On Geodesics in Riemannian Geometry

Total Page:16

File Type:pdf, Size:1020Kb

On Geodesics in Riemannian Geometry Lectures on Geodesics Riemannian Geometry By M. Berger Lectures on Geodesics Riemannian Geometry By M. Berger No part of this book may be reproduced in any form by print, microfilm or any other means with- out written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 5 Tata Institute of Fundamental Research Bombay 1965 Introduction The main topic of these notes is geodesics. Our aim is twofold. The first is to give a fairly complete treatment of the foundations of rieman- nian geometry through the tangent bundle and the geodesic flow on it, following the path sketched in [2] and [19]. We construct the canonical spray of a riemannian manifold (M, g) as the vector field G on T(M) defined by the equation 1 i(G) dα = dE, · −2 where i(G) dα denotes the interior product by G of the exterior deriva- · tive dα of the canonical form α on (M, g) (see (III.6)) and E the energy (square of the norm) on T(M). Then the canonical connection is intro- duced as the unique symmetric connection whose associated spray is G. The second is to give global results for riemannian manifolds which are subject to geometric conditions of various types; these conditions involve essentially geodesics. These global results are contained in Chapters IV, VII and VIII. Chapter IV contains first the description of the geodesics in a symmetric compact space of rank one (called here an S.C.-manifold) and the de- scription of Zoll’s surface (a riemannian manifold, homeomorphic to the two-dimensional sphere, non isometric to it and all of whose geodesics through every point are closed). Then we sketch results of Samelson and Bott to the effect that a riemannian manifold all of whose geodesics are closed has a cohomology ring close to that of an S.C.-manifold. In Chapter VII are contained the Hopf-Rinow theorem, the existence of a closed geodesic in a non-zero free homotopy class of a compact rie- iii iv Introduction mannian manifold, and the isometry between two simply connected and complete riemannian manifolds of the same constant sectional curva- ture. In Chapter VIII one will find theorems of Myers and Synge, the Gauss-Bonnet formula and a result on complete riemannian manifolds of non-positive curvature. Then come the theorem of L.W. Green, which asserts that, on the two-dimensional real-projective space, a riemannian structure all of whose geodesics are closed has to be isometric to the standard one, and the theorem of E. Hopf: on the two-dimensional torus, a riemannian structure all of whose geodesics are without conju- gate points has to be a flat one. As a counterpoint we have quoted the work of Busemann which shows that the theorems of Green and Hopf pertain to the realm of riemannian geometry, for they no longer hold good in G-spaces (see (VIII.10)). However, the result on complete man- ifolds with non-positive curvature is still valid in G-spaces. We have included in Chapter VIII theorems of Loewner and Pu, which are “isoperimetric” inequalities on the two dimensional torus and the two-dimensional real projective space (equality implying isometry with the standard riemannian structures on these manifolds). These re- sults do not involve geodesics explicitly, but have been included for their great geometric interest. One should also note that the results of Green, Hopf, Loewner and Pu are two-dimensional and so lead to interesting problems in higher dimensions. The tools needed for these results are developed in various chapters: Jacobi fields, sectional curvature, the second variation formula play an important role; see also the formulas in (VIII.4) and (VIII.8). The reference for calculus is [36]; references for differential and rie- mannian geometry are [14]; [16], [17], [18], [19], [21], [33], [35], and lectures notes of I.M.Singer and a seminar held at Strasbourg University. We have used some of these references without detailed acknowledge- ment. I am greatly indebted to N. Bourbaki, P. Cartier and J.L. Koszul for communication and permission to use ideas and results of theirs on connections. For most valuable help I am glad to thank here P. Cartier, J.L. Koszul, N. Kuiper and D. Lehmann. Contents Introduction iii 0 Preliminaries 1 1 .............................. 1 2 Forms........................... 6 3 Integration......................... 9 4 .............................. 14 5 Curves........................... 21 6 Flows ........................... 24 1 Sprays 27 1 Definition.......................... 27 2 Geodesics ......................... 29 3 Expressions for the spray in local coordinates . 31 4 The exponential map . 33 2 Linear connections 37 1 Linear connection . 37 2 Connection in terms of the local coordinates . 41 3 Covariant derivation . 43 4 The derivation law . 48 5 Curvature ......................... 53 6 Convexity ......................... 60 7 Parallel transport . 65 8 Jacobifields........................ 69 v vi Contents 3 Riemannian manifolds 81 2 Examples ......................... 85 3 Symmetricpairs...................... 87 4 TheS.C.-manifolds ..... ..... ...... .... 94 5 Volumes..........................100 6 The canonical forms α and dα ..............104 7 Theunitbundle ......................109 8 Expressions in local coordinates . 110 4 Geodesics 113 1 The first variation . 113 2 The canonical spray on an r.m.(M, g)...........117 3 First consequences of the definition . 122 4 Geodesics in a symmetric pair . 124 5 Geodesics in S.C.-manifolds . 127 6 Results of Samelson and Bott . 130 7 Expressions for G in local coordinates . 139 8 Zoll’ssurface .......................142 5 Canonical connection 151 2 Riemannian structures on T(M) and U(M)........156 3 Dg = 0...........................162 4 Consequences of Dg = 0 .................165 5 Curvature .........................167 6 Jacobi fields in an r.m. 169 6 Sectional Curvature 179 2 Examples .........................181 3 Geometric interpretation . 184 4 A criterion for local isometry . 187 5 Jacobi fields in symmetric pairs . 195 6 Sectional curvature of S.C.-manifolds . 197 7 Volumes of S.C.manifolds . 199 8 Ricci and Scalar curvature . 206 Contents vii 7 The metric structure 213 2 The metric structure . 221 3 Niceballs .........................223 4 Hopf-Rinow theorem . 230 5 A covering criterion . 235 6 Closed geodesics . 239 7 Manifolds with constant sectional curvature . 246 8 Some formulas and applications 249 1 The second variation formula . 249 2 Second variation versus Jacobi fields . 254 3 The theorems of Synge and Myers . 261 4 Aformula.........................266 5 Index of a vector field . 272 6 Gauss-Bonnet formula . 274 7 E.Hops’stheorem ... ..... ...... ..... ..280 8 Anotherformula.... ..... ...... ..... ..282 9 L.W.Green’s theorem . 288 10 Concerning G-spaces ...................292 11 Conformal representation . 294 12 The theorems of Loewner and Pu . 299 Chapter 0 Preliminaries 1 1 In this chapter we formulate certain notions connected with the notion of a manifold in a form we need later on and fix some notations and conventions. By means of a basis we identify a d-dimensional real vector space with set Rd of all d-tuples of real numbers with the standard vector V space structure and denote the element with 1 in the ith place and zeros elsewhere by e . Then e form a basis of Rd, we call it the canonical i { i} basis of Rd, and its dual basis (u1,..., ud) the canonical coordinate sys- tem in Rd. (For R(= R1) we set u1 = t). With this identification any real vector space becomes a manifold and this structure is independent of the basis chosen. A manifold will always be a C∞-manifold which is Hausdorff, para compact and of constant dimension d. Generally we denote it by M, a typical chart of it by (U, r) and local coordinates with respect to (U, r) by xi = ui r. Let us note that because of para compactness partitions ◦ of unity for M exist. We denote the tangent space of M at a by Ta(M) and define the tangent bundle T(M) of M to be (0.1.1) x = T(M) { } a[M x [Ta(M) ∈ ∈ and call elements of T(M) vectors of M. Then we have the natural 1 2 Preliminaries projection map pM (or simply p) from T(M) onto M which takes every vector of M at a onto a. 2 We denote the set of all maps (C∞-maps, differentiable maps) of a manifold M into a manifold N byD(M, N) and when N = R we write F(M) for D(M, R). Every f in D(M, N) induces a map of F(N) into F(M) defined by g g f → ◦ and this in turn a map f T of T(M) into T(N) defined by the equation (0.1.2) ( f T (x))(g) = x(g f ), g F(N). ◦ ∈ Then we have the following commutative diagram f T T(M) / T(N) (0.1.3) pM pN f M / N 1.4 T Let us note that if f restricted to Tm(M) is one-one then we can choose a local coordinate system (x1,..., xe) for N at n = f (m) such that xi f { ◦ } (i = 1,..., d) form a local coordinate system at m for M. Also if f T restricted to Tm(M) is onto Tn(N) then we can choose a local coordinate system (x1,..., xd) for M at m and a local coordinate system (y1,..., ye) for N at n such that xi = yi f , i = 1,..., 0. ◦ 1.5 We call a manifold N a sub manifold of M if 3 1) N M, ⊂ 2) the topology on N is induced by that on M, 1. 3 3) to each point p of N there is a chart (Up, rp) in the atlas of M such that for some positive integer k r (N U ) = (x ) r (U ) x + = ..
Recommended publications
  • The Grassmann Manifold
    The Grassmann Manifold 1. For vector spaces V and W denote by L(V; W ) the vector space of linear maps from V to W . Thus L(Rk; Rn) may be identified with the space Rk£n of k £ n matrices. An injective linear map u : Rk ! V is called a k-frame in V . The set k n GFk;n = fu 2 L(R ; R ): rank(u) = kg of k-frames in Rn is called the Stiefel manifold. Note that the special case k = n is the general linear group: k k GLk = fa 2 L(R ; R ) : det(a) 6= 0g: The set of all k-dimensional (vector) subspaces ¸ ½ Rn is called the Grassmann n manifold of k-planes in R and denoted by GRk;n or sometimes GRk;n(R) or n GRk(R ). Let k ¼ : GFk;n ! GRk;n; ¼(u) = u(R ) denote the map which assigns to each k-frame u the subspace u(Rk) it spans. ¡1 For ¸ 2 GRk;n the fiber (preimage) ¼ (¸) consists of those k-frames which form a basis for the subspace ¸, i.e. for any u 2 ¼¡1(¸) we have ¡1 ¼ (¸) = fu ± a : a 2 GLkg: Hence we can (and will) view GRk;n as the orbit space of the group action GFk;n £ GLk ! GFk;n :(u; a) 7! u ± a: The exercises below will prove the following n£k Theorem 2. The Stiefel manifold GFk;n is an open subset of the set R of all n £ k matrices. There is a unique differentiable structure on the Grassmann manifold GRk;n such that the map ¼ is a submersion.
    [Show full text]
  • On the Projective Geometry of Sprays
    Differential Geometry and its Applications 12 (2000) 185–206 185 North-Holland View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector On the projective geometry of sprays J. Szilasi1 and Sz. Vattam´any Institute of Mathematics and Informatics, Lajos Kossuth University, H-4010 Debrecen, P.O.B. 12, Hungary Communicated by M. Modugno Received 8 March 1999 Abstract: After a careful study of the mixed curvatures of the Berwald-type (in particular, Berwald) connec- tions, we present an axiomatic description of the so-called Yano-type Finsler connections. Using the Yano connection, we derive an intrinsic expression of Douglas’ famous projective curvature tensor and we also represent it in terms of the Berwald connection. Utilizing a clever observation of Z. Shen, we show in a coordinate-free manner that a “spray manifold” is projectively equivalent to an affinely connected manifold iff its Douglas tensor vanishes. From this result we infer immediately that the vanishing of the Douglas tensor implies that the projective Weyl tensor of the Berwald connection “depends only on the position”. Keywords: Horizontal endomorphisms, Berwald endomorphisms, sprays, Finsler connections, Berwald-type connections, Yano-type connections, Douglas tensor, projective Weyl tensor. MS classification: 53C05, 53C60. Introduction In the context of affinely connected manifolds, i.e., in manifolds endowed with a linear con- nection, a “projective curvature tensor” with zero trace has already been constructed by H. Weyl [18]. The vanishing of this famous tensor, called Weyl tensor, characterizes the “projec- tively flat manifolds”. The nonlinear generalizations of the affinely connected manifolds, i.e., manifolds endowed with a nonlinear connection, have also been playing an increasing role in differential geometry and its applications since the twenties.
    [Show full text]
  • “Geodesic Principle” in General Relativity∗
    A Remark About the “Geodesic Principle” in General Relativity∗ Version 3.0 David B. Malament Department of Logic and Philosophy of Science 3151 Social Science Plaza University of California, Irvine Irvine, CA 92697-5100 [email protected] 1 Introduction General relativity incorporates a number of basic principles that correlate space- time structure with physical objects and processes. Among them is the Geodesic Principle: Free massive point particles traverse timelike geodesics. One can think of it as a relativistic version of Newton’s first law of motion. It is often claimed that the geodesic principle can be recovered as a theorem in general relativity. Indeed, it is claimed that it is a consequence of Einstein’s ∗I am grateful to Robert Geroch for giving me the basic idea for the counterexample (proposition 3.2) that is the principal point of interest in this note. Thanks also to Harvey Brown, Erik Curiel, John Earman, David Garfinkle, John Manchak, Wayne Myrvold, John Norton, and Jim Weatherall for comments on an earlier draft. 1 ab equation (or of the conservation principle ∇aT = 0 that is, itself, a conse- quence of that equation). These claims are certainly correct, but it may be worth drawing attention to one small qualification. Though the geodesic prin- ciple can be recovered as theorem in general relativity, it is not a consequence of Einstein’s equation (or the conservation principle) alone. Other assumptions are needed to drive the theorems in question. One needs to put more in if one is to get the geodesic principle out. My goal in this short note is to make this claim precise (i.e., that other assumptions are needed).
    [Show full text]
  • On Manifolds of Tensors of Fixed Tt-Rank
    ON MANIFOLDS OF TENSORS OF FIXED TT-RANK SEBASTIAN HOLTZ, THORSTEN ROHWEDDER, AND REINHOLD SCHNEIDER Abstract. Recently, the format of TT tensors [19, 38, 34, 39] has turned out to be a promising new format for the approximation of solutions of high dimensional problems. In this paper, we prove some new results for the TT representation of a tensor U ∈ Rn1×...×nd and for the manifold of tensors of TT-rank r. As a first result, we prove that the TT (or compression) ranks ri of a tensor U are unique and equal to the respective seperation ranks of U if the components of the TT decomposition are required to fulfil a certain maximal rank condition. We then show that d the set T of TT tensors of fixed rank r forms an embedded manifold in Rn , therefore preserving the essential theoretical properties of the Tucker format, but often showing an improved scaling behaviour. Extending a similar approach for matrices [7], we introduce certain gauge conditions to obtain a unique representation of the tangent space TU T of T and deduce a local parametrization of the TT manifold. The parametrisation of TU T is often crucial for an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems [33]. We conclude with remarks on those applications and present some numerical examples. 1. Introduction The treatment of high-dimensional problems, typically of problems involving quantities from Rd for larger dimensions d, is still a challenging task for numerical approxima- tion. This is owed to the principal problem that classical approaches for their treatment normally scale exponentially in the dimension d in both needed storage and computa- tional time and thus quickly become computationally infeasable for sensible discretiza- tions of problems of interest.
    [Show full text]
  • Geodesic Spheres in Grassmann Manifolds
    GEODESIC SPHERES IN GRASSMANN MANIFOLDS BY JOSEPH A. WOLF 1. Introduction Let G,(F) denote the Grassmann manifold consisting of all n-dimensional subspaces of a left /c-dimensional hermitian vectorspce F, where F is the real number field, the complex number field, or the algebra of real quater- nions. We view Cn, (1') tS t Riemnnian symmetric space in the usual way, and study the connected totally geodesic submanifolds B in which any two distinct elements have zero intersection as subspaces of F*. Our main result (Theorem 4 in 8) states that the submanifold B is a compact Riemannian symmetric spce of rank one, and gives the conditions under which it is a sphere. The rest of the paper is devoted to the classification (up to a global isometry of G,(F)) of those submanifolds B which ure isometric to spheres (Theorem 8 in 13). If B is not a sphere, then it is a real, complex, or quater- nionic projective space, or the Cyley projective plane; these submanifolds will be studied in a later paper [11]. The key to this study is the observation thut ny two elements of B, viewed as subspaces of F, are at a constant angle (isoclinic in the sense of Y.-C. Wong [12]). Chapter I is concerned with sets of pairwise isoclinic n-dimen- sional subspces of F, and we are able to extend Wong's structure theorem for such sets [12, Theorem 3.2, p. 25] to the complex numbers nd the qua- ternions, giving a unified and basis-free treatment (Theorem 1 in 4).
    [Show full text]
  • General Relativity Fall 2019 Lecture 13: Geodesic Deviation; Einstein field Equations
    General Relativity Fall 2019 Lecture 13: Geodesic deviation; Einstein field equations Yacine Ali-Ha¨ımoud October 11th, 2019 GEODESIC DEVIATION The principle of equivalence states that one cannot distinguish a uniform gravitational field from being in an accelerated frame. However, tidal fields, i.e. gradients of gravitational fields, are indeed measurable. Here we will show that the Riemann tensor encodes tidal fields. Consider a fiducial free-falling observer, thus moving along a geodesic G. We set up Fermi normal coordinates in µ the vicinity of this geodesic, i.e. coordinates in which gµν = ηµν jG and ΓνσjG = 0. Events along the geodesic have coordinates (x0; xi) = (t; 0), where we denote by t the proper time of the fiducial observer. Now consider another free-falling observer, close enough from the fiducial observer that we can describe its position with the Fermi normal coordinates. We denote by τ the proper time of that second observer. In the Fermi normal coordinates, the spatial components of the geodesic equation for the second observer can be written as d2xi d dxi d2xi dxi d2t dxi dxµ dxν = (dt/dτ)−1 (dt/dτ)−1 = (dt/dτ)−2 − (dt/dτ)−3 = − Γi − Γ0 : (1) dt2 dτ dτ dτ 2 dτ dτ 2 µν µν dt dt dt The Christoffel symbols have to be evaluated along the geodesic of the second observer. If the second observer is close µ µ λ λ µ enough to the fiducial geodesic, we may Taylor-expand Γνσ around G, where they vanish: Γνσ(x ) ≈ x @λΓνσjG + 2 µ 0 µ O(x ).
    [Show full text]
  • INTRODUCTION to ALGEBRAIC GEOMETRY 1. Preliminary Of
    INTRODUCTION TO ALGEBRAIC GEOMETRY WEI-PING LI 1. Preliminary of Calculus on Manifolds 1.1. Tangent Vectors. What are tangent vectors we encounter in Calculus? 2 0 (1) Given a parametrised curve α(t) = x(t); y(t) in R , α (t) = x0(t); y0(t) is a tangent vector of the curve. (2) Given a surface given by a parameterisation x(u; v) = x(u; v); y(u; v); z(u; v); @x @x n = × is a normal vector of the surface. Any vector @u @v perpendicular to n is a tangent vector of the surface at the corresponding point. (3) Let v = (a; b; c) be a unit tangent vector of R3 at a point p 2 R3, f(x; y; z) be a differentiable function in an open neighbourhood of p, we can have the directional derivative of f in the direction v: @f @f @f D f = a (p) + b (p) + c (p): (1.1) v @x @y @z In fact, given any tangent vector v = (a; b; c), not necessarily a unit vector, we still can define an operator on the set of functions which are differentiable in open neighbourhood of p as in (1.1) Thus we can take the viewpoint that each tangent vector of R3 at p is an operator on the set of differential functions at p, i.e. @ @ @ v = (a; b; v) ! a + b + c j ; @x @y @z p or simply @ @ @ v = (a; b; c) ! a + b + c (1.2) @x @y @z 3 with the evaluation at p understood.
    [Show full text]
  • Chapter 13 Curvature in Riemannian Manifolds
    Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + .
    [Show full text]
  • DIFFERENTIAL GEOMETRY COURSE NOTES 1.1. Review of Topology. Definition 1.1. a Topological Space Is a Pair (X,T ) Consisting of A
    DIFFERENTIAL GEOMETRY COURSE NOTES KO HONDA 1. REVIEW OF TOPOLOGY AND LINEAR ALGEBRA 1.1. Review of topology. Definition 1.1. A topological space is a pair (X; T ) consisting of a set X and a collection T = fUαg of subsets of X, satisfying the following: (1) ;;X 2 T , (2) if Uα;Uβ 2 T , then Uα \ Uβ 2 T , (3) if Uα 2 T for all α 2 I, then [α2I Uα 2 T . (Here I is an indexing set, and is not necessarily finite.) T is called a topology for X and Uα 2 T is called an open set of X. n Example 1: R = R × R × · · · × R (n times) = f(x1; : : : ; xn) j xi 2 R; i = 1; : : : ; ng, called real n-dimensional space. How to define a topology T on Rn? We would at least like to include open balls of radius r about y 2 Rn: n Br(y) = fx 2 R j jx − yj < rg; where p 2 2 jx − yj = (x1 − y1) + ··· + (xn − yn) : n n Question: Is T0 = fBr(y) j y 2 R ; r 2 (0; 1)g a valid topology for R ? n No, so you must add more open sets to T0 to get a valid topology for R . T = fU j 8y 2 U; 9Br(y) ⊂ Ug: Example 2A: S1 = f(x; y) 2 R2 j x2 + y2 = 1g. A reasonable topology on S1 is the topology induced by the inclusion S1 ⊂ R2. Definition 1.2. Let (X; T ) be a topological space and let f : Y ! X.
    [Show full text]
  • Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes Jean-Daniel Boissonnat, Leonidas J
    Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes Jean-Daniel Boissonnat, Leonidas J. Guibas, Steve Oudot To cite this version: Jean-Daniel Boissonnat, Leonidas J. Guibas, Steve Oudot. Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes. Discrete and Computational Geometry, Springer Verlag, 2009, pp.37. hal-00488434 HAL Id: hal-00488434 https://hal.archives-ouvertes.fr/hal-00488434 Submitted on 2 Jun 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes Jean-Daniel Boissonnat Leonidas J. Guibas Steve Y. Oudot INRIA, G´eom´etrica Team Dept. Computer Science Dept. Computer Science 2004 route des lucioles Stanford University Stanford University 06902 Sophia-Antipolis, France Stanford, CA 94305 Stanford, CA 94305 [email protected] [email protected] [email protected]∗ Abstract It is a well-established fact that the witness complex is closely related to the restricted Delaunay triangulation in low dimensions. Specifically, it has been proved that the witness complex coincides with the restricted Delaunay triangulation on curves, and is still a subset of it on surfaces, under mild sampling conditions. In this paper, we prove that these results do not extend to higher-dimensional manifolds, even under strong sampling conditions such as uniform point density.
    [Show full text]
  • Unique Properties of the Geodesic Dome High
    Printing: This poster is 48” wide by 36” Unique Properties of the Geodesic Dome high. It’s designed to be printed on a large-format printer. Verlaunte Hawkins, Timothy Szeltner || Michael Gallagher Washkewicz College of Engineering, Cleveland State University Customizing the Content: 1 Abstract 3 Benefits 4 Drawbacks The placeholders in this poster are • Among structures, domes carry the distinction of • Consider the dome in comparison to a rectangular • Domes are unable to be partitioned effectively containing a maximum amount of volume with the structure of equal height: into rooms, and the surface of the dome may be formatted for you. Type in the minimum amount of material required. Geodesic covered in windows, limiting privacy placeholders to add text, or click domes are a twentieth century development, in • Geodesic domes are exceedingly strong when which the members of the thin shell forming the considering both vertical and wind load • Numerous seams across the surface of the dome an icon to add a table, chart, dome are equilateral triangles. • 25% greater vertical load capacity present the problem of water and wind leakage; SmartArt graphic, picture or • 34% greater shear load capacity dampness within the dome cannot be removed • This union of the sphere and the triangle produces without some difficulty multimedia file. numerous benefits with regards to strength, • Domes are characterized by their “frequency”, the durability, efficiency, and sustainability of the number of struts between pentagonal sections • Acoustic properties of the dome reflect and To add or remove bullet points structure. However, the original desire for • Increasing the frequency of the dome closer amplify sound inside, further undermining privacy from text, click the Bullets button widespread residential, commercial, and industrial approximates a sphere use was hindered by other practical and aesthetic • Zoning laws may prevent construction in certain on the Home tab.
    [Show full text]
  • Hodge Theory
    HODGE THEORY PETER S. PARK Abstract. This exposition of Hodge theory is a slightly retooled version of the author's Harvard minor thesis, advised by Professor Joe Harris. Contents 1. Introduction 1 2. Hodge Theory of Compact Oriented Riemannian Manifolds 2 2.1. Hodge star operator 2 2.2. The main theorem 3 2.3. Sobolev spaces 5 2.4. Elliptic theory 11 2.5. Proof of the main theorem 14 3. Hodge Theory of Compact K¨ahlerManifolds 17 3.1. Differential operators on complex manifolds 17 3.2. Differential operators on K¨ahlermanifolds 20 3.3. Bott{Chern cohomology and the @@-Lemma 25 3.4. Lefschetz decomposition and the Hodge index theorem 26 Acknowledgments 30 References 30 1. Introduction Our objective in this exposition is to state and prove the main theorems of Hodge theory. In Section 2, we first describe a key motivation behind the Hodge theory for compact, closed, oriented Riemannian manifolds: the observation that the differential forms that satisfy certain par- tial differential equations depending on the choice of Riemannian metric (forms in the kernel of the associated Laplacian operator, or harmonic forms) turn out to be precisely the norm-minimizing representatives of the de Rham cohomology classes. This naturally leads to the statement our first main theorem, the Hodge decomposition|for a given compact, closed, oriented Riemannian manifold|of the space of smooth k-forms into the image of the Laplacian and its kernel, the sub- space of harmonic forms. We then develop the analytic machinery|specifically, Sobolev spaces and the theory of elliptic differential operators|that we use to prove the aforementioned decom- position, which immediately yields as a corollary the phenomenon of Poincar´eduality.
    [Show full text]