THE QUANTITATIVE METHOD in BIOLOGY Published by the University of Manchester At

Total Page:16

File Type:pdf, Size:1020Kb

THE QUANTITATIVE METHOD in BIOLOGY Published by the University of Manchester At PUBLICATIONS OF THE UNIVERSITY OF MANCHESTER BIOLOGICAL SERIES No. II THE QUANTITATIVE METHOD IN BIOLOGY Published by the University of Manchester at THE UNIVERSITY PRESS (H. M. McKechnie, Secretary) 12 Lime Grove, Oxford Road, MANCHESTER LONGMANS, GREEN & CO. London : 39 Paternoster Row, E.C.4 New York : 443-449 Fourth Avenue and Thirtieth Street Chicago : Prairie Avenue and Twenty-fifth Street Bombay : 8 Hornby Road Calcutta : 6 Old Court House Street Madras : 167 Mount Road THE QUANTITATIVE METHOD IN BIOLOGY BY Julius MacLeod, Dr Nat. Sc. Professor of Botany in the University of Ghent WITH 27 FIGURES 9& l^' MANCHESTER : AT THE UNIVERSITY PRESS 12 LIME GROVE, OXFORD ROAD LONGMANS, GREEN & CO. LONDON, NEW YORK, BOMBAY, ETC 1919 PUBLICATIONS OF THE UNIVERSITY OF MANCHESTER No. CXX M3^ All rights reserved PREFACE In Physics, Chemistry and Mineralogy the properties of the objects are measured and expressed by means of figures called constants. A constant is independent of any theory : it is the exact expression of a fact. The constants are in reality the material by means of which theories are built up, the explana- tion of the observed facts is found and the road opened for new discoveries. In Botany and Zoology, on the contrary, the properties (characters) of the living things are usually described by means of terms. We say that a given object is long or short, broad or narrow, oblong or oval, etc. Much progress would be rendered possible if such terms as long, broad, short, etc., were replaced by figures. This would be simple enough if the properties of animals and plants were invariable. Unfortunately these properties are almost always variable, not only within the limits of one species, but also among the children of the same parents and even among the progeny of one parent.^ Variability has been hitherto the great obstacle which has rendered impossible the general use of quantitative data (figures) in Biological Sciences. The object of the present book is to describe a method by which biological constants may be established. In the first two chapters I have expounded certain theoretical views about the notion of species and variation. Those views afford us a guide for the discovery of the primordia (simple or elementary properties or characters) which are to be measured in order to find constants. The constants themselves are, however, entirely independent of any theory and of any ^ Parthenogenesis, apogamy, asexual multiplication in animals and plants. V VI PREFACE calculation whatsoever. Each constant is a direct expression of an observed fact. I have been asked several times in what way the described method was to be applied to the investigation of certain given properties of certain animals or plants. My answer is that in each peculiar case a preliminary investigation is required in order to find the primordia which are to be measured and the way in which the measurements are to be carried out. This preliminary work may be a long one. For example, I began in December 19 14 the study of the British species of the genus Mnium (Acrocarpic Mosses). I spent two months on the preparatory work before I had found a dozen of the primordia and established their exact definition and the method of measuring them. In a similar way it took me in 1916 about three months to determine exactly twenty-five primordia of the fertile stem of the Grasses. In 1907 I began the measurement of thirty-eight primordia of the species of the genus Carabus after a preparatory investigation of the simple properties of the Coleoptera and other insects which lasted several years. Such work is, I think, an excellent school for the biologist, because he becomes aware of the vagueness of many of our notions. As soon as we require to make measure- ments, we feel again and again compelled to replace approxi- mations by exact definitions. It may be hoped that the preparatory work under consideration will become easier in proportion as the number of examples investigated becomes greater. The work needed for the measurement of the primordia of animals and plants is rather lengthy, but biologists ought not to shrink from the idea of undertaking such a laborious task. It may be recalled that the physicists, the chemists and the mineralogists have already collected hundreds of thousands of constants at the cost of tremendous toil. They have per- severed in spite of numerous difficulties. For example, in order to establish exactly the constants (atomic weight, specific gravity, melting-point, etc.) of a given metal, a pure specimen PREFACE vii must be provided, and the preparation of a pure specimen may last several months. Moreover, many figures obtained by the measurement of inorganic objects are variable according to the external conditions, in the same way as the dimensions and other properties of living beings. For instance, the density of a substance varies to given according temperature ; pressure has an influence on the etc. in order boiling-point ; Therefore, to establish constants, certain conventions have been made ; this renders the task still more laborious and delicate. Biologists should not allow themselves to be discouraged by the prospect of " such work " should remember what lengthy ; they always the students of inorganic nature have already carried out. When an index of refraction, a coefficient of expansion or a given angle of a crystal has been exactly measured, work and perseverance find their reward, because a precise notion has been acquired once for all. In Biology, on the contrary, especially in the descriptive (systematic) part of Zoology and Botany,! numerous objects have been described again and as new contradiction and hesitation ; again ; prevail everywhere an enormous amount of labour has been wasted. We should follow the example given by physicists, chemists and mineralo- of gists. Otherwise it may be feared that the work, like that Penelope, will go on indefinitely. It may be remarked that the present book is NOT in reality a treatise on mathematical biology : mathematical notions (Part VI.) are used only in order to find the primordia and the methods of measuring them. We may hope that when a sufficient number of constants have been collected the power- ful machinery of mathematical science will become applicable to biological problems. I have, in conclusion, the pleasant duty of acknowledging the assistance received from various friends. To Professor F. E. Weiss, who has kindly read through the manuscript and has made numerous corrections in the language, and to Professor W. H. Lang, in whose laboratory 1 See on Embryology, § 50. viii PREFACE I have been working for more than three years, I am indebted for the most cordial assistance. Both of them have given me bibliographical information of a most useful character. I beg Professor G. Unwin, who kindly helped me with the language, to accept my most sincere thanks. To Professor Niels Bohr, Copenhagen, I am indebted for useful remarks about the mathematical part. Finally, I have to express my great obligation to Mr W. D. Evans, M.A., who has read through the manuscript and proofs of the mathematical part and who has assisted me in various ways. Julius MacLeod. The University, Manchester. 2isi Dece?7iber 1918. CONTENTS PAGE PREFACE V LIST OF ILLUSTRATIONS xii PART I THE NOTION OF SPECIES IS A CHEMICAL NOTION . i The Living Substance of each Specific Form is a Mixture of a Number of Chemical Entities—Each Specific Mixture differs from all others by at least one Entity— Chemical Classification of Plants and Animals— and Series of Entities— — — Groups — Chemical— Glycerides Proteins Natural Mixtures Bioproteins Biotic and Abiotic Chemical Properties— Heredity—Individual Variation—Mutation—Lamarckism PART II THE OBSERVABLE PROPERTIES OF EACH SPECIES ARE. PRODUCED BY REACTIONS OF ITS LIVING SUB- STANCE 9 — Possible and Observable Properties Range of Possibilities—Plasticity— Variants—Complexity—Monotypic and Complex Species—Subspecies —Pure Lines—Bud-Variation—Bud-Species—Continuous and Dis- continuous Variation—Adaptation—Accommodation—Variation under Cultivation—Latent Properties PART III QUANTITATIVE METHOD AND PRIMORDIA . .25 Summary of Parts I. and II. —Use of the Quantitative Method in the and Classification of — — — Description— — Species Linnaeus— Latreille— Bertil- lonage — Biometry— Quantitative— Variation Quetelet Variation Curves Galton Weldon Pearson — Davenport—Biometrika—Appli- cation of the Quantitative Method on the Study of Hybridization— Mendel—The Mendelian Experiments in Relation to the Notion of Species—Simple and Compound Properties—Primordia—Observable Properties and Hereditary Factors—Segregation (Dissociation) of into Compound Properties Primordia by Hybridization, Plasticity, Gradation and in the Course of Individual Development—The Mendelian Method of is — describing—Hybrids applicable on the Description of Species Phyllotaxis Quantitative Investigation of Physiological Functions X CONTENTS PART IV PAOB THE PRIMORDIA 51 The Adult State is a State of Equilibrium—Each Primordium repre- sents a State of Equilibrium—Individual Adaptation (Accommodation) is —Classification of the Primordia Equilibrium— — — with reference to their Development Sensitive —Period Correlation Independence of the Primordia—Psedogenesis Measurement of a State of Equilibrium— Curves of Development— Leading Property—Variation in Embryology PART V ATTEMPT AT A CLASSIFICATION OF THE PRIMORDIA 66 Numerous Primordia mentioned in existing Descriptive Literature— Classification of the Primordia
Recommended publications
  • Is Human Hibernation Possible?
    ANRV334-ME59-12 ARI 16 December 2007 14:50 Is Human Hibernation Possible? Cheng Chi Lee Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030; email: [email protected] Annu. Rev. Med. 2008. 59:177–86 Key Words The Annual Review of Medicine is online at hypothermia, 5-AMP, torpor, hypometabolism http://med.annualreviews.org This article’s doi: Abstract 10.1146/annurev.med.59.061506.110403 The induction of hypometabolism in cells and organs to reduce is- Copyright c 2008 by Annual Reviews. chemia damage holds enormous clinical promise in diverse fields, in- All rights reserved cluding treatment of stroke and heart attack. However, the thought 0066-4219/08/0218-0177$20.00 that humans can undergo a severe hypometabolic state analogous to hibernation borders on science fiction. Some mammals can enter a severe hypothermic state during hibernation in which metabolic activity is extremely low, and yet full viability is restored when the animal arouses from such a state. To date, the underlying mecha- nism for hibernation or similar behaviors remains an enigma. The beneficial effect of hypothermia, which reduces cellular metabolic demands, has many well-established clinical applications. However, severe hypothermia induced by clinical drugs is extremely difficult and is associated with dramatically increased rates of cardiac arrest for nonhibernators. The recent discovery of a biomolecule, 5-AMP, which allows nonhibernating mammals to rapidly and safely enter severe hypothermia could remove this impediment and enable the wide adoption of hypothermia as a routine clinical tool. 177 ANRV334-ME59-12 ARI 16 December 2007 14:50 INTRODUCTION ing mammals.
    [Show full text]
  • Journal Vol 18 No 1 & 2, September 2002
    Journal of the British Dragonfly Society Volume 18 Number I & 2 September 2002 Editor Dr Jonathan Pickup TheJournal ofthe Bn/ish DragonflySociely, published twice a year, contains articleson Odonata that have been recorded from the United Kingdom and articles on EuropeanOdonata written by members of the Society. The aims of the British Dragonfly Society(B.D.S.) are to promote and encourage the study and conservation ofOdonata and their natural habitats, especially in the United Kingdom. Trustees of the British Dragonfly Society Articles for publicanon (twopaper copes er ('.Ir copy plus disk please) should be sent rothe Chairman: T G. Beynon Editor. Instructions for authors appor inside Vice�Chairma,,: PM. AUen back cover. SecrellJry: W. H. Wain '1rriJJuru: A. G. T Carter Back numbers of the Journal can be purchased Edilnr, J. Pickup from the Librarian/Archivist at ConV<nOrof Dragonfly ConstnJal"'" Group, 1-4 copies £2.75 percopy, P Taylor 5 copies or over £2.60 per copy (members) or £5.50 (non-mcmbe.. ). Ordinary Trustees: M. T Avcrill Ordinary membership annual subscription D.J. Pryce D. Gennard £10.00. D. J. Mann Overseas subscription £12.50. All subscriptions are due on 1st April each year. Late payers will be charged £1 extra. ADDRESSES Life membership subscription £1000. Edilor: Jonathan Pickup, Other subscription rates (library, corporate) on 129 Craigleith Road, application to the Secretary, who will also deal Edinburgh EH4 2EH with membership enquiries. e�mail: [email protected] SW'eUJry: W. H. Wain, The Haywain, Hollywater Road, Bordon, Hants GU35 OAD Ubrarian/Arr:III'VtSl: D.
    [Show full text]
  • Starting the Winter Season: Predicting Endodormancy Induction Through Multi-Process Modeling. Guillaume Charrier
    Starting the winter season: predicting endodormancy induction through multi-process modeling. Guillaume Charrier To cite this version: Guillaume Charrier. Starting the winter season: predicting endodormancy induction through multi- process modeling.. 2021. hal-03065757v2 HAL Id: hal-03065757 https://hal.inrae.fr/hal-03065757v2 Preprint submitted on 31 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Starting the winter season: predicting endodormancy induction in walnut 2 trees through multi-process modeling. 3 4 Running title: Predicting endodormancy induction in walnut trees 5 6 Guillaume Charrier1 7 1Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France 8 *: corresponding author 9 Email: [email protected] 10 Tel: +33 4 43 76 14 21 11 UMR PIAF, INRAE Site de Crouel 12 5, chemin de Beaulieu 13 63000 Clermont-Ferrand 14 1 1 Abstract 2 Background and Aims 3 In perennial plants, the annual phenological cycle is sub-divided into successive stages whose 4 completion will lead directly to the onset of the following event. A critical point is the transition 5 between the apparent vegetative growth and the cryptic dormancy. To date, the initial date for 6 chilling accumulation (DCA) is arbitrarily set using various rules such as fixed or dynamic dates 7 depending on environmental variables.
    [Show full text]
  • What's That Big Building Going up in Carter?
    Volume 3, Issue 1 Land & Natural Resources Quarterly Newsletter J a n u a r y — March 2013 Potawatomi Forest County What’s That Big Building Going Up In Carter? The dance arbor floor is constructed from I n s i d e he Forest County Potawatomi 100% recycled rubber scrap tires that would this issue: T Powwow Grounds!! otherwise be land filled. P l a n n i n g 1 The Forest County Potawatomi Community Department is constructing a permanent Powwow Grounds just down the hill from the W a t e r 2 - Potawatomi Carter Casino in Carter, WI. Department 3 The project includes a Dance Arbor, Show- N e w 4 er, Restrooms, Parking Area, Camping, Fire Pit and Kitchen/Social Arbor. E m p l o y e e s W i l d l i f e 5 - Every year millions of rubber tires are thrown away and are one of the most prob- 6 Earth Friendly. Each 24" x 24" lematic sources of waste. Safety tile is made from scrap tires. B o t a n y / 7 - W e t l a n d s 8 P h o t o s 9 C o n t a c t s 9 If you have any questions regarding the Powwow Grounds or would like a tour please contact the FCPC Planning Department at 715/478-4944. Land & Natural Resources Quarterly Newsletter Page 2 Bug Lake Winter Fisheree Adult Youth Northern Pike Northern Pike FCPC Natural Joe Shepard 34 3/4” Israel Alloway 22 1/4” Resources Jamie Tuckwab 18” Ryana Alloway 17” Jason Spaude 15 1/4” Hunter Tuckwab 16 1/2” Department once again hosted the Largemouth Bass Largemouth Bass annual Bug Lake Joe Brown Sr.
    [Show full text]
  • Hecht-Höger and Gábor Á
    Development and application of novel immunological approaches to chiropteran immunology Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by Alexander Hecht-Höger 2019 The work described in this dissertation was performed from 1st of October 2011 to 2nd of April 2019 at the Leibniz Institute for Zoo and Wildlife Research in Berlin under the supervision of Prof. Dr. Alex Greenwood and Dr. Gábor Á Czirják and was submitted to the Department of Biology of Freie Universität Berlin. 1. Reviewer: Prof. Dr. Alex D. Greenwood 2. Reviewer: Prof. Dr. Heribert Hofer Date of Disputation: 12.09.2019 This thesis is based on the following manuscripts 1. Hecht, A. M., Braun, B. C., Krause, E., Voigt, C. C., Greenwood, A. D., & Czirják, G. Á. (2015). Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis). Scientific Reports, 5, 16604. https://doi.org/10.1038/srep16604. 2. Hecht-Höger, A. M., Braun, B. C., Krause, E., Meschede, A., Krahe, R., Voigt, C. C., Zychlinsky, A., Greenwood, A. D., & Czirják, G. Á. Plasma proteomic profiles differ between European and North American Myotid bats with White-Nose Syndrome. In preparation. 3. Hecht-Höger, A. M., Chang, H. D., Wibbelt, G., Wiegrebe, L., Berthelsen, M. F., Greenwood, A. D., & Czirják, G. Á. Cross-reactivity of human and murine antibodies against major lymphocyte markers in three chiropteran species. In preparation. Content Content CHAPTER 1 – General Introduction ..................................................................................... 1 1.1.Background of eco-immunology ...................................................................................... 3 1.2.Methods used in eco-immunology ..................................................................................
    [Show full text]
  • Flower Clocks, Time Memory and Time Forgetting
    1 Flower clocks, time memory and time forgetting Wolfgang Engelmann and Bernd Antkowiak Universität Tübingen 2016 Copyright 1998 Wolfgang Engelmann. corrected August 2002 and Mai 2004. 2007 Text and illustrations revised. New edition 2016. This book consists of 189 pages. It was written by using LYX, a professional system for typesetting docu- ments http://www.lyx.org. It uses the typesetting sys- tem LATEX. Vector grafic illustrations were produced with xfig and Inkscape under Linux. For diagrams PyxPlot was used. An older English and German Version is available under http://nbn-resolving.de/urn:nbn:de:bsz: 21-opus-38007 and http://nbn-resolving.de/urn:nbn: de:bsz:21-opus-38017. Dedicated to Karlheinz Baumann in admiration of his nature movies Contents 1 Flower clocks 3 1.1 Opening, closing and wilting of flowers..... 3 1.1.1 How Kalanchoe-flowers move...... 4 1.1.2 Internal clock opens Kalanchoe flowers. 9 1.1.3 Circadian clock at various temperatures 13 1.2 A flower clock in the school garden . 15 2 Flowers and insects 23 2.1 Time sense of bees................ 28 2.2 Pollination tricks of plants............ 36 2.3 Fragrance of flowers and fragrance rhythms . 43 2.4 How to earn money with leafcutter bees . 55 3 Our head clock 69 4 Diapause: How insects hibernate 75 4.1 How a midge fools the pitcher plant . 75 4.2 Colorado beetle buries in the fall . 86 4.3 How the silkmoth babies survive the winter . 96 4.4 Diapause is better than freezing to death . 101 4.4.1 Earlier diapause in areas with early winter112 ii Contents 4.4.2 Diapause-eyes .
    [Show full text]
  • GN-120-Botany.Pdf
    Botany 120-1 Reference / Supplemental Reading • CMG GardenNotes on Botany available on-line at www.cmg.colostate.edu #121 Horticulture Classification #122 Taxonomic Classification #131 Plant Structures: Cells, Tissues, and Structures #132 Plant Structures: Roots #133 Plant Structures: Stems #134 Plant Structures: Leaves #135 Plant Structures: Flowers #136 Plant Structures: Fruit #137 Plant Structures: Seeds #141 Plant Growth: Photosynthesis, Respiration and Transpiration #142 Plant Growth Factors: Light #143 Plant Growth Factors: Temperature #144 Plant Growth Factors: Water #145 Plant Growth Factors: Hormones • Reference Books o Botany for Gardeners. Brian Capon. Timber Press. o Gardener’s Latin: A Lexicon. Bill Neal. o Introduction to Botany. James Schooley. Delmar Publishers. o Manual of Woody Landscape Plants, Fifth Edition. Michael A. Dirr. Stipes. 1998. o Hartman’s Plant Science, Fourth Edition. Margaret J. McMahon, Anthon M. Kofranek, and Vincent E. Rubatzky. Prentice Hall. o The Why and How of Home Horticulture. D.R. Bienz. Freeman. 1993. o Winter Guide to Central Rocky Mountain Shrubs. Co. Dept. of Natural Resources, Div. of Wildlife. 1976. • Web-Based References on Plant Taxonomy o International Plant Name Index at www.ipni.org o U.S. Department of Agriculture Plant Data Base at http://plants.usda.gov Basic Botany curriculum developed by David Whiting (retired), with Joann Jones (retired), Linda McMulkin, Alison O’Connor, and Laurel Potts (retired); Colorado State University Extension. Photographs and line drawings by Scott Johnson and David Whiting. Revised by Mary Small, CSU Extension o Colorado Master Gardener Training is made possible, in part, by a grant from the Colorado Garden Show, Inc. o Colorado State University, U.S.
    [Show full text]
  • Modelling the Timing of Betula Pubescens Budburst. I. Temperature and Photoperiod: a Conceptual Model
    Vol. 46: 147–157, 2011 CLIMATE RESEARCH Published online March 8 doi: 10.3354/cr00980 Clim Res Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model Amelia Caffarra1,*, Alison Donnelly2, Isabelle Chuine3, Mike B. Jones2 1Research and Innovation Centre, Agriculture Area, Fondazione Edmund Mach, San Michele all’Adige, 38100 Trento, Italy 2Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland 3CEFE-CNRS, 1919 route de Mende, 34293 Montpellier, France ABSTRACT: The main factors triggering and releasing bud dormancy are photoperiod and tempera- ture. Their individual and combined effects are complex and change along a transition from a dor- mant to a non-dormant state. Despite the number of studies reporting the effects of temperature and photoperiod on dormancy release and budburst, information on the parameters defining these rela- tionships is scarce. The aim of the present study was to investigate the effects and interaction of tem- perature and photoperiod on the rates of dormancy induction and release in Betula pubescens (Ehrh.) in order to develop a conceptual model of budburst for this species. We performed a series of con- trolled environment experiments in which temperature and photoperiod were varied during different phases of dormancy in B. pubescens clones. Endodormancy was induced by short days and low tem- peratures, and released by exposure to a minimal period of chilling temperatures. Photoperiod dur- ing exposure to chilling temperatures did not affect budburst. Longer exposure to chilling increased growth capability (growth rate at a given forcing temperature) and decreased the time to budburst. During the forcing phase, budburst was promoted by photoperiods above a critical threshold, which was not constant, but decreased upon longer chilling exposures.
    [Show full text]
  • Biological Assessment for Coronado National Forest Livestock Grazing Program
    Biological Assessment for Coronado National Forest Livestock Grazing Program February 2019 Table of Contents Frequently Used Acronyms .......................................................................................................................... iii Introduction .................................................................................................................................................. 1 Consultation History ..................................................................................................................................... 1 Proposed Action ............................................................................................................................................ 1 Forest Plan Standards and Guidelines for Range Program ....................................................................... 1 Allotments and Permits ........................................................................................................................ 4 Project and Action Areas........................................................................................................................... 9 Conservation Measures .......................................................................................................................... 10 General Conservation Measures ......................................................................................................... 10 Species-specific Conservation Measures ...........................................................................................
    [Show full text]
  • Phenology and Plant Species Adaptation to Climates of the Western United States
    Phenology and Plant Species Adaptation to Climates of the Western United States p Station Bulletin 632 September 1978 Agricultural Experiment Station Oregon State University, Corvallis Contents SUMMARY 1 Onset of Rest 2 INTRODUCTION 1 Chilling to Break Rest 2 LITERATURE REVIEW 1 Bud Break and Growth 3 Genetic Factors 1 MATERIALS AND METHODS 5 Sequential Phenology 2 RESULTS AND DISCUSSION 5 Cessation of Growth 2 LITERATURE CITED 14 About This Bulletin This bulletin was developed from the combined Colorado USDA efforts of the members of Western Region Cooperative M. J. Burke J. T. Raese project W-130, Improving Stability of Deciduous Fruit A. H. Hatch Production by Reducing Freeze Damage. M. W. Williams Cooperating agencies: The agricultural experiment Hawaii National Weather stations of California, Colorado, Hawaii, Idaho, Min- R. M. Bullock Service nesota, Montana, New Mexico, Oregon, Utah, Washing- E. M. Bates ton,theU.S.DepartmentofAgricultureFederal Idaho Research, and theU.S. Department of Commerce A. A. Boe Washington National Weather Service. W. J. Kochan D. 0. Ketchie Administrative Advisor: J. M. Lyons, California. Minnesota E. L. Proebsting, Jr. Technical Committee members: P. H. Li C. Stushnoff Oregon Montana M. N. Westwood H. N. Metcalf P. B. Lombard New Mexico W. M. Mellenthin J. N. Corgan Under the procedure of cooperative publications, c. Weiser this regional report becomes, ineffect, an identical T. Sullivan publication of each of the cooperating agencies, and California Utah is mailed under the frank and indicia of each. Limited G. C. Martin supplies of this publication are available at the sources J. L. Anderson K. Ryugo listed above.Itis suggested that requests be sent to A.
    [Show full text]
  • National Forests in the Sierra Nevada: a Conservation Strategy
    NATIONAL FORESTS IN THE SIERRA NEVADA: A CONSERVATION STRATEGY AUGUST 2012 REVISED MARCH 14, 2013 National Forests in the Sierra Nevada: A Conservation Strategy Recommended Citation: Britting, S., Brown, E., Drew, M., Esch, B., Evans, S. Flick, P., Hatch, J., Henson, R., Morgan, D., Parker, V., Purdy, S., Rivenes, D., Silvas-Bellanca, K., Thomas, C. and VanVelsor, S. 2012. National Forests in the Sierra Nevada: A Conservation Strategy. Sierra Forest Legacy. August 27, 201; revised in part March 14, 2013. Available at: http://www.sierraforestlegacy.org Preparation This strategy was developed by a team of scientists and resource specialists from a variety of conservation organizations. The following individuals led the literature review and synthesis and worked with colleagues to develop the recommendations for specific topic areas. Contributor Affiliation Contribution Susan Britting, Ph. D. Sierra Forest Legacy Editor, planning and integration, landscape connectivity, aquatic ecosystems (co-lead), species accounts Emily Brown Earthjustice Adaptive management Mark Drew, Ph. D. California Trout Aquatic ecosystems (co-lead) Bryce Esch The Wilderness Society Species accounts Steve Evans Friends of the River Wild and Scenic Rivers Pamela Flick Defenders of Wildlife Species at risk Jenny Hatch California Trout Invasive species, species accounts Ryan Henson California Wilderness Coalition Wilderness and roadless area protection Darca Morgan Sierra Forest Legacy Old forests, forest diversity, species accounts Vivian Parker Sierra Forest Legacy
    [Show full text]
  • Estimation of Chilling and Heat Accumulation Periods Based on the Timing of Olive Pollination
    Article Estimation of Chilling and Heat Accumulation Periods Based on the Timing of Olive Pollination Jesús Rojo 1 , Fabio Orlandi 2,* , Ali Ben Dhiab 3, Beatriz Lara 1, Antonio Picornell 4 , Jose Oteros 5 , Monji Msallem 3, Marco Fornaciari 2 and Rosa Pérez-Badia 1 1 Institute of Environmental Sciences (Botany), University of Castilla-La Mancha, 45071 Toledo, Spain; [email protected] (J.R.); [email protected] (B.L.); [email protected] (R.P.-B.) 2 Department of Civil and Environmental Engineering, University of Perugia, 06121 Perugia, Italy; [email protected] 3 Laboratory of Palynology, Olive Tree Institute, BP. 208, Tunis 1082, Tunisia; [email protected] (A.B.D.); [email protected] (M.M.) 4 Department of Botany and Plant Physiology, University of Malaga, 29071 Malaga, Spain; [email protected] 5 Department of Botany, Ecology and Plant Physiology, University of Cordoba, 14071 Cordoba, Spain; [email protected] * Correspondence: [email protected] Received: 11 June 2020; Accepted: 28 July 2020; Published: 1 August 2020 Abstract: Research Highlights: This paper compares the thermal requirements in three different olive-growing areas in the Mediterranean region (Toledo, central Spain; Lecce, southeastern Italy; Chaal, central Tunisia). A statistical method using a partial least square regression for daily temperatures has been applied to study the chilling and heat requirements over a continuous period. Background and Objectives: The olive is one of the main causes of pollen allergy for the population of Mediterranean cities. The physiological processes of the reproductive cycle that governs pollen emission are associated with temperature, and thermal requirements strongly regulate the different phases of the plant’s life cycle.
    [Show full text]