,22].Taihu Lake is the third largest freshwater lake in China located 2.3. Sulfur K-Edge XANES. The sulfur K-edge XANES spec- at the downstream of the Changjiang River. More than 200 tra were recorded at 4B7A beamline (medium X-ray beam- brooks, canals, and rivers discharge industrial wastewater, line 2100–6000 eV) using synchrotron radiation from Beijing mostly from nearby cities, into the lake. Many effluents con- Synchrotron Radiation Facility, the Institute of High Energy tain pesticides, toxic chemicals, or heavy metals. Southwest Physics, the Chinese Academy of Sciences. The samples were Plateau China is the largest karst area in China. According pressedintothinfilmsbeforeanalysis.Thestorageringwas to previous lake chemistry surveys [23], one slightly polluted operated at the energy of 2.5 GeV with Si (111) double crystals. lake (Caohai Lake) and two heavily polluted lakes (Dianchi Spectra were scanned at step widths of 0.3 eV in the region and Hongfeng Lakes) were selected in this area. Qinghai Lake, between 2420 and 2520 eV, with fluorescence mode using a closed-basin lake, is the largest inland saline lake in China. a fluorescent ion chamber Si (Li) detector (PGT LS30135). The amount of evaporation (∼1400 mm/year) is in excess of Additional filters were placed between the sample and the themeanannualprecipitation(∼400 mm/year), resulting in detector to reduce the fluorescence signal derived from Si in the development of a saline lake. the samples. Fe monosulfide (FeS), pyrite (FeS2), R-SH, RSOR , 2.2. Sampling Procedures. Sediment core samples were Na2SO3,NaRSO3,andNa2SO4 were chosen as the standard obtained from the five lakes in September 2013, nearly in compounds. Electronic oxidation states, white-line energies, the centre of the lakes. A plastic static gravity corer with and intensities of reference S compounds were shown in Journal of Chemistry 3 Table 1: Geographic and limnological features of the studied lakes [18–21]. Parameters Eastern China Southwestern China Western China Taihu Lake Hongfeng Lake Dianchi Lake Caohai Lake Qinghai Lake ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ 30 05 –32 08 N, 26 25 –34 N, 24 40 –25 02 N, 26 49 –53 N, 36 32 –37 15 N, Positions ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ 119 08 –121 55 E 106 20 –28 E 102 36 – 47 E 104 12 –18 E 99 36 –100 47 E 2 Surface area (km ) 2338 56 306 20 4583 Elevation (m) 51235188621713196 Maximum depth (m) 2.6 45.0 8.0 2.5 32.8 Water pH 8.36 8.40 7.37 8.78 9.35 DO (mg/L) 10.1 8.8 8.9 9.4 ND Salinity (g/L) <1.0 <1.0 <1.0 <1.0 12.5 Sulfate (mg/L) 100 80 60 40 2500 Sediment Organic matter (%) 6.5 5.4 6.5 ND 2.4 TN (%) ND 0.31 0.33 1.38 0.50 TP (%) 0.08 0.16 0.15 0.07 ND Fe (%) 2.65 5.98 ND ND 2.50 Warm, Warm, Warm, Climate type Warm, humid Cool, semiarid semihumid semihumid semihumid Deposition rate (cm/yr) ND 0.16 0.20 0.25 0.10 Table 2. The X-ray energy was calibrated with reference Table 2: Electronic oxidation states, white-line energies, and inten- to the spectrum of the highest resonance energy peak of sities of reference S compounds. Na2SO4 at 2480.4 eV. For all edge-normalized spectra, the Electronic White-line White-line contribution of different S species to total S was calculated Compound oxidation state energy (eV) intensity using the software package ATHENA (Ravel and Newville, − 2005). Linear combination fitting (LCF) was carried out in FeS 22472.21.17 − the energy range 2466–2487 eV using the ATHENA [10]. FeS2 12472.81.33 RSH +0.5 2473.4 1.58 2.4. Analysis of the Total Sulfur. Total S contents were RSOR +2 2476.2 1.81 measured with an elemental analyzer (vario MACRO cube, Na2SO3 +3.68 2478.4 2.03 Elementar, Germany), with an experimental error of 0.5%. NaRSO3 +5 2481.2 2.33 Two certified reference materials (RTS-2 and KZK-1, State Na2SO4 +6 2482.6 2.54 Key Laboratory of Environmental Geochemistry, Institute ofGeochemistry,CAS)wereusedascalibrationstandard. Concentrations of total S in sediments of the five studied lakes relatively high proportion of in the oxidation state of S in were shown in Table 3.
Recommended publications
  • Flat a (Page 1)
    NEW ENGLAND WILD FLOWER SOCIETY PRSRT-STD gentians and on the kora circuit at Namco lots 180 Hemenway Road • Framingham, MA 01701-2699 U.S. Postage of saxifrage and others. www.newfs.org • [email protected] • 508-877-7630 P AID TheTIBETAN Plateau Although the Tibet Plateau is quite high, we have Ashland, MA arranged the itinerary so that we will spend Permit No. 7 most of our time at moderate elevations. We will Western Sichuan&Tibet sleep in towns where the elevation is 11,000 to TIME VALUE 12,000 feet above sea level. During the second June 14-30, 2009 part of the program, we will travel in the Tibet Autonomous Region, spending most of our time around Lhasa (11,700 feet elevation). We anticipate that group members will be well-acclimatized. Our highest elevation overall is the pass that Dear Members & Friends: leads to Namco at 16,900 feet. Since we will cross the pass briefly in the course of a day’s The Tibetan Plateau has for centuries travel, we do not anticipate that this will present been a place of fascination for Western any altitude problems, even if it will most likely naturalists and explorers. Nowhere else in set a few personal altitude records. the world even comes close to putting so much terrain so high into the sky. Tibet is We sincerely hope that you will be able to join also home to a free-spirited pastoralist us in Tibet in 2009! Space is limited, so please people with a distinctive Tantric Buddhist let us know right away.
    [Show full text]
  • Changes of Water Clarity in Large Lakes and Reservoirs Across China
    Remote Sensing of Environment 247 (2020) 111949 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Changes of water clarity in large lakes and reservoirs across China observed T from long-term MODIS ⁎ Shenglei Wanga,b, Junsheng Lib,c, Bing Zhangb,c, , Zhongping Leed, Evangelos Spyrakose, Lian Fengf, Chong Liug, Hongli Zhaoh, Yanhong Wub, Liping Zhug, Liming Jiai, Wei Wana, Fangfang Zhangb, Qian Shenb, Andrew N. Tylere, Xianfeng Zhanga a School of Earth and Space Sciences, Peking University, Beijing, China b Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China c University of Chinese Academy of Sciences, Beijing, China d School for the Environment, University of Massachusetts Boston, Boston, MA, USA e Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK f State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China g Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China h China Institute of Water Resources and Hydropower Research, Beijing, China i Environmental Monitoring Central Station of Heilongjiang Province, Harbin, China ARTICLE INFO ABSTRACT Keywords: Water clarity is a well-established first-order indicator of water quality and has been used globally bywater Secchi disk depth regulators in their monitoring and management programs. Assessments of water clarity in lakes over large Lakes and reservoirs temporal and spatial scales, however, are rare, limiting our understanding of its variability and the driven forces.
    [Show full text]
  • Lake-Level Oscillation Based on Sediment Strata and Geochemical Proxies Since 11,000 Year from Tengger Nuur, Inner Mongolia, China
    feart-08-00314 August 6, 2020 Time: 22:43 # 1 ORIGINAL RESEARCH published: 07 August 2020 doi: 10.3389/feart.2020.00314 Lake-Level Oscillation Based on Sediment Strata and Geochemical Proxies Since 11,000 Year From Tengger Nuur, Inner Mongolia, China Zhang Chengjun*, Zhang Li, Zhang Wanyi, Tao Yunhan, Liu Yang, Wan Xiangling, Zhang Zhen and Safarov Khomid College of Earth Sciences & Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou, China A 794-cm section was collected from Tengger Nuur in the Inner Mongolian Plateau. Accelerator mass spectrometry 14C data were determined to set an age-depth model after removing about 1920 years of the carbon reservoir effect. Based on the multi- proxies grain size, carbonate-content, total organic carbon-content, ratio of C/N, ratios Edited by: Liangcheng Tan, of Mg/Ca and Sr/Ca, and carbonate carbon and oxygen isotopes, paleoenvironmental Institute of Earth Environment, changes since the last deglaciation were reconstructed. Tengger Nuur was very shallow Chinese Academy of Sciences, China during the last deglaciation under a cool and wet climate, especially during the interval Reviewed by: of the cold Younger Dryas event. Although, temperature and humidity increased from Hao Long, Nanjing Institute of Geography the early Holocene (∼10,450–8750 cal a BP), low lake levels indicated that the summer and Limnology (CAS), China monsoon was not sufficiently strong to reach the modern monsoon boundary in Inner Qianli Sun, East China Normal University, China Mongolia. High monsoon precipitation caused lake expansion during 8750–5000 cal a *Correspondence: BP, but the lake level oscillated in a shallow state under high evaporation.
    [Show full text]
  • Analysis of Long-Term Water Level Variations in Qinghai Lake in China
    water Article Analysis of Long-Term Water Level Variations in Qinghai Lake in China Jianmei Fang 1, Guijing Li 1 , Matteo Rubinato 2 , Guoqing Ma 3, Jinxing Zhou 1, Guodong Jia 1, Xinxiao Yu 1,* and Henian Wang 4 1 College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; [email protected] (J.F.); [email protected] (G.L.); [email protected] (J.Z.); [email protected] (G.J.) 2 School of Energy, Construction and Environment & Centre for Agroecology, Water and Resilience, Coventry University, Coventry CV1 5FB, UK; [email protected] 3 World Bank Loan Project Management Center of State Forestry and Grassland Administration, Beijing 100714, China; [email protected] 4 Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; [email protected] * Correspondence: [email protected] Received: 17 September 2019; Accepted: 9 October 2019; Published: 14 October 2019 Abstract: Qinghai Lake is the largest inland saline lake on the Tibetan Plateau. Climate change and catchment modifications induced by human activities are the main drivers playing a significant role in the dramatic variation of water levels in the lake (Dh); hence, it is crucial to provide a better understanding of the impacts caused by these phenomena. However, their respective contribution to and influence on water level variations in Qinghai Lake are still unclear and without characterizing them, targeted measures for a more efficient conservation and management of the lake cannot be implemented. In this paper, data monitored during the period 1960–2016 (e.g., meteorological and land use data) have been analyzed by applying multiple techniques to fill this gap and estimate the contribution of each parameter recorded to water level variations (Dh).
    [Show full text]
  • Evaluation and Validation of Cryosat-2-Derived Water Levels Using in Situ Lake Data from China
    remote sensing Article Evaluation and Validation of CryoSat-2-Derived Water Levels Using In Situ Lake Data from China Zhaofei Liu * , Zhijun Yao and Rui Wang Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (Z.Y.); [email protected] (R.W.) * Correspondence: zfl[email protected]; Tel.: +86-10-6488-9527 Received: 7 April 2019; Accepted: 11 April 2019; Published: 13 April 2019 Abstract: CryoSat-2 altimetry has become a valuable tool for monitoring the water level of lakes. In this study, a concentrated probability density function (PDF) method was proposed for preprocessing CryoSat-2 Geophysical Data Record (GDR) data. CryoSat-2 altimetry water levels were preprocessed and evaluated by in situ gauge data from 12 lakes in China. Results showed that the accuracy of the raw GDR data was limited due to outliers in most of the along-track segments. The outliers were generally significantly lower than the in situ values by several meters, and some by more than 30 m. Outlier detection, therefore, improves upon the accuracy of CryoSat-2 measurements. The concentrated PDF method was able to greatly improve the accuracy of CryoSat-2 measurements. The preprocessed CryoSat-2 measurements were able to observe lake levels with a high accuracy at nine of the twelve lakes, with an absolute mean difference of 0.09 m, an absolute standard deviation difference of 0.04 m, a mean root mean square error of 0.27 m, and a mean correlation coefficient of 0.84. Overall, the accuracy of CryoSat-2-derived lake levels was validated in China.
    [Show full text]
  • Sichuan/Gansu/Qinghai/Tibet (14 Days) We Love Road Journeys
    Tibetan Highlands: Sichuan/Gansu/Qinghai/Tibet (14 Days) We love road journeys. They are by far our favourite way of traveling. We think the world of western China and the countries that border on this region – think Vietnam, Lao, Thailand, Myanmar, for example. On the Road Experiences is all about sharing with like-minded travelers just how beautiful a road journey in these varied lands can be. Now turn the page to find out what we’ve come to love so much… p2 p3 Itinerary Map …where you will travel… p. 006 Yes, it is possible… p. 008 Journey of Discovery… p. 010 Day-by-day… p. 056 In closing... Any car you like, so long as it is an SUV… p. 077 Adventures and discoveries in local cuisines p. 078 What’s included/Best Months to Go... p. 080 Photo credits p. 083 p5 Itinerary Map Day1 Day8 Arrival in Chengdu – Dulan to Golmud – Apply for your temporary driving Across the Qaidam Basin to Golmud license and visit Chengdu’s beautiful Panda Reserve Day9 Golmud to Tuotuohe – Day2 Up, up, up - Onto the Plateau and Chengdu to Maerkang – into the highlands of Qinghai Through the valleys to the Gyarong Tibetan region Day10 Tuotuohe to Naqu – Day3 Cross the famous Tanggula Pass on Maerkang to Ruoergai – your way to Tibet itself Towards the very north of Sichuan on the way to Gansu Day11 Naqu to Damxung – Day4 Visit one of Tibet’s holiest lakes, Ruoergai to Xiahe – Lake Nam-tso Your first and only stop in Gansu province Day12 Damxung to Lhasa – Day5 Complete your journey with Xiahe to Qinghai’s capital, Xining – a beautiful drive to your final On your way to Qinghai destination Day6 Day13 Xining – In and around Lhasa – Spend a day in and around Xining for Visit Potala Palace and explore the a bit of rest and visit the spectacular old city of Lhasa Ta’er Monastery Day14 Day7 Depart from Lhasa – Xining to Dulan – Lift must go on...Farewell Lhasa On the way to Golmud..
    [Show full text]
  • Holocene Vegetation and Climate Change from a Lake Sediment Record 13 in the Tengger Sandy Desert, Northwest China
    YJARE : 2103 ARTICLE IN PRESS Journal of Arid Environments ] (]]]]) ]]]–]]] 1 Contents lists available at ScienceDirect 3 Journal of Arid Environments 5 7 journal homepage: www.elsevier.com/locate/jaridenv 9 11 Holocene vegetation and climate change from a lake sediment record 13 in the Tengger Sandy Desert, northwest China 15 Yan Zhao a,Ã, Zicheng Yu a,b, Fahu Chen a, Jiajia Li a 17 a MOE Key Laboratory of Western China’s Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China b Department of Earth and Environmental Sciences, Lehigh University, 31 Williams Drive, Bethlehem, PA 18015, USA 19 article info abstract 21 23 Article history: We present lithology and fossil pollen data from a 384 cm sediment section from Qingtu Received 18 December 2007 paleolake in arid northwest China and discuss their environmental interpretations. The Received in revised form chronology was controlled by four accelerator mass spectrometry (AMS) radiocarbon 25 21 April 2008 dates on peat and bulk lake sediments. Lithology changes suggest a general sequence of Accepted 23 June 2008 local environment shifts from a non-lake environment before 7200 cal yr BP, through a 27 shallow lake during 7200–3500 cal yr BP and a marsh during 3500–3000 cal yr BP, to a Keywords: sandy desert after 3000 cal yr BP. Fossil pollen assemblages suggest a steppe desert 29 Arid China during 7200–5200 cal yr BP, a period of rapid switches between upland and lowland Fossil pollen pollen types from 5200 to 3000 cal yr BP, and a desert since 3000 cal yr BP.
    [Show full text]
  • Silk Road 16-Day Tour (CIT007) English Itinerary
    China International Travel CA 中國國旅假期[加州] 2 West 5th Avenue / Lower Level Suite 200 (650) 513-1502 / fax (650) 513-1503 San Mateo, CA 94402 / www.chinatravelca.com (888) 648-1568 / [email protected] Silk Road 16-Day Tour (CIT007) Ürümqi 乌鲁木齐 – Turpan 吐鲁番 – Dunhuang 敦煌 – Jiayuguan 嘉峪关 – Lanzhou 兰州 – Xining 西宁 – Xi’an 西安 Note: The Chinese names listed in the itinerary are written with the simplified characters used in Mainland China. Day 1: U.S.A. – Beijing Today you will board a plane bound for China, where you will witness the vicissitudes of China’s five thousand-year history. Your tour will begin in the dynamic capital city of Beijing, a city that encompasses the vast range of China’s cultural styles. Day 2: Arrival in Beijing Today, after arriving in Beijing, you will be greeted at the airport by CIT’s professional bilingual tour guide and escorted to the hotel where you will be staying overnight. Beijing Accommodations: Grand Gongda Jianguo Hotel 工大建国 (5-Star) or equivalent http://www.bjut-hoteljianguo.com/en/hotelinfo.html Day 3: Beijing – Ürümqi Today you will take a flight to Ürümqi in northwestern China. After your arrival, you will visit the biggest bazaar in the area, where you can enjoy the wide variety of goods for sale and barter with the merchants. For dinner, we have arranged a meal of roasted whole lamb that is of better quality than the roasted lamb that travel agencies typically arrange in Turpan. Day 3 Attractions: bazaar (巴紮, bāzā) Special Arrangements: roasted whole lamb Ürümqi Accommodations: Mirage Hotel Ürümqi 美丽华酒店 (4-Star) or equivalent http://www.mirage-hotel.cn/yw/index.html Day 4: Ürümqi After breakfast, you will head to “the Pearl of the Tianshan Mountains,” Heavenly Lake, located at an elevation of 1,980 meters.
    [Show full text]
  • Water and Sediment Quality in Qinghai Lake, China: a Revisit After Half a Century
    Environ Monit Assess (2014) 186:2121–2133 DOI 10.1007/s10661-013-3522-7 Water and sediment quality in Qinghai Lake, China: a revisit after half a century Hongyi Ao & Chenxi Wu & Xiong Xiong & Liandong Jing & Xiaolong Huang & Kai Zhang & Jiantong Liu Received: 27 June 2013 /Accepted: 28 October 2013 /Published online: 9 November 2013 # Springer Science+Business Media Dordrecht 2013 Abstract Qinghai Lake, situated on the Qinghai–Tibet of C/N suggest that the organic matter in the sediments plateau, is the largest lake in China. In this study, the are primarily from autochthonous sources. TN and total water and sediment quality were investigated in Qinghai organic carbon in the sediment cores increased slowly Lake, three sublakes, and five major tributaries. Both up the core while TP and total inorganic carbon have Na+ and Cl− were found to be the major ions present in been fairly constant. Qinghai Lake and the three sublakes, while Ca2+ and HCO3− dominated the tributaries. Compared with his- Keywords Water and sediment quality. Qinghai Lake . + torical data from the 1960s, the concentrations of NH4 , Ion composition − NO3 , and soluble reactive silica have increased consid- erably, likely caused by increased human activities in the area. Compared to the historical data, chemical Introduction oxygen demand has increased and lake water transpar- ency has decreased, likely related to an increase in Qinghai Lake (36°32′−37°15′N and 99°36′–100°47′E) nutrient levels. Relatively high concentrations of total isaremoteclosedsemisalineinlandlakesituatedonthe nitrogen (TN) and total phosphorus (TP) were observed Qinghai–Tibet plateau at an altitude of about 3,200 m.
    [Show full text]
  • Supplementary Material Herzschuh Et Al., 2019 Position and Orientation Of
    Supplementary Material Herzschuh et al., 2019 Position and orientation of the westerly jet determined Holocene rainfall patterns in China Nature Communications Supplementary Tables Supplementary Tab. 1 Summary statistics for canonical correspondence analyses for the whole dataset from China and Mongolia (Cao et al., 2014). Pann – annual precipitation, Mtwa – mean temperature of the warmest month; Mtco – mean temperature of the coldest month; Tann mean annual temperature, Pamjjas – precipitation between March and September, Pamjjas – precipitation between June and August. Results indicate that Pann explains most variance in the modern pollen dataset. Neither temperature nor seasonal precipitation explains more variance. Climatic variables as sole Marginal contribution based on VIF VIF predictor climatic variables Climatic 1/2 variables (without (add Explained Explained Tann) Tann) variance P-value variance P-value (%) (%) Pann 3.8 3.8 1.58 4.9 0.005 1.50 0.005 Mtco 4.3 221.7 1.36 4.2 0.005 0.67 0.005 Mtwa 1.5 116.6 0.61 2.7 0.005 1.30 0.005 Tann - 520.4 - - - - Pamjjas - - 1.50 4.9 0.005 Pjja - - 1.30 4.4 0.005 Cao, X., Herzschuh, U., Telford, R.J., Ni, J. A modern pollen-climate dataset from China and Mongolia: assessing its potential for climate reconstruction. Review of Palaeobotany and Palynology 211, 87-96 (2014). Supplementary Tab. 2 Summary statistics for canonical correspondence analyses for the southern China dataset <30°N (Cao et al., 2014). Pann – annual precipitation, Mtwa – mean temperature of the warmest month; Mtco – mean temperature of the coldest month; Tann mean annual temperature.
    [Show full text]
  • Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors
    Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors Dictionary of Geotourism With 635 Figures and 12 Tables Editors Anze Chen Young Ng Chinese Academy of Geological Sciences The Geological Society of Australia Beijing, China Sydney, NSW, Australia Erkuang Zhang Mingzhong Tian The Geological Society of China China University of Geosciences Beijing, China Beijing, China ISBN 978-981-13-2537-3 ISBN 978-981-13-2538-0 (eBook) ISBN 978-981-13-2539-7 (print and electronic bundle) https://doi.org/10.1007/978-981-13-2538-0 Jointly published with Science Press, Beijing, China ISBN: 978-7-03-058981-1 Science Press, Beijing, China © Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for gecneral use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Wild Bird Migration Across the Qinghai-Tibetan Plateau: a Transmission Route for Highly Pathogenic H5N1
    Wild Bird Migration across the Qinghai-Tibetan Plateau: A Transmission Route for Highly Pathogenic H5N1 Diann J. Prosser1,2*, Peng Cui3,4, John Y. Takekawa5, Mingjie Tang6,4, Yuansheng Hou7, Bridget M. Collins1, Baoping Yan6, Nichola J. Hill5, Tianxian Li8, Yongdong Li8, Fumin Lei3, Shan Guo9, Zhi Xing7, Yubang He7, Yuanchun Zhou6, David C. Douglas10, William M. Perry5, Scott H. Newman11 1 Patuxent Wildlife Research Center, United States Geological Survey, Beltsville, Maryland, United States of America, 2 Marine Estuarine Environmental Sciences, University of Maryland, College Park, Maryland, United States of America, 3 Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 4 Graduate School, Chinese Academy of Sciences, Beijing, China, 5 Western Ecological Research Center, United States Geological Survey, Vallejo, California, United States of America, 6 Computer Network Information Center, Chinese Academy of Sciences, Beijing, China, 7 Qinghai Lake National Nature Reserve, State Forestry Administration, Xining, Qinghai, China, 8 Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China, 9 Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing, China, 10 Alaska Science Center, United States Geological Survey, Juneau, Alaska, United States of America, 11 EMPRES Wildlife Unit, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy Abstract Background: Qinghai Lake in central China has been at the center of debate on whether wild birds play a role in circulation of highly pathogenic avian influenza virus H5N1. In 2005, an unprecedented epizootic at Qinghai Lake killed more than 6000 migratory birds including over 3000 bar-headed geese (Anser indicus).
    [Show full text]