Selecting the Appropriate Study Design for Your Research: Descriptive Study Designs

Total Page:16

File Type:pdf, Size:1020Kb

Selecting the Appropriate Study Design for Your Research: Descriptive Study Designs [Downloaded free from http://www.thejhs.org on Tuesday, August 09, 2016, IP: 41.128.165.40] Original Article Selecting the appropriate study design for your research: Descriptive study designs Aamir Omair Department of Medical Education, Research Unit, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia ABSTRACT This article describes the importance of selecting the appropriate epidemiological study design for a given study question. It provides an explanation to the different terms used in describing study designs with regards to observational versus interventional and descriptive versus analytical types of study designs. This article focuses on the description of the different types of descriptive study designs, that is, case report, case series, correlational, and cross-sectional study designs. The requirements for selecting these study designs are discussed along with the advantages and disadvantages of each study design. The descriptive studies are similar in the context that they are based on a single sample with no comparative group within the study design. Their basic purpose is to describe the characteristics of the sample with regards to the characteristics that are present and so are useful in generating a hypothesis. The absence of a comparative group is the main limitation of the descriptive studies, and this is the reason they cannot be used to determine an association by testing a hypothesis showing a relationship between a risk factor and disease. The analytical study designs will be discussed in the next article in this series. Keywords: Case report, case series, correlational study, cross-sectional study INTRODUCTION research and the next article in this series will focus on analytical study designs. One of the basic issues in deciding how to conduct a study is to first determine the appropriate epidemiological The quantitative research study designs are broadly study design for achieving the stated aim and objectives classified either as descriptive versus analytical study of the proposed research question.[1] Choosing the designs or as observational versus interventional. Study right study design is the most important decision to designs are arranged in a hierarchy starting from the make in determining the methodology of any research basic ‘Case Report’ to the highly valued ‘Randomised study. This is important for the way in which the Clinical Trial’[4] as shown in Table 1. Before discussing study will be conducted, especially the sampling the advantages and disadvantages of each study design, and data analysis.[2,3] Study designs are different for it is important to understand what is meant by the qualitative and quantitative research. The qualitative terms ‘descriptive’, ‘analytical’, ‘observational’, and study designs will be discussed separately in an article ‘interventional’, as used to classify the different types on qualitative research. This article will describe the of study. types of descriptive study designs used in quantitative Access this article online CLASSIFICATION OF STUDY DESIGNS Quick Response Code: Website: Descriptive study designs are useful for simply www.thejhs.org describing the desired characteristics of the sample that is being studied, e.g., an abnormal presentation of a disease in a case report or a case series which includes DOI: a collection of cases with the same disease/condition. 10.4103/1658-600X.159892 A descriptive study may also try to generalise the findings from a representative sample to a larger target Address for correspondence: population as in a cross-sectional survey.[5] The common Dr. Aamir Omair, Department of Medical Education, Research Unit, aspect between the descriptive study designs is that King Saud bin Abdulaziz University for Health Sciences, there is only one single sample without any comparison Riyadh, Saudi Arabia. group.[6] Analytical study designs, on the other hand, E-mail: [email protected] start with the presumption of comparing two or more Journal of Health Specialties / July 2015 / Vol 3 | Issue 3 153 [Downloaded free from http://www.thejhs.org on Tuesday, August 09, 2016, IP: 41.128.165.40] Omair: Descriptive study designs groups and follows them over a period of time. The term Table 1: The hierarchy of epidemiological study designs retrospective refers to a collection of data pertaining to Observational studies Strength of events which have occurred in the past, irrespective of evidence how/when the subjects are enrolled in the study. Hence, Descriptive study designs it is more appropriate to reserve the terms prospective [9] Case report Single case and retrospective only for cohort studies. Case series Collection of similar cases Correlational Population based study - using The choice of the appropriate study design depends secondary data upon the way the research question is stated.[1] It is Cross-sectional Single sample from larger important to note here that different study designs (descriptive) population- no comparison may be applicable for the same research problem, but Analytical study designs it is the way that the research question is framed that Cross-sectional Single sample from larger determines which study design is most appropriate. It (analytical) population-compares two or more groups in the sample should also be added that there are many grey areas in Case-control Compares risk factors which researchers may differ in opinion about the type between diseased (cases) and of study design, but the important factors to consider non-diseased (controls) groups include the research question as well as the way the Cohort Compares outcomes between subjects were selected for the study.[3,6] We will consider groups exposed and non-exposed to a risk factor for a disease ‘shisha smoking and heart disease’ as an example for Interventional study identifying the application of the different types of Clinical trial Investigator allots the subjects study design in this article. The research problem is to different groups - intervention that the practice of shisha (hubble-bubble) smoking is versus non-intervention becoming very common and is not considered by the general public as a serious health problem as compared groups and the samples are selected accordingly from to cigarette smoking. the different groups. These groups may be based on people who are diseased/not diseased for a ‘case-control CASE REPORT/CASE SERIES study’, or they may be based on people who are exposed/ A case report in this example may just present a study not exposed to a particular risk factor in a ‘cohort of a young adult aged less than 30 years who has study’.[3] A clinical trial is the third type of analytical been smoking shisha since the age of 8 years with his study design in which one group is considered as elder brothers. The case report is a presentation of an the intervention (or experimental) group, which is abnormal finding or outcome which, otherwise, would compared to the non-intervention group (comparison) not be present. It describes the case in detail presenting [7] group. the abnormal findings but is generally limited in demonstrating an association between the risk factor A clinical trial is classified as an ‘interventional’ and the disease.[10] The argument is that this finding study because the investigator determines who is may be due to chance or coincidence, without there to be placed in the experimental or the comparison being a real association between the risk factor and group. All the other types of study designs are the outcome. Another example may be of an adverse classified as ‘observational’ since the investigator (or beneficial) side-effect of a new drug, which may only labels a subject as being diseased/non-diseased not have been documented before. These case reports or exposed/non-exposed based on his/her previous are useful in identifying a new phenomenon and the status.[8] The terms prospective and retrospective, as reporting of similar cases from other observers, thereby applicable to epidemiological study designs, refer to helping generate a hypothesis for the association whether a subject is being followed up in the future or between exposure and outcome.[10] are being asked/investigated about events or exposure in the past.[8] These terms are now used only for the A “Case Series” is a collection of cases with the same cohort studies among the different observational outcome/finding. The general number of cases reported study designs. The collection of subjects or data in the in a case series range from 20 to 50, but may vary from future does not classify a study as ‘prospective’ so it is as few as 5 to as many as more than 100. In the above not appropriate to classify a cross-sectional study as example, a study may show a number of young adult a prospective study even though the subjects may be ‘shisha smokers’ presenting with heart disease. These enrolled over a period of time. An interventional study kind of studies are more useful than case reports design such as a clinical trial is generally prospective in generating a viable hypothesis for an association since the investigator assigns the subjects to different between exposure and outcome.[11] However, there is 154 Journal of Health Specialties / July 2015 / Vol 3 | Issue 3 [Downloaded free from http://www.thejhs.org on Tuesday, August 09, 2016, IP: 41.128.165.40] Omair: Descriptive study designs still a chance of this being only an incidental finding Correlational studies have the advantage of being quick and the real reason may be due to some ‘other’ common and inexpensive since they are based on secondary factor. For example in the above study, there may be data, which is already available from different sources. other risk factors such as cigarette smoking, lack of However, it should be kept in mind that any probable exercise, unhealthy diet and family history, etc. The association shown in the correlational studies might main limitation of a case series study is the absence of be due to some other underlying factor and not due a comparative group.
Recommended publications
  • TUTORIAL in BIOSTATISTICS: the Self-Controlled Case Series Method
    STATISTICS IN MEDICINE Statist. Med. 2005; 0:1–31 Prepared using simauth.cls [Version: 2002/09/18 v1.11] TUTORIAL IN BIOSTATISTICS: The self-controlled case series method Heather J. Whitaker1, C. Paddy Farrington1, Bart Spiessens2 and Patrick Musonda1 1 Department of Statistics, The Open University, Milton Keynes, MK7 6AA, UK. 2 GlaxoSmithKline Biologicals, Rue de l’Institut 89, B-1330 Rixensart, Belgium. SUMMARY The self-controlled case series method was developed to investigate associations between acute outcomes and transient exposures, using only data on cases, that is, on individuals who have experienced the outcome of interest. Inference is within individuals, and hence fixed covariates effects are implicitly controlled for within a proportional incidence framework. We describe the origins, assumptions, limitations, and uses of the method. The rationale for the model and the derivation of the likelihood are explained in detail using a worked example on vaccine safety. Code for fitting the model in the statistical package STATA is described. Two further vaccine safety data sets are used to illustrate a range of modelling issues and extensions of the basic model. Some brief pointers on the design of case series studies are provided. The data sets, STATA code, and further implementation details in SAS, GENSTAT and GLIM are available from an associated website. key words: case series; conditional likelihood; control; epidemiology; modelling; proportional incidence Copyright c 2005 John Wiley & Sons, Ltd. 1. Introduction The self-controlled case series method, or case series method for short, provides an alternative to more established cohort or case-control methods for investigating the association between a time-varying exposure and an outcome event.
    [Show full text]
  • Supplementary File
    Supplementary file Table S1. Characteristics of studies included in the systematic review. Authors, reference Type of article Number of patients Type of stroke Valderrama [1] case report 1 AIS Oxley [2] case series 5 AIS Morassi [3] case series 6 AIS (n = 4), HS (n = 2) Tunc [4] case series 4 AIS Avula [5] case series 4 AIS (n = 3), TIA (n = 1) Oliver [6] case report 1 AIS Beyrouti [7] case series 6 AIS Al Saiegh [8] case series 2 AIS (n = 1), SAH (n = 1) Gunasekaran [9] case report 1 AIS Goldberg [10] case report 1 AIS Viguier [11] case report 1 AIS Escalard [12] case series/ case control 10 AIS Wang [13] case series 5 AIS Fara [14] case series 3 AIS Moshayedi [15] case report 1 AIS Deliwala [16] case report 1 AIS Sharafi-Razavi [17] case report 1 HS retrospective cohort study (case Jain [18] 35 AIS (n = 26) HS (n = 9) control) retrospective cohort study (case Yaghi [19] 32 AIS control) AIS (n = 35), TIA (n = 5), HS Benussi [20] retrospective cohort study 43 (n = 3) Rudilosso [21] case report 1 AIS Lodigiani [22] retrospective cohort study 9 AIS Malentacchi [23] case report 1 AIS J. Clin. Med. 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/jcm J. Clin. Med. 2020, 9, x FOR PEER REVIEW 2 of 8 retrospective cohort study/case Scullen [24] 2 HS + AIS (n = 1), AIS (n = 1) series retrospective cohort study/ case AIS (n = 17), ST (n = 2), HS Sweid [25] 22 series (n = 3) AIS – acute ischemic stroke; HS – haemorrhagic stroke; SAH – subarachnoid haemorrhage; ST – sinus thrombosis; TIA-transient ischemic attack.
    [Show full text]
  • Case Series: COVID-19 Infection Causing New-Onset Diabetes Mellitus?
    Endocrinology & Metabolism International Journal Case Series Open Access Case series: COVID-19 infection causing new-onset diabetes mellitus? Abstract Volume 9 Issue 1 - 2021 Objectives: This paper seeks to explore the hypothesis of the potential diabetogenic effect 1 2 of SARS-COV-2 (Severe Acute respiratory syndrome coronavirus). Rujuta Katkar, Narasa Raju Madam 1Consultant Endocrinologist at Yuma Regional Medical Center, Case series presentation: We present a case series of observation among 8 patients of age USA 2 group ranging from 34 to 74 years with a BMI range of 26.61 to 53.21 Kilogram/square Hospitalist at Yuma Regional Medical Center, USA meters that developed new-onset diabetes after COVID-19 infection. Correspondence: Rujuta Katkar, MD, Consultant Severe Acute Respiratory Syndrome Coronavirus (SARS-COV-2), commonly known as Endocrinologist at Yuma Regional Medical Center, 2851 S Coronavirus or COVID-19(Coronavirus infectious disease), gains entry into the cells by Avenue B, Bldg.20, Yuma, AZ-85364, USA, Tel 2034359976, binding to the Angiotensin-converting enzyme-2(ACE-2) receptors located in essential Email metabolic tissues including the pancreas, adipose tissue, small intestine, and kidneys. Received: March 25, 2021 | Published: April 02, 2021 The evidence reviewed from the scientific literature describes how ACE 2 receptors play a role in the pathogenesis of diabetes and the plausible interaction of SARS-COV-2 with ACE 2 receptors in metabolic organs and tissues. Conclusion: The 8 patients without a past medical history of diabetes admitted with COVID-19 infection developed new-onset diabetes mellitus due to plausible interaction of SARS-COV-2 with ACE 2 receptors.
    [Show full text]
  • Observational Clinical Research
    E REVIEW ARTICLE Clinical Research Methodology 2: Observational Clinical Research Daniel I. Sessler, MD, and Peter B. Imrey, PhD * † Case-control and cohort studies are invaluable research tools and provide the strongest fea- sible research designs for addressing some questions. Case-control studies usually involve retrospective data collection. Cohort studies can involve retrospective, ambidirectional, or prospective data collection. Observational studies are subject to errors attributable to selec- tion bias, confounding, measurement bias, and reverse causation—in addition to errors of chance. Confounding can be statistically controlled to the extent that potential factors are known and accurately measured, but, in practice, bias and unknown confounders usually remain additional potential sources of error, often of unknown magnitude and clinical impact. Causality—the most clinically useful relation between exposure and outcome—can rarely be defnitively determined from observational studies because intentional, controlled manipu- lations of exposures are not involved. In this article, we review several types of observa- tional clinical research: case series, comparative case-control and cohort studies, and hybrid designs in which case-control analyses are performed on selected members of cohorts. We also discuss the analytic issues that arise when groups to be compared in an observational study, such as patients receiving different therapies, are not comparable in other respects. (Anesth Analg 2015;121:1043–51) bservational clinical studies are attractive because Group, and the American Society of Anesthesiologists they are relatively inexpensive and, perhaps more Anesthesia Quality Institute. importantly, can be performed quickly if the required Recent retrospective perioperative studies include data O 1,2 data are already available.
    [Show full text]
  • The Value of Case Reports in Systematic Reviews from Rare Diseases
    International Journal of Environmental Research and Public Health Article The Value of Case Reports in Systematic Reviews from Rare Diseases. The Example of Enzyme Replacement Therapy (ERT) in Patients with Mucopolysaccharidosis Type II (MPS-II) Miguel Sampayo-Cordero 1,2,*, Bernat Miguel-Huguet 3, Andrea Malfettone 1,2, José Manuel Pérez-García 1,2,4, Antonio Llombart-Cussac 1,2,5, Javier Cortés 1,2,4,6, Almudena Pardo 7 and Jordi Pérez-López 8 1 Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; [email protected] (A.M.); [email protected] (J.M.P.-G.); [email protected] (A.L.-C.); [email protected] (J.C.) 2 Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain 3 Department of Surgery, Hospital de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; [email protected] 4 Institute of Breast Cancer, Quiron Group, 08023 Barcelona, Spain 5 Hospital Arnau de Vilanova, Universidad Católica de Valencia “San Vicente Mártir”, 46015 Valencia, Spain 6 Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain 7 Albiotech Consultores y Redacción Científica S.L., 28035 Madrid, Spain; [email protected] 8 Department of Internal Medicine, Hospital Vall d’Hebron, 08035 Barcelona, Spain; [email protected] * Correspondence: [email protected] Received: 3 August 2020; Accepted: 7 September 2020; Published: 10 September 2020 Abstract: Background: Case reports are usually excluded from systematic reviews. Patients with rare diseases are more dependent on novel individualized strategies than patients with common diseases. We reviewed and summarized the novelties reported by case reports in mucopolysaccharidosis type II (MPS-II) patients treated with enzyme replacement therapy (ERT).
    [Show full text]
  • Download, And
    medRxiv preprint doi: https://doi.org/10.1101/19002121; this version posted July 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Evaluation of Indicators of Reproducibility and Transparency in Published Cardiology Literature Short Title: Anderson et al.; Indicators of Reproducibility in Cardiology J. Michael Anderson, B.S.1, Bryan Wright, B.G.S.1, Daniel Tritz, B.S.1, Jarryd Horn, B.S.1, Ian Parker, D.O.2, Daniel Bergeron, D.O.2, Sharolyn Cook, D.O.2, Matt Vassar, PhD1 1. Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA 2. Oklahoma State University Medical Center - Department of Cardiology, Tulsa, Oklahoma, USA Corresponding Author: Mr. J. Michael Anderson, Oklahoma State University Center for Health Sciences, 1111 W 17th St Tulsa, OK 74107, United States; Fax: 918-561-8428; Telephone: 918-521-8774; Email: [email protected] Word Count: 7041 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/19002121; this version posted July 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract: Background The extent of reproducibility in cardiology research remains unclear. Therefore, our main objective was to determine the quality of research published in cardiology journals using eight indicators of reproducibility.
    [Show full text]
  • Study Types Transcript
    Study Types in Epidemiology Transcript Study Types in Epidemiology Welcome to “Study Types in Epidemiology.” My name is John Kobayashi. I’m on the Clinical Faculty at the Northwest Center for Public Health Practice, at the School of Public Health and Community Medicine, University of Washington in Seattle. From 1982 to 2001, I was the state epidemiologist for Communicable Diseases at the Washington State Department of Health. Since 2001, I’ve also been the foreign adviser for the Field Epidemiology Training Program of Japan. About this Module The modules in the epidemiology series from the Northwest Center for Public Health Practice are intended for people working in the field of public health who are not epidemiologists, but who would like to increase their understanding of the epidemiologic approach to health and disease. This module focuses on descriptive and analytic epide- miology and their respective study designs. Before you go on with this module, we recommend that you become familiar with the following modules, which you can find on the Center’s Web site: What is Epidemiology in Public Health? and Data Interpretation for Public Health Professionals. We introduce a number of new terms in this module. If you want to review their definitions, the glossary in the attachments link at the top of the screen may be useful. Objectives By now, you should be familiar with the overall approach of epidemiology, the use of various kinds of rates to measure disease frequency, and the various ways in which epidemiologic data can be presented. This module offers an overview of descriptive and analytic epidemiology and the types of studies used to review and investigate disease occurrence and causes.
    [Show full text]
  • Overview of Epidemiological Study Designs
    University of Massachusetts Medical School eScholarship@UMMS PEER Liberia Project UMass Medical School Collaborations in Liberia 2018-11 Overview of Epidemiological Study Designs Richard Ssekitoleko Yale University Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/liberia_peer Part of the Clinical Epidemiology Commons, Epidemiology Commons, Family Medicine Commons, Infectious Disease Commons, Medical Education Commons, and the Quantitative, Qualitative, Comparative, and Historical Methodologies Commons Repository Citation Ssekitoleko R. (2018). Overview of Epidemiological Study Designs. PEER Liberia Project. https://doi.org/ 10.13028/fp3z-mv12. Retrieved from https://escholarship.umassmed.edu/liberia_peer/5 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in PEER Liberia Project by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Overview of Epidemiological study Designs Richard Ssekitoleko Department of Global Health Yale University 1.1 Objectives • Understand the different epidemiological study types • Get to know what is involved in each type of study • Understand the strengths and Limitations of each study type Key terms • Population • Consists of all elements and is the group from which a sample is drawn • A sample is a subset of a population • Parameters • Summary data from a population • Statistics • Summary data from a sample • Validity • Extent to which a conclusion or statistic is well-founded and likely corresponds accurately to the parameter. Hierarchy of Evidence Study type Observational Interventional Descriptive Experiment Ecological Randomized Controlled Trial Cross-sectional Case-control Cohort Overview of Epidemiologic Study Designs Validity *anecdotes Cost Understanding What Physicians Mean: In my experience … once.
    [Show full text]
  • Letter to the Editor Concerning “Low Virulence Bacterial Infections in Cervical Intervertebral Discs: a Prospective Case Series” by Chen Y, Wang X, Zhang X, Et Al
    European Spine Journal (2019) 28:1242–1245 https://doi.org/10.1007/s00586-018-5671-4 LETTER TO THE EDITOR Letter to the Editor concerning “Low virulence bacterial infections in cervical intervertebral discs: a prospective case series” by Chen Y, Wang X, Zhang X, et al. (Eur Spine J; 2018: doi:10.1007/ s00586‑018‑5582‑4) Manu N. Capoor1,4 · Andrew McDowell2 · Assaf Raz1 · Peter Lambert3 · Ondrej Slaby4 Received: 22 May 2018 / Accepted: 17 June 2018 / Published online: 23 June 2018 © The Author(s) 2018 Dear Editor, by homogenization with a mortar and pestle, with the option of a short sonication step. In contrast, there was We have read with great interest the manuscript by Chen no evidence of CoNS present in disc tissue as a bioflm. et al., which provides an interesting and potentially impor- The process of disrupting P. acnes bioflm is a recog- tant perspective into low virulence infections in cervical nized approach to maximize the detection of P. acnes intervertebral discs [1]. Given our experience in relation to and CoNS organisms associated with other infections, the study of infection amongst patients undergoing lumbar notably those associated with prosthetic joints [3]. microdiscectomy surgery [2], we would like to highlight 2. The study population is underpowered based on a sample what we consider to be some methodological and data analy- size calculation: Two meta-analyses of previous studies sis limitations within the study that could impact on the fnal addressing infection of intervertebral discs reported a results and conclusion. These are: pooled prevalence of bacteria at 34 and 36.2%, respec- tively, with P.
    [Show full text]
  • Common Types of Questions: Types of Study Designs
    Evidence-Based Medicine Cochrane Database of Systematic Reviews Resources ACP Journal Club Meta- is as PubMed (MEDLINE) – “AND” meta-analysis into your search. This will pick up Meta-Analys analysis s a MeSH term and as a publication type. Cochrane Database of Systematic Reviews / ACP Journal Club Systematic review PubMed (MEDLINE) – Use the ”Find Systematic Reviews” filter under Clinical Queries, or “AND” systematic[sb] into your search. (Note: the systematic reviews subset includes meta- analyses.) tting | Reduction of bia ACP Journal Club / Cochrane Central Register of Controlled Trials (CCTR) Randomized PubMed (MEDLINE) – Use the “Therapy” filter under Clinical Queries, or “AND” controlled trial randomized controlled trial into your search. This will pick up Randomized Controlled Trials as a MeSH term and Randomized Controlled Trial as a publication type. PubMed (MEDLINE) – “AND” cohort study into your search. This will pick up Relevance to clinical se Cohort study the MeSH term Cohort Studies and the more specific MeSH terms Follow Up Studies, Longitudinal Studies, and Prospective Studies under it. PubMed (MEDLINE) – “AND” case control study into your search. This will Case control study pick up the MeSH term Case-Control Studies and the more specific MeSH term Retrospective Studies under it. Case Series / Case Report PubMed (MEDLINE) – “AND” case report into your search. This will pick up Case Reports as a publication type. COMMON TYPES OF QUESTIONS: TYPES OF STUDY DESIGNS: Therapy -- how to select treatments to offer patients that do more good A Meta-analysis takes a systematic review one step further by than harm and that are worth the efforts and costs of using them combining all the results using accepted statistical methodology.
    [Show full text]
  • Choosing the Right Study Design Conflicts of Interest
    Choosing the right study design Conflicts of interest I have received funding for the membership of Data Safety and Monitoring Boards, Advisory Boards and for the preparation of educational materials from: • Gilead Sciences • ViiV Healthcare • Janssen‐Cilag Main types of study design BEST QUALITY Randomised controlled trial (RCT) EVIDENCE Cohort study Case‐control study Cross‐sectional study Case series/case note review ‘Expert’ opinion WORST QUALITY EVIDENCE Experimental vs. Observational Experimental study Investigator intervenes in the care of the patient in a pre‐planned, experimental way and records the outcome Observational study Investigator does not intervene in the care of a patient in any way, other than what is routine clinical care; investigator simply records what happens Cross‐sectional vs. Longitudinal Cross‐sectional study Patients are studied at a single time‐point only (e.g. patients are surveyed on a single day, patients are interviewed at the start of therapy) Longitudinal study Patients are followed over a period of time (days, months, years…) Assessing causality (Bradford Hill criteria) Cause should precede effect Association should be plausible (i.e. biologically sensible) Results from different studies should be consistent Association should be strong Should be a dose‐response relationship between the cause and effect Removal of cause should reduce risk of the effect Incidence vs. prevalence Incidence: proportion of patients without the event of interest who develop the event over the study period ‐ Can only estimate from a longitudinal study ‐ Must exclude those who have the event at start of study from the calculation Prevalence: proportion of all patients in study who have the event at a particular point in time ‐ Can estimate prevalence from longitudinal or cross‐sectional studies ‐ Generally include all patients in calculation Randomised controlled trials (RCTs) Experimental and longitudinal Comparative –comparison of two or more treatment strategies (e.g.
    [Show full text]
  • Levels of Evidence
    Levels of Evidence PLEASE NOTE: Evidence levels are only used for research involving human subjects. Basic science and animal studies should be listed as NA. Level Therapy/Prevention or Etiology/Harm Prognosis Study Study 1a Systematic review of randomized Systematic review of prospective cohort controlled trials studies 1b Individual randomized controlled trial Individual prospective cohort study 2a Systematic review of cohort studies Systematic review of retrospective cohort studies 2b Individual cohort study Individual retrospective cohort study 2c “Outcomes research” “Outcomes research” 3a Systematic review of case-control studies 3b Individual case-control study 4 Case series (with or without comparison) Case series (with or without comparison) 5 Expert opinion Expert opinion NA Animal studies and basic research Animal studies and basic research Case-Control Study. Case-control studies, which are always retrospective, compare those who have had an outcome or event (cases) with those who have not (controls). Cases and controls are then evaluated for exposure to various risk factors. Cases and controls generally are matched according to specific characteristics (eg, age, sex, or duration of disease). Case Series. A case series describes characteristics of a group of patients with a particular disease or patients who had undergone a particular procedure. A case series may also involve observation of larger units such as groups of hospitals or municipalities, as well as smaller units such as laboratory samples. Case series may be used to formulate a case definition of a disease or describe the experience of an individual or institution in treating a disease or performing a type of procedure. A case series is not used to test a hypothesis because there is no comparison group.
    [Show full text]